• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Electron Irradiation at Different Energy and Fluences on Electrical Properties of InP HEMT Structure

    2021-12-15 13:47:18ZHOUShuxingFANGRenfengCHENChuanliangZHANGXinWEIYanfengCAOWenyuLEIShulaiAILikun
    原子能科學技術 2021年12期

    ZHOU Shuxing, FANG Renfeng, CHEN Chuanliang, ZHANG Xin, WEI Yanfeng, CAO Wenyu, LEI Shulai, AI Likun

    (1.Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, China; 2.State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China)

    Abstract: The InGaAs/InAlAs InP high electron mobility transistor (HEMT) structures with lattice-matched channels were grown by gas source molecular beam epitaxy (GSMBE). Effects of electron irradiation at different energy and fluence on the electrical properties of InP HEMT structures were comprehensively investigated. It was found that high energy electron beam has an obvious effect on the electrical properties of two-dimensional electron gas (2DEG) at the same fluence of 2×1015 cm-2. After the fluence exceeding 4×1014 cm-2, the 2DEG mobility and density begin to decrease obviously, and did not reach saturation until the fluence was more than 3×1015 cm-2. These changes could be mainly attributed to the aggregation of irradiation-induced defects at the channel heterogeneous interface with the increase of displacement damage dose.

    Key words:InP HEMT; two-dimensional electron gas; electron irradiation; displacement damage

    1 Introduction

    With the development of space exploration to deep space, high-speed data transmission and high-precision detection are very important. Low noise amplifier with high frequency, high sensitivity and low noise figure is urgently needed to be applied in deep space communication system[1-3]. Attributed to the great electrical transport properties of the two-dimensional electron gas (2DEG) for InAlAs/InGaAs hetero-junction structure, InP high electron mobility transistor (InP HEMT) has achieved tremendously superior performance, such as low noise figure, high frequency, low power consumption and excellent power gain and so on[4-5]. Benefiting from molecular beam epitaxy (MBE) and electron beam lithography (EBL) technologies, the current generation of InP HEMT has increased the current gain cut-off frequency (fT) and maximum oscillation frequency (fmax) to approximately 0.61 THz and 1.5 THz, respectively[6]. At present, InP HEMT integrated circuits used for all receiver and transmitter functions, including power amplification and low noise amplification directly at 850 GHz, as well as frequency conversion have been reported[3]. Therefore, InP HEMT integrated circuits have excellent potential for terahertz-wave transceiver communication system in deep-space exploration, satellite remote sensing and aerospace.

    However, spacecraft in space are faced with severe radiation environment including earth radiation belt, solar flare and galactic cosmic ray. InP HEMT integrated circuits applied in the transceiver communication system will inevitably be affected by various rays and high-energy particles, such as protons, electrons, heavy ions and other secondary atomic radioactive particles[7-9]. Among them, high-energy particle such as electron, which is one of the main particles in harsh space environment, will introduce lattice defects and atomic mixing in the heterogeneous interface due to energy loss[10]. This will lead to the degradation of key parameters of HEMT devices such as 2DEG density and mobility, minimum noise figure (fmin), cut-off frequency, maximum oscillation frequency, and even device failure in space communication system, which seriously affects the stability and accuracy of space communication, and threatens the safe and reliable operation of spacecraft[11-13]. Admittedly, the irradiation damage effects of various HEMT devices such as GaN HEMT, GaAs HEMT, InP HEMT, InAs/AlSb HEMT have been widely reported[14-17]. Nonetheless, majority work on InP HEMT devices was focused mainly on the performance of the direct current (DC) and radio frequency (RF)[17-19]. Much less attention was given to the irradiation effects on the electrical properties of InP HEMT structures. Actually, the electron mobility (μ) and density (Ns) of two-dimensional electron gas (2DEG) are two important parameters that affect the frequency, power gain and noise figure of HEMT devices. Therefore, it is very important to study the influence of electron irradiation on the two-dimensional electron gas (2DEG) for analyzing the radiation degradation mechanism of HEMT devices.

