• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulation of X-ray-induced EMI Environment in Shell of SIP

    2021-12-15 14:35:48CHENJinghuiZENGChao
    原子能科學技術 2021年12期

    CHEN Jinghui, ZENG Chao

    (Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621900, China)

    Abstract: This article aims to evaluate the electromagnetic interference (EMI) environment in the shell of a system in package (SIP) while irradiated by a pulsed X-ray fluecne. First, the yields and energy spectra of photoelectrons induced by X-ray were calculated using Monte Carlo numerical simulations. These results were used to simulate the self-consistent movement of photoelectrons emitting from the Kovar alloy shell and the dielectrical material of printed circuit board (PCB). The electromagnetic pulse (EMP) generated by these photoelectrons were calculated using finite difference time-domain (FDTD) method and particle-in-cell (PIC) method. An analysis of the EMI environment in the shell of SIP was performed by numerical results. It is shown that the EMI environment adjacent to the emission surfaces turns more severe because of the movement of photoelectrons. And most of the radiation energy is located at low-frequency parts, which depends on the characteristic time of X-ray. Also, reducing the area of surfaces illuminated by X-ray and the height of SIP can lessen the threat from EMI.

    Key words:system in package; electromagnetic interference; X-ray

    1 Introduction

    System in package (SIP) as a form of a system integration package, mingles different types of elements in a package by different techniques, consisting of different types of chips and can achieve the function of system. When exposing a SIP to the X-ray environment, electromagnetic pulse (EMP) generated by photoelectrons could act as the electromagnetic interference (EMI) inducing upsets or burnout of SIP[1-2].

    Different from the common EMI environment, the radiation sources of X-ray-induced EMI environment are photoelectrons emitting from metal or dielectrical material of SIP, and techniques developed to lessen the common EMI threat may have limits to the EMI environment induced by X-ray.

    The EMI environment of SIP under X-ray irradiation is similar to the cavity system-generated electromagnetic pulses (SGEMP) (one of the SGEMP effects). The cavity SGEMP is the EMP environment generated by the motion of photoelectrons in the cavity of electric equipment, which excited by the irradiation of X-ray[3]. However, being different from the cavity SGEMP, the shell of SIP is much smaller, and there are chips or circuit boards inside. Furthermore, photoelectrons can not only exit from the SIP shell, but also from the surface of the dielectric material, and the photoelectrons adjacent to the surface of circuits could affect the system directly. For the reasons above, attention must be paid to not only the distribution of EMP, but also the distribution of space charges.

    This study presents a numerical method to estimate the EMI environment induced by the X-ray, the time-domain and frequency-domain characteristics of EMI are also discussed in this paper.

    2 Theory and calculation method

    Starting from the theory of X-ray excited photoelectron, a theoretical model of EMI environment is established based on electromagnetic theory, and numerical methods are applied to calculate the distribution of EMP and charges in the shell of SIP.

    2.1 Photoelectron yield of different materials

    Photoelectrons in a SIP consist of the electrons emitting from Kovar alloy shell and dielectrical material of print circuit board (PCB).

    The yields and energy spectra of the electrons could be acquired using Monte Carlo numerical simulation, and the emitting angle of photoelectrons obeys cosine distribution approximately.

    2.2 Radiation source for EMI environment

    The EMI environment is generated by the photoelectrons transfer processes, described by solving the Newton-Lorentz equations of motion as[4-5]:

    (1)

    (2)

    Whereγis the Lorenz factor,tis the time,Eis electric field,Bis the magnetic flux density,m0,q,randvare the static mass, charge, position and velocity of the electron, respectively. Boris method, which divides the transfer process into three separate stages, was applied to solve these equations, and the accelerations caused by the electric fields and the rotation caused by the magnetic fields are calculated respectively[6].

    The moving photoelectrons form space currents act as the sources of EMP, and these sources can be acquired by solving the continuity equation as:

    (3)

    Whereρis charge density,Jis current density. The trajectory of a macro-particle is needed to solve the continuity equation. Conventionally, the trajectory is assumed to be a straight line[7]. However, the calculation will be extremely complex for a particle crossing several cells within one step. Therefore, a fast algorithm developed by Umeda is applied to solve the continuity equation, which assumes the trajectory of a particle to be a zigzag line, and shown in Fig.1. This method has an advantage in computation speed without substantial distortion of physics[8].