    In this paper, electron irradiation at different energy from 1.0 MeV to 1.8 MeV was carried out on the lattice-matched InP HEMT structures with various fluence ranging from 1×1014cm-2to 1×1016cm-2. The changes and radiation damage mechanism of 2DEG density and electron mobility were carefully investigated before and after electron irradiation. This research can provide an effective analytical basis for further study on the radiation degradation mechanism of InP HEMT devices.

    2 Experiment

    The lattice-matched InP InGaAs/InAlAs HEMT epitaxial structure was grown on semi-insulating (100) InP substrates by a V90 gas source molecular beam epitaxy (GSMBE) system. Detailed growth details can be found in the references [20-22]. The basic HEMT epitaxial structure is shown in Table 1. The structure is comprised of an InP substrate, a 500-nm-thick InAlAs buffer layer, a 15-nm-thick InGaAs channel layer, a 3-nm-thick InAlAs spacer layer, a Siδ-doped sheet layer, a 8-nm-thick InAlAs barrier layer, a 4-nm-thick InP etching stopper layer, a 15-nm-thick n+-InAlAs cap layer, a 15-nm-thick n+-InGaAs cap layer and a 10-nm-thick n+-In0.65Ga0.35As cap layer.

    All the epitaxial samples taken from the same wafer of the InP HEMT structure were vertically irradiated at room temperature with different electron energy from 1.0 MeV to 1.8 MeV and fluence up to 1× 1016cm-2. The electron beam can go straight through the InP HEMT structure and make displacement damage not only in the QW active layer but also in the buffer and substrate layers as well[23]. Accordingly, the two-dimensional electron gas (2DEG) density and electron mobility are measured by Accent HL5500 Hall system at room temperature and 77 K as a function of the electron energy and irradiation fluence, respectively. The hall data of the as-grown InGaAs/InAlAs HEMT structure is shown in Table 2.

    Table 1 Epitaxial structure of lattice-matched InP HEMT

    Table 2 Hall data of as-grown InGaAs/InAlAs HEMT structures

    3 Results

    3.1 Effects of electron energy

    Generally, the 2DEG properties of the HEMT epitaxial structure are strongly affected by particle irradiation energy[24-25]. In order to study the effect of the electron energy on the 2DEG properties of InGaAs/InAlAs InP HEMT epitaxial structure, a series of the lattice-matched InP HEMT structures were irradiated at different electron irradiation energy ranging from 1.0 MeV to 1.8 MeV at the fluence of 2×1015cm-2.Fig.1 shows the dependence of electron mobility and 2DEG density with electron energy measured at RT and 77 K, respectively.Fig.1a shows that the electron mobility descends rapidly with the increase of electron energy at room temperature and 77 K, respectively, while the degradation of electron mobility at 77 K is more serious than that at room temperature for samples irradiated with the same electron energy at the fluence of 2×1015cm-2. As shown in Fig.1b, the 2DEG density decreases slowly with the increase of electron irradiation energy at room temperature and 77 K, respectively, while the 2DEG density at 77 K also decreases more seriously than that at room temperature.

    Fig.1 Dependence of Hall mobility (a) and 2DEG density (b) on electron irradiation energy measured at RT and 77 K

    3.2 Effects of electron irradiation fluence

    Normally, the 2DEG properties of the HEMT epitaxial structure are strongly affected by particle irradiation fluence[26-27]. In order to study the effect of the electron irradiation fluence on the 2DEG properties, a series of the lattice-matched InP HEMT structure were irradiated at the electron energy of 1.5 MeV with various fluence ranging from 1×1014cm-2to 1×1016cm-2. The electron mobility and density of two-dimensional electron gas (2DEG) before and after irradiation are shown in Fig.2. When the irradiation fluence is lower than 4×1014cm-2, there is no obvious effect on the electrical transport properties of the InP HEMT structure. As shown in Fig.2a, the decrease of electron mobility is less than 5%, while the degradation of 2DEG density is less than 1.5% in Fig.2b. With the irradiation fluence exceeding 4×1014cm-2, the electron mobility begins to decrease obviously in Fig.2a, while the 2DEG density also continues to decline rapidly, as is shown in Fig.2b. Both of them showed a rapid downward trend between the irradiation fluence of 4×1014cm-2-3×1015cm-2. Until the irradiation fluence exceeds 3×1015cm-2, the electron mobility and 2DEG density decrease slowly and finally reach saturation, as is shown in Fig.2. However, the degradation of electron mobility and 2DEG density at 77 K is more serious than that at room temperature for samples irradiated at 1.5 MeV electron energy under the fluence of 4×1014cm-2-1×1016cm-2.

    4 Discussions

    The 2DEG transport characteristics of InP HEMT structure are mainly affected by the energy band structure of InGaAs/InAlAs heterostructure and various scattering processes.

    Fig.2 Dependence of Hall mobility (a) and 2DEG density (b) on irradiation fluence measured at RT and 77 K

    The total mobility (μt) of two-dimensional electron gas(2DEG) is mainly determined by these scattering mechanisms (μn), such as ionized impurity scattering (including remote impurity scattering and background impurity scattering), lattice vibration scattering, interface scattering and alloy disorder scatterings[21]. After electron irradiation, the 2DEG transport characteristics of InP HEMT structure materials will be degraded by electron irradiation damage. Electron irradiation damage results from the interaction between electrons and lattice atoms of InP HEMT structure, which can be divided into ionization effect and displacement effect. For the InP HEMT structure materials, electron irradiation mainly causes displacement damage effects. The displacement damage effects creates defect energy levels in the quantum well region of structural materials that can act as trapping and recombination centers and cause changes in important parameters, such as 2DEG density and electron mobility. With the electron irradiation fluence exceeding a certain threshold, the 2DEG density and electron mobility will be affected by the number of irradiation-induced damage defects in the quantum well region, as is shown in Fig.2, which stems from the displacement damage effects.

    In fact, when an energetic electron with energyEis incident on InP HEMT materials, the energy transferred in displacement damage is known as non-ionizing energy loss (NIEL), which is described as[28-29]

    [dσ(θ,E)/dΩ]dΩ

    (1)

    whereNis Avogadro’s number,Ais the atomic mass, maximum energy transfer occurs forθ=π,T(θ,E) is the transferred energy due to an incident electron scattered through an angleθin the center of mass system,L[T(θ,E)] is the Lindhard partition factor, which gives the fraction of transferred energy that is nonionizing[30], dσ(θ,E)/dΩis the differential cross-section for elastic scattering of electrons scattered into a solid angle increment dΩand the integral has a lower limit of scattering angleθminfor which the recoil energy equals the threshold for displacement[29]. It implies that the NIEL caused by electron irradiation is not only related to the properties of the irradiated materials, but also related to the incident electron energy. It can be concluded from the above formula that the electron NIEL increases with the electron energy from 0.5 MeV to 10 MeV, which has been proved by Summers[29]. Normally, the magnitude of displacement damage effects can be expressed by displacement damage dose (DDD). In what follows, the total displacement damage dose can be described as the product of NIEL(E)with the electron irradiation fluenceφ(E), which means that the incident electrons with higher energy lead to a larger displacement damage dose at the same irradiation fluence. Meanwhile, the number of radiation-induced defects are positively proportional to the displacement damage dose. With the increase of electron irradiation energy from 1.0 MeV to 1.8 MeV at the fluence of 2×1015cm-2, the number of radiation-induced defects in InP HEMT structure will increase, leading to the decrease of 2DEG density and electron mobility, as is shown in Fig.1. The similar phenomena were also found in GaAs HEMT structural irradiated by various electron energy[31].