    The solid arrows represent particle trajectories, the dashed lines represent cell meshesFig.1 Particle trajectory for three-dimensional zigzag scheme

    Once the current densityJin Eq. (3) is acquired, one could calculate the EMI environment in the shell of SIP by solving Maxwell’s equations.

    (4)

    WhereHis the magnetic field,Dis the electric flux density.

    Considering the change of medium on the surfaces of PCB, in that case, integral equations instead of differential equations are applied to calculate the EMP, and the integral path is shown in Fig.2. One of the Maxwell integral equations is shown as follow:

    (5)

    WhereSis the integral surface,εis the dielectric constant of PCB,lis the integral path.

    The t is the thickness of dielectric plateFig.2 Mesh of surface of dielectric material

    3 Computation result

    As shown in Fig.3, the typical construction of SIP is a small flat rectangular box, with a piece of single layer PCB lay on the bottom. The length of each edge of this Kovar alloy shell is 5 cm and the height is 3 cm, the thickness of the shell is 0.1 mm. The size of PCB is the same as the shell and the thickness is 2 mm. To simplify the simulation, we ignored the circuit lands and the elements on PCB. The typical elements of Kovar alloy shell are shown in Table 1. Besides, the base material of PCB is assumed to be polytetrafluoroethylene (PTFE).

    Fig.3 Computation model of shell and PCB of SIP

    Table 1 Typical element of Kovar alloy

    3.1 Photoelectron yield

    The X-ray is assumed to illuminate the top of the shell vertically, and the energy is 50 keV, fluence is 0.01 J/cm2, and the half-width of duration is 1 ns. A Monte Carlo numerical simulation tool is applied to calculate the yields and energy spectra of photoelectrons.

    The yield rates of photoelectrons emitting from Kovar alloy shell and PTFE are shown in Table 2. To simplify the simulation, we treat photoelectrons as mono-energetic electrons and consider the central energy instead of the spectra. Taking the X-ray fluenceφ, X-ray energyE, and area of the irradiated surfaceSinto account, the amount of X-ray photos is obtained and the total number of emitted electrons is calculated to beEe1=6.49×1010(emitting from Kovar alloy shell) andEe2=7.90×108(emitting from PCB).

    Table 2 Yield rate and central energy of photoelectron

    3.2 Sampling point and sampling surface

    Set the sampling points of electric field and magnetic field at the center of the dielectric plate 2 mm from the surface, where chips are most likely to be placed. The surface of the dielectric plate is applied as the sampling surface to obtain the number of deposited charges on circuits. The sampling point and sampling surface are shown in Fig.4.

    Fig.4 Sampling point and surface

    3.3 EMI environment in shell of SIP

    Considering the symmetry of geometry, the absolute value ofExandHxshould be equal toEyandHyrespectively. So, onlyEx,Ez,HxandHzof interest are shown in Fig.5.

    Fig.5 Waveform of electromagnetic

    The peak values of these waveforms indicate thatEzis in a more dominant position of the EMI environment. It could be more likely to induce interference current on the circuit lands or pins located along thezaxis.

    The spatial distribution ofEzin the plane ofy=0 m at 1.5 ns is shown in Fig.6, which shows a change of the direction of polarization at the top and bottom of the shell. Considering that this EMI environment represents the characteristics of the photoelectrons, we could apply the static-field theory to explain these phenomena. Photoelectrons emitted into the shell could induce negative electric fields adjacent to the top of the shell, and induce positive electric fields adjacent to the surface of PCB. With the decrease of the distance from emission surfaces, the absolute values of electric fields become larger. The spatial distribution of photoelectrons at 1.5 ns is shown in Fig.7. In Fig.7, the red points represent the photoelectrons emitting from the top of Kovar alloy shell and the blue points represent the photoelectrons emitting from the surfaces of PCB.

    Fig.6 Spatial distribution of Ez in plane of y=0 m at 1.5 ns

    The frequency spectrum ofEzis shown in Fig.8. It is obvious that most of the energy is contained in the lower frequency under 2 GHz, and the frequency center is 33.33 MHz, which mostly depends on the characteristic time of X-ray like half-width of duration. On the other hand, we can observe a weak peak at 4.23 GHz, and this is the syntonic frequency of the shell. In other words, we should turn more attention to the low-frequency parts of the EMI environment, which contains most of the radiation energy.