    When the electron irradiation energy is constant, the decrease of 2DEG density and electron mobility is related to the concentration of radiation-induced defects and its scattering, which is related to the electron irradiation fluence. Compared to the concentration of material growth defects, the concentration of defects induced by electron irradiation is very seldom at the irradiation fluence of below 4×1014cm-2. So the degradation of 2DEG density and electron mobility is not significant, as is shown in Fig.2. After the irradiation fluence exceeds 4×1014cm-2, a large number of radiation-induced defects gather at the heterogeneous interface of InGaAs/InAlAs channel with the increase of the irradiation fluence and capture the two-dimensional electron gas, which can greatly affects the electron mobility of 2DEG. At the same time, the radiation-induced interface trap at the heterogeneous interface of InGaAs/InAlAs channel also changes the energy shape of quantum well since the additional trapped charges appears because of the carrier captured by the radiation-induced interface trap, which weakens the built-in electric field of the heterogeneous InGaAs/InAlAs channel interface. As a result, the band curvature decreases and the triangular potential becomes shallow, resulting in the decrease of 2DEG density. This phenomenon has been reported in GaN HEMT structure irradiated by proton[8]. Compared with the total as-grown scattering factors before irradiation, including ionized impurity, lattice vibration, interface roughness, alloy disorder and so on, the scattering of radiation-induced defects on the transport properties of 2DEG become a factor that cannot be ignored after the fluence exceeding 4×1014cm-2. Since the concentration of the irradiation-induced defect is quickly increased with the increase of irradiation fluence before the fluence below 3×1015cm-2. It turns out that the scattering of radiation-induced defects increases with the irradiation fluence. Consequently, the 2DEG density and electron mobility degrades quickly between the fluence ranging from 4×1014cm-2to 3×1015cm-2, as is shown in Fig.2. This similar experimental phenomenon has also been observed in GaAs HEMT structural irradiated by electron between the fluence ranging from 2.5×1014cm-2to 1×1015cm-2[31].

    After the irradiation fluence exceeding 3×1015cm-2, the concentration of irradiation-induced defects increases slowly with the irradiation fluence, so does the scattering of radiation-induced defects. It is because that the generation and recombination of radiation-induced defects will reach a dynamic equilibrium at high irradiation fluence. Even though the irradiation fluence is increased, the concentration of radiation-induced defects will not increase too much, and the decrease of 2DEG density and electron mobility will slow down until reach saturation, as is shown in Fig.2. This experimental phenomenon also exists in GaAs HEMT structure irradiated by electron with high fluence[31].

    5 Conclusion

    In summary, we have investigated the effect of electron irradiation at different energy and fluence on the electrical properties of InP HEMT structures. After electron irradiation, the aggregation of irradiation-induced defects at the channel heterogeneous interface, which result from the increase of displacement damage dose, will degrade the 2DEG density and electron mobility. It was found that high energy electron beam has an obvious effect on the electrical properties of 2DEG at the same fluence of 2×1015cm-2. Between the fluence of 4×1014-3×1015cm-2, the 2DEG density and electron mobility degrade evidently, and did not reach saturation until the fluence exceeding 3×1015cm-2.