    Fig.7 Spatial distribution of photoelectrons at 1.5 ns

    Fig.8 Frequency spectrum of Ez

    Moreover, we also investigate the deposited charges on dielectric plate. The amount of charge accesses the sampling surface within a pulse duration represents the deposited charges, and is shown in Fig.9. As shown in Fig.9, -1.84×10-9C of charges have deposited on dielectric plate, which is about 17.5% of total charges emitted into the shell. It’s not a low proportion, and may affect the system function.

    Fig.9 Deposited charge on dielectric plate

    3.4 Influence of X-ray fluence

    Fig.10 Change of electric field (Ez) versus fluence

    Keep the time parameters of X-ray unchanged, the change of peak value ofEzversus fluence is shown in Fig.10. The electric field intensity increases linearly when the fluence is lower than 0.4 J/cm2, and when the fluence is higher than 0.4 J/cm2, the enhancement of space charge limited effect causes the emitting electrons form a barrier in front of the emission surface, which may discourage low-energy electrons from moving to the end of the shell, and for those that have enough energy to overcome the barrier, the space charge limited effect decreases their velocity[9-10]. This effect restricts the linear enhancement of electric field. Moreover, the deposited charge on the dielectric plate versus fluence is shown in Fig.11, and the nonlinear increase in charges also proves the influence of the space charge limited effect. The above results seem to indicate that there is an inherent upper limit on the EMI environment of SIP under X-ray radiation. When spectrum of X-ray is constant, the worst EMI environment only depends on the structure and material of SIP.

    Fig.11 Change of deposited charge versus fluence

    3.5 Influence of SIP size

    By changing the irradiated area and height of SIP, the influence of size on EMI environment is studied. The parameters of X-ray are the same with the parameters in Section 3.1. Four areas are 3 cm×3 cm, 4 cm×4 cm, 5 cm×5 cm and 6 cm×6 cm with the same heightH=3 cm, and the four heights are 1 cm, 2 cm, 3 cm and 4 cm with the same area 5 cm×5 cm. Considering the intensity ofEzat the sampling point and the deposited charges on the dielectric plate, the change ofEzversus irradiated area is shown in Fig.12, and the change of deposited charges per unit area versus irradiated area is shown in Fig.13.

    As is shown in Fig.12,Ezenhanced with the increase in area, however, there is an upper limitation of enhancement. For constant fluence of X-ray, the influence of area mainly bases on the elimination of electrons on the side walls of shell. The emission of electrons follows cosine distribution, thus some of the electrons will deposit on side walls before reaching PCB. The smaller the area, the larger the proportion of electrons deposited on side walls. On the contrary, larger area could weak the influence of side walls, which can be seen in Fig.13.

    The change ofEzversus the height of SIP is shown in Fig.14, and the change of deposited charges per unit area versus the height of SIP is shown in Fig.15. With the increase in height, the intensity ofEzenhances first and then decreases. As is shown in Fig.6, there is a region of polarity change ofEz, and the region is in the middle of shell. If the sampling point is in this region, the intensity ofEzis low, that is why the deposited charge per unit area is the largest in Fig.15 for height 1 cm, but theEzis the lowest. However, the increase in height could reduce the number of electrons reaching PCB, and lead to the reduce ofEz.

    Fig.12 Waveform of Ez of different irradiated areas of SIP

    Fig.13 Deposited charge of different irradiated areas of SIP

    Fig.14 Waveform of Ez of different heights of SIP

    Fig.15 Deposited charge of different heights of SIP

    4 Conclusion

    The pulsed X-ray can induce EMI environment in the shell of a SIP. This EMI environment generated by the photoelectrons emitting from the Kovar alloy shell and PCB, could not be lessen by conventionally techniques. To evaluate the threat of this EMI environment, much attention should be paid to the region adjacent to the emission surfaces, where elements are more susceptible because of the larger electric fields. We should also focus importance on the low-frequency parts of EMI environment, which contain most of the radiation energy.

    However, the threat degree of the EMI environment more likely depends on the structure and material of SIP. Reducing the size of the surfaces illuminated, and set the elements in the region of polarity change of electric field, or reducing the electron yield of shell, we could lessen the threat of EMI environment.

    男女啪啪激烈高潮av片| 亚洲熟女精品中文字幕| 欧美三级亚洲精品| av天堂中文字幕网| 免费看光身美女| 97超碰精品成人国产| 亚洲性久久影院| 国产色爽女视频免费观看| 国产乱来视频区| 午夜福利在线观看吧| 亚洲熟妇中文字幕五十中出| 亚洲av成人精品一二三区| 日本wwww免费看| 国产成人免费观看mmmm| 日日撸夜夜添| 亚洲综合色惰| 国产成人91sexporn| 99久久精品热视频| 久久久久久伊人网av| 精华霜和精华液先用哪个| 街头女战士在线观看网站| 亚洲成人中文字幕在线播放| 成年女人看的毛片在线观看| 网址你懂的国产日韩在线| 国产成人一区二区在线| 久久亚洲国产成人精品v| 午夜视频国产福利| 精品久久久久久久人妻蜜臀av| 99久久精品一区二区三区| 国产伦精品一区二区三区四那| 日韩一区二区视频免费看| 中文字幕av在线有码专区| 亚洲av男天堂| 看十八女毛片水多多多| 精品酒店卫生间| 成人高潮视频无遮挡免费网站| 国产精品一区二区三区四区免费观看| 伊人久久精品亚洲午夜| 国产成人精品福利久久| 夫妻性生交免费视频一级片| 网址你懂的国产日韩在线| 成年版毛片免费区| 久久久久久久久久久免费av| 国产毛片a区久久久久| 国产一区二区三区综合在线观看 | 在线观看人妻少妇| 亚洲人成网站高清观看| 啦啦啦韩国在线观看视频| 国产精品麻豆人妻色哟哟久久 | 在线观看一区二区三区| 欧美日韩在线观看h| 国产av在哪里看| 只有这里有精品99| 天天躁夜夜躁狠狠久久av| 亚洲av中文av极速乱| 汤姆久久久久久久影院中文字幕 | 国产国拍精品亚洲av在线观看| 一边亲一边摸免费视频| 麻豆国产97在线/欧美| 床上黄色一级片| 一级毛片电影观看| 一夜夜www| 69av精品久久久久久| 一区二区三区乱码不卡18| 国产精品嫩草影院av在线观看| 成人性生交大片免费视频hd| 亚洲欧美一区二区三区国产| 欧美3d第一页| 久久久久久久国产电影| 国产久久久一区二区三区| 日日啪夜夜爽| 十八禁国产超污无遮挡网站| 真实男女啪啪啪动态图| 亚洲三级黄色毛片| 亚洲无线观看免费| 大香蕉久久网| 大陆偷拍与自拍| 精品人妻偷拍中文字幕| 国产精品无大码| 菩萨蛮人人尽说江南好唐韦庄| 一级片'在线观看视频| 丰满乱子伦码专区| 91在线精品国自产拍蜜月| 欧美成人一区二区免费高清观看| 男人和女人高潮做爰伦理| 免费在线观看成人毛片| 麻豆av噜噜一区二区三区| 嘟嘟电影网在线观看| 亚洲国产成人一精品久久久| 最近最新中文字幕大全电影3| 亚洲丝袜综合中文字幕| 色5月婷婷丁香| 岛国毛片在线播放| av天堂中文字幕网| 精品人妻偷拍中文字幕| 日韩欧美精品v在线| 亚洲国产av新网站| 日韩欧美三级三区| 激情五月婷婷亚洲| 亚洲国产精品成人综合色| 国产亚洲精品久久久com| 韩国av在线不卡| 久久久久久久国产电影| 国产一区有黄有色的免费视频 | 成人毛片a级毛片在线播放| 边亲边吃奶的免费视频| 自拍偷自拍亚洲精品老妇| 国产 一区精品| 高清日韩中文字幕在线| 色综合站精品国产| 搡老妇女老女人老熟妇| 最后的刺客免费高清国语| 久99久视频精品免费| 一级av片app| videos熟女内射| 国产午夜精品一二区理论片| 欧美+日韩+精品| 欧美日韩一区二区视频在线观看视频在线 | 久久久久久久久久黄片| 国产欧美另类精品又又久久亚洲欧美| 一级片'在线观看视频| 最近中文字幕高清免费大全6| 亚洲四区av| 啦啦啦啦在线视频资源| 