    亚洲国产成人一精品久久久| 午夜福利网站1000一区二区三区| 99久久中文字幕三级久久日本| 日韩成人av中文字幕在线观看| 最近2019中文字幕mv第一页| 99久久精品一区二区三区| 久久精品91蜜桃| 亚洲av成人精品一二三区| 嫩草影院新地址| 非洲黑人性xxxx精品又粗又长| 亚洲人成网站高清观看| 日本免费在线观看一区| 久久久久久久久大av| 日韩av在线大香蕉| 日本三级黄在线观看| 国产精品乱码一区二三区的特点| 欧美日韩在线观看h| a级毛片免费高清观看在线播放| 美女cb高潮喷水在线观看| 国产在线一区二区三区精 | 日韩精品有码人妻一区| 六月丁香七月| 观看免费一级毛片| 国产成人精品久久久久久| 日日撸夜夜添| 日韩亚洲欧美综合| 中文字幕久久专区| 亚洲精品乱码久久久久久按摩| 九色成人免费人妻av| 国产亚洲精品久久久com| 亚洲图色成人| 日本免费在线观看一区| 亚洲内射少妇av| 在现免费观看毛片| 国产精品野战在线观看| 久久99精品国语久久久| 日本爱情动作片www.在线观看| 美女高潮的动态| 亚洲国产日韩欧美精品在线观看| 成人三级黄色视频| av卡一久久| 晚上一个人看的免费电影| 久久精品国产亚洲av涩爱| 2021天堂中文幕一二区在线观| 舔av片在线| 在线免费观看不下载黄p国产| 成人欧美大片| 2021天堂中文幕一二区在线观| or卡值多少钱| 国产精品蜜桃在线观看| .国产精品久久| 亚洲怡红院男人天堂| 色播亚洲综合网| 中文字幕制服av| 亚洲最大成人中文| 看非洲黑人一级黄片| 最近中文字幕高清免费大全6| 国产精品伦人一区二区| 亚洲欧美成人精品一区二区| 日本色播在线视频| av卡一久久| 国产在线一区二区三区精 | 久久99热这里只频精品6学生 | 亚洲精品亚洲一区二区| 天美传媒精品一区二区| 嘟嘟电影网在线观看| 内射极品少妇av片p| 国产真实伦视频高清在线观看| 深爱激情五月婷婷| 亚洲久久久久久中文字幕| 精品酒店卫生间| 26uuu在线亚洲综合色| 亚洲欧美日韩卡通动漫| 日本一本二区三区精品| 又粗又爽又猛毛片免费看| 成人特级av手机在线观看| 国产人妻一区二区三区在| 成人一区二区视频在线观看| 欧美日本亚洲视频在线播放| 免费搜索国产男女视频| 久久久久久久亚洲中文字幕| 男女啪啪激烈高潮av片| 国产黄片视频在线免费观看| 蜜桃久久精品国产亚洲av| 欧美最新免费一区二区三区| 七月丁香在线播放| 久久久久网色| 欧美变态另类bdsm刘玥| 亚洲精品日韩av片在线观看| 色播亚洲综合网| 高清在线视频一区二区三区 | 日韩av在线大香蕉| 国产日韩欧美在线精品| 国产精品综合久久久久久久免费| 国产高清国产精品国产三级 | 色吧在线观看| 99热全是精品| 免费无遮挡裸体视频| 99久久精品热视频| 国产真实乱freesex| 免费一级毛片在线播放高清视频| 亚洲精品自拍成人| 亚洲aⅴ乱码一区二区在线播放| 欧美成人午夜免费资源| 边亲边吃奶的免费视频| 一夜夜www| 成年av动漫网址| 最近中文字幕2019免费版| 国产精品国产三级国产av玫瑰| 一本一本综合久久| av在线亚洲专区| 欧美日韩精品成人综合77777| 91精品伊人久久大香线蕉| 国产综合懂色| 欧美又色又爽又黄视频| 99九九线精品视频在线观看视频| 国产一区二区在线av高清观看| 国产黄色视频一区二区在线观看 | 精品久久久久久久末码| 看片在线看免费视频| 男女啪啪激烈高潮av片| 亚洲婷婷狠狠爱综合网| a级一级毛片免费在线观看| 人人妻人人澡欧美一区二区| 丰满少妇做爰视频| 国产精品人妻久久久久久| 成人三级黄色视频| 午夜福利在线观看吧| 99热这里只有是精品50| 村上凉子中文字幕在线| 