乱码一卡2卡4卡精品| 欧美变态另类bdsm刘玥| 岛国毛片在线播放| 国产成人精品久久久久久| 97人妻精品一区二区三区麻豆| 亚洲综合色惰| 男人狂女人下面高潮的视频| 18禁动态无遮挡网站| 夜夜爽夜夜爽视频| 麻豆成人av视频| 亚洲国产高清在线一区二区三| 亚洲精品久久久久久婷婷小说| 国产精品久久久久久精品电影| 日韩强制内射视频| 性色avwww在线观看| 三级国产精品片| 国产成人精品一,二区| 特级一级黄色大片| 国内精品美女久久久久久| 最新中文字幕久久久久| 色综合站精品国产| 亚洲国产最新在线播放| 久久99热6这里只有精品| 乱码一卡2卡4卡精品| 99re6热这里在线精品视频| 午夜福利在线观看免费完整高清在| 亚洲成人精品中文字幕电影| 精品午夜福利在线看| 天天躁日日操中文字幕| 久久人人爽人人片av| 免费黄频网站在线观看国产| 人妻一区二区av| 精品熟女少妇av免费看| 欧美日韩精品成人综合77777| 色哟哟·www| 18禁裸乳无遮挡免费网站照片| 亚洲精品中文字幕在线视频 | 亚洲成人一二三区av| 精品久久久噜噜| 免费无遮挡裸体视频| 久久热精品热| 亚洲伊人久久精品综合| 搡老乐熟女国产| 国产亚洲精品久久久com| 熟妇人妻不卡中文字幕| 18+在线观看网站| 国产成人精品久久久久久| 国产精品一及| 国产av国产精品国产| 久久久久精品性色| 亚洲美女搞黄在线观看| 看黄色毛片网站| 国产午夜福利久久久久久| 亚洲精品日韩av片在线观看| 午夜激情久久久久久久| 亚洲aⅴ乱码一区二区在线播放| 在线免费观看不下载黄p国产| 十八禁国产超污无遮挡网站| 精品不卡国产一区二区三区| 日本午夜av视频| 青春草亚洲视频在线观看| 麻豆成人午夜福利视频| 天堂影院成人在线观看| 欧美+日韩+精品| 国产真实伦视频高清在线观看| 国产av不卡久久| 最近手机中文字幕大全| 中文字幕制服av| 伦精品一区二区三区| 男女啪啪激烈高潮av片| 爱豆传媒免费全集在线观看| 女人十人毛片免费观看3o分钟| 免费在线观看成人毛片| 精品一区二区三卡| 九九在线视频观看精品| 亚洲国产精品sss在线观看| 最近视频中文字幕2019在线8| 简卡轻食公司| 日本三级黄在线观看| 日本熟妇午夜| 自拍偷自拍亚洲精品老妇| 亚洲国产欧美人成| 日韩 亚洲 欧美在线| 日本一本二区三区精品| 国产老妇女一区| 国产不卡一卡二| 搡老乐熟女国产| 日韩亚洲欧美综合| 亚洲精品一区蜜桃| 国产成人精品福利久久| 只有这里有精品99| 精品一区在线观看国产| 一本一本综合久久| 国产高清三级在线| av福利片在线观看| 久久精品久久久久久噜噜老黄| 亚州av有码| 欧美一区二区亚洲| 2021少妇久久久久久久久久久| 男人爽女人下面视频在线观看| 国产精品麻豆人妻色哟哟久久 | 午夜亚洲福利在线播放| 能在线免费观看的黄片| 日韩视频在线欧美| 免费看光身美女| 亚洲自拍偷在线| 噜噜噜噜噜久久久久久91| 久久精品夜色国产| 免费观看精品视频网站| 你懂的网址亚洲精品在线观看| 国产精品av视频在线免费观看| 一级毛片久久久久久久久女| 简卡轻食公司| a级一级毛片免费在线观看| 午夜福利网站1000一区二区三区| 亚洲av免费在线观看| 国语对白做爰xxxⅹ性视频网站| 特大巨黑吊av在线直播| 国产午夜精品论理片| 蜜臀久久99精品久久宅男| 美女xxoo啪啪120秒动态图| 国产视频内射| 欧美变态另类bdsm刘玥| 男的添女的下面高潮视频| 亚洲18禁久久av| 插阴视频在线观看视频| 色综合站精品国产| 久久精品久久久久久久性| 一个人看视频在线观看www免费| 亚洲国产精品sss在线观看| 免费观看无遮挡的男女| 高清在线视频一区二区三区| 美女脱内裤让男人舔精品视频| 欧美精品国产亚洲| 国产美女午夜福利| 亚洲精华国产精华液的使用体验| 亚洲国产精品sss在线观看| 午夜福利视频精品| 又黄又爽又刺激的免费视频.| 纵有疾风起免费观看全集完整版 | 午夜激情欧美在线| 伦精品一区二区三区| www.色视频.com| 男人和女人高潮做爰伦理| 欧美+日韩+精品| 九色成人免费人妻av| 国产精品美女特级片免费视频播放器| av在线亚洲专区| 亚洲欧美一区二区三区黑人 | 非洲黑人性xxxx精品又粗又长| kizo精华| 91av网一区二区| 天美传媒精品一区二区| 如何舔出高潮| 天天一区二区日本电影三级| 搡女人真爽免费视频火全软件| 日本一二三区视频观看| a级一级毛片免费在线观看| 欧美日韩在线观看h| 亚洲高清免费不卡视频| 国产精品麻豆人妻色哟哟久久 | 成人av在线播放网站| 人人妻人人看人人澡| 亚洲自拍偷在线| 国产精品久久视频播放| 联通29元200g的流量卡| 国产精品福利在线免费观看| 91久久精品国产一区二区成人| 精品久久久久久久久久久久久| 街头女战士在线观看网站| 亚洲成人久久爱视频| 日本免费在线观看一区| 一级毛片我不卡| 久久久久国产网址| 国产黄色小视频在线观看| 小蜜桃在线观看免费完整版高清| 国产精品日韩av在线免费观看| 国产综合懂色| 我的女老师完整版在线观看| 乱码一卡2卡4卡精品| 在线观看一区二区三区| 亚洲人成网站在线播| 国产三级在线视频| 麻豆精品久久久久久蜜桃| 午夜福利网站1000一区二区三区| 99久久精品国产国产毛片| 亚洲色图av天堂| 亚洲av一区综合| 欧美高清成人免费视频www| 国产成人福利小说| 精品国内亚洲2022精品成人| 欧美精品国产亚洲| 国产淫语在线视频| 久久久国产一区二区| 男女那种视频在线观看| 国产伦精品一区二区三区视频9| 特大巨黑吊av在线直播| 日韩伦理黄色片| 国产一级毛片在线| 深夜a级毛片| a级毛色黄片| 国产乱人视频| 国产美女午夜福利| 永久免费av网站大全| 亚洲va在线va天堂va国产| 国产精品1区2区在线观看.| 一夜夜www| 国产伦一二天堂av在线观看| 美女xxoo啪啪120秒动态图| kizo精华| 国产精品女同一区二区软件| 精品少妇黑人巨大在线播放| 日本爱情动作片www.在线观看| 人妻一区二区av| 听说在线观看完整版免费高清| 中文字幕av在线有码专区| 国产精品三级大全| 人人妻人人看人人澡| 97在线视频观看| 青春草视频在线免费观看| 日韩欧美三级三区| 日韩视频在线欧美| 国产一区二区亚洲精品在线观看| 亚洲人成网站在线观看播放| 乱人视频在线观看| 熟妇人妻久久中文字幕3abv| 视频中文字幕在线观看| 伊人久久精品亚洲午夜| 日韩av在线大香蕉| 亚洲成人av在线免费| 欧美xxxx黑人xx丫x性爽| 白带黄色成豆腐渣| 美女内射精品一级片tv| 亚洲成人av在线免费| 午夜福利在线观看吧| av福利片在线观看| 禁无遮挡网站| 91久久精品电影网| 国产中年淑女户外野战色| 亚洲精品日韩在线中文字幕| 少妇熟女欧美另类| 精品人妻视频免费看| 国产单亲对白刺激| 国产一区二区在线观看日韩| 欧美成人午夜免费资源| 国产精品久久久久久精品电影| 狠狠精品人妻久久久久久综合| 男人舔女人下体高潮全视频| 