亚洲精品国产av成人精品| 国产淫语在线视频| 精品久久久久久久久亚洲| 亚洲国产最新在线播放| 18+在线观看网站| 精品久久久久久久久亚洲| 成人无遮挡网站| 国产色婷婷99| 欧美日韩精品成人综合77777| 午夜老司机福利剧场| 99热精品在线国产| 看非洲黑人一级黄片| 国产在视频线精品| 97超碰精品成人国产| 欧美日韩精品成人综合77777| 性色avwww在线观看| 免费人成在线观看视频色| 日日啪夜夜撸| 日韩高清综合在线| 国产伦精品一区二区三区四那| 亚洲欧美精品专区久久| 午夜福利视频1000在线观看| 人人妻人人看人人澡| 91aial.com中文字幕在线观看| 日韩av在线大香蕉| 国产激情偷乱视频一区二区| 色噜噜av男人的天堂激情| 亚洲欧美清纯卡通| 国产精品不卡视频一区二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 高清日韩中文字幕在线| 国产成人aa在线观看| 免费看光身美女| 久久久久久伊人网av| 午夜爱爱视频在线播放| 国内精品一区二区在线观看| 国产一区二区在线av高清观看| 亚洲精品456在线播放app| 欧美日韩综合久久久久久| 长腿黑丝高跟| 老司机福利观看| 国产av码专区亚洲av| 国产一区二区在线av高清观看| 蜜桃亚洲精品一区二区三区| 国产高潮美女av| 国产黄色小视频在线观看| 国产综合懂色| av国产免费在线观看| 性色avwww在线观看| 人人妻人人看人人澡| 国内揄拍国产精品人妻在线| 成人av在线播放网站| 欧美激情国产日韩精品一区| 精品久久久久久久久av| 国产久久久一区二区三区| 国内精品美女久久久久久| 国产精品女同一区二区软件| 亚洲人成网站高清观看| 男人舔女人下体高潮全视频| 久久人人爽人人片av| 国产毛片a区久久久久| 国产男人的电影天堂91| 中文字幕免费在线视频6| 一级黄色大片毛片| 免费av毛片视频| 午夜老司机福利剧场| 热99re8久久精品国产| 国产亚洲av片在线观看秒播厂 | 欧美3d第一页| 亚洲丝袜综合中文字幕| 国产一级毛片七仙女欲春2| 成人国产麻豆网| 日本爱情动作片www.在线观看| 免费看日本二区| 国产午夜精品论理片| 国产亚洲5aaaaa淫片| 日韩强制内射视频| 人妻少妇偷人精品九色| 国产探花在线观看一区二区| 大话2 男鬼变身卡| 欧美精品国产亚洲| 一区二区三区乱码不卡18| 中文字幕人妻熟人妻熟丝袜美| 成人高潮视频无遮挡免费网站| eeuss影院久久| 亚洲精品国产av成人精品| 国产伦理片在线播放av一区| 国产高清视频在线观看网站| 久久精品国产亚洲av天美| 日本免费一区二区三区高清不卡| 久久99热这里只频精品6学生 | 婷婷六月久久综合丁香| 少妇熟女欧美另类| 寂寞人妻少妇视频99o| 狠狠狠狠99中文字幕| 国产淫语在线视频| 丰满人妻一区二区三区视频av| 美女高潮的动态| 天堂中文最新版在线下载 | 国产精品福利在线免费观看| 国产片特级美女逼逼视频| 欧美不卡视频在线免费观看| 国产亚洲最大av| 又爽又黄a免费视频| 自拍偷自拍亚洲精品老妇| 国产在视频线精品| 国产白丝娇喘喷水9色精品| 97在线视频观看| 在线播放国产精品三级| 3wmmmm亚洲av在线观看| 一级黄片播放器| 在线a可以看的网站| 中国国产av一级| 99热这里只有是精品50| 亚洲综合色惰| 中文字幕免费在线视频6| 亚洲精品乱码久久久久久按摩| 国模一区二区三区四区视频| 少妇高潮的动态图| 免费大片18禁| 亚洲成av人片在线播放无| av免费在线看不卡| 99热这里只有精品一区| 久久久午夜欧美精品| 亚洲va在线va天堂va国产| 久久久久久久久久成人| 日韩强制内射视频| 日