丝瓜视频免费看黄片| 亚洲国产av新网站| 十八禁国产超污无遮挡网站| 2018国产大陆天天弄谢| 赤兔流量卡办理| 噜噜噜噜噜久久久久久91| 在线播放无遮挡| 欧美一区二区亚洲| 国产毛片a区久久久久| 亚洲国产精品成人综合色| 久久久久久久久久久免费av| 国产在视频线精品| 身体一侧抽搐| 在线免费观看不下载黄p国产| 亚洲av中文av极速乱| 人妻系列 视频| 中文欧美无线码| 免费看日本二区| 久久国产乱子免费精品| 狠狠精品人妻久久久久久综合| 搡女人真爽免费视频火全软件| 色尼玛亚洲综合影院| 国产精品一及| 成人一区二区视频在线观看| 久久久精品欧美日韩精品| 亚洲性久久影院| 嫩草影院新地址| 久久久久久久久中文| 床上黄色一级片| 亚洲人成网站在线观看播放| 一个人免费在线观看电影| 岛国毛片在线播放| 国产在视频线精品| 美女脱内裤让男人舔精品视频| 一二三四中文在线观看免费高清| kizo精华| 男女国产视频网站| 国产精品麻豆人妻色哟哟久久 | 亚洲精品乱码久久久v下载方式| 日本与韩国留学比较| 99久国产av精品国产电影| 国产精品一区二区三区四区免费观看| 91久久精品国产一区二区三区| 丝袜喷水一区| 最新中文字幕久久久久| 国产乱来视频区| 国产高潮美女av| 最近手机中文字幕大全| 色综合色国产| 国产精品熟女久久久久浪| 国产精品1区2区在线观看.| 一个人免费在线观看电影| 午夜视频国产福利| 五月玫瑰六月丁香| 直男gayav资源| av免费观看日本| 久久人人爽人人片av| 成人毛片a级毛片在线播放| 欧美xxxx黑人xx丫x性爽| 日韩,欧美,国产一区二区三区| 综合色av麻豆| av黄色大香蕉| 国产精品无大码| 亚洲精品第二区| 成人毛片60女人毛片免费| 久久午夜福利片| 国产一区二区三区综合在线观看 | 一级爰片在线观看| 少妇丰满av| 青春草国产在线视频| 人妻夜夜爽99麻豆av| 18禁裸乳无遮挡免费网站照片| 白带黄色成豆腐渣| 久久99热这里只频精品6学生| 免费av观看视频| 男女边吃奶边做爰视频| 又黄又爽又刺激的免费视频.| 亚洲国产精品专区欧美| 中文字幕免费在线视频6| 哪个播放器可以免费观看大片| 成年人午夜在线观看视频 | 亚洲精品乱久久久久久| 日本一本二区三区精品| 国产成年人精品一区二区| 久久久a久久爽久久v久久| 日韩三级伦理在线观看| 欧美97在线视频| 有码 亚洲区| 亚洲三级黄色毛片| 亚洲一级一片aⅴ在线观看| 久久精品国产亚洲av天美| 26uuu在线亚洲综合色| 日本三级黄在线观看| 婷婷色麻豆天堂久久| 能在线免费看毛片的网站| 欧美最新免费一区二区三区| 一二三四中文在线观看免费高清| 少妇熟女aⅴ在线视频| 日日干狠狠操夜夜爽| 天天一区二区日本电影三级| 日韩成人av中文字幕在线观看| 亚洲欧美日韩东京热| 欧美zozozo另类| 国产黄片美女视频| 插阴视频在线观看视频| 亚洲第一区二区三区不卡| 久久国内精品自在自线图片| 成人毛片60女人毛片免费| 国产麻豆成人av免费视频| 国产黄色免费在线视频| 亚洲精品第二区| 国产三级在线视频| 蜜桃亚洲精品一区二区三区| 黄片wwwwww| 伊人久久国产一区二区| 免费不卡的大黄色大毛片视频在线观看 | 久久久久久久久久人人人人人人| 好男人视频免费观看在线| 波野结衣二区三区在线| 日日干狠狠操夜夜爽| 看免费成人av毛片| 一区二区三区四区激情视频| 黄色配什么色好看| 一二三四中文在线观看免费高清| 黄色一级大片看看| 国产高清有码在线观看视频| 乱系列少妇在线播放| 80岁老熟妇乱子伦牲交| 国产亚洲午夜精品一区二区久久 | 精品99又大又爽又粗少妇毛片| 国产三级在线视频| 成人二区视频| 黄片wwwwww| 中文字幕免费在线视频6| 欧美日韩在线观看h| 国产精品国产三级国产专区5o| 亚洲精品亚洲一区二区| 国产视频内射| 亚洲熟女精品中文字幕| 成人亚洲精品av一区二区| 国产精品av视频在线免费观看| 精品亚洲乱码少妇综合久久| 亚洲国产精品专区欧美| 国产高清三级在线| 国产国拍精品亚洲av在线观看| 久久久精品免费免费高清| 日韩强制内射视频| 欧美+日韩+精品| 国产av国产精品国产| 尾随美女入室| 亚洲精品色激情综合| 99热这里只有精品一区| av国产免费在线观看| 亚洲国产成人一精品久久久| 亚洲欧美成人综合另类久久久| av线在线观看网站| 免费av毛片视频| 乱码一卡2卡4卡精品| 丰满人妻一区二区三区视频av| 免费黄网站久久成人精品| 亚洲av成人精品一二三区| 久热久热在线精品观看| 久久国产乱子免费精品| 99热全是精品| 亚洲乱码一区二区免费版| 超碰97精品在线观看| 精品人妻视频免费看| 午夜福利成人在线免费观看| 久久这里只有精品中国| 日日啪夜夜爽| 国产精品人妻久久久影院| 中文字幕久久专区| 色综合站精品国产| 中国美白少妇内射xxxbb| 久久精品久久精品一区二区三区| 亚洲色图av天堂| 午夜老司机福利剧场| 欧美日韩一区二区视频在线观看视频在线 | 精品熟女少妇av免费看| 国产淫片久久久久久久久| 91午夜精品亚洲一区二区三区| 99热这里只有是精品在线观看| 精品人妻视频免费看| 国产精品蜜桃在线观看| 日韩三级伦理在线观看| 日韩,欧美,国产一区二区三区| 男人爽女人下面视频在线观看| 男女下面进入的视频免费午夜| 亚洲av中文字字幕乱码综合| 欧美成人一区二区免费高清观看| 自拍偷自拍亚洲精品老妇| 亚洲av成人精品一区久久| 免费观看性生交大片5| 一区二区三区高清视频在线| 亚洲不卡免费看| 久久久精品94久久精品| av天堂中文字幕网| 麻豆av噜噜一区二区三区| 亚洲18禁久久av| 黄色一级大片看看| 午夜激情福利司机影院| 日韩欧美三级三区| 免费看光身美女| 亚洲婷婷狠狠爱综合网| 在线天堂最新版资源| 亚洲va在线va天堂va国产| 最近中文字幕2019免费版| 国语对白做爰xxxⅹ性视频网站| 久久久久久九九精品二区国产| 亚洲一区高清亚洲精品| 日韩伦理黄色片| 中文在线观看免费www的网站| 黑人高潮一二区| 国产成人精品一,二区| 国产男人的电影天堂91| 国产成人精品一,二区| 日本猛色少妇xxxxx猛交久久| 国产精品不卡视频一区二区| 91在线精品国自产拍蜜月| 免费无遮挡裸体视频| 国产伦精品一区二区三区四那| 一级片'在线观看视频| 欧美97在线视频| 久久久精品94久久精品| 亚洲精品自拍成人| 天堂俺去俺来也www色官网 | 亚洲精品久久午夜乱码| 国产精品久久久久久久电影| 国产精品久久久久久精品电影小说 | 欧美xxxx黑人xx丫x性爽| 国产女主播在线喷水免费视频网站 | 80岁老熟妇乱子伦牲交| 久久99热这里只频精品6学生| 国产有黄有色有爽视频| 51国产日韩欧美| 亚洲精品日韩av片在线观看| 极品少妇高潮喷水抽搐| 国产一区二区亚洲精品在线观看| 日韩国内少妇激情av| 男插女下体视频免费在线播放| 在线观看av片永久免费下载| 嘟嘟电影网在线观看| 丰满人妻一区二区三区视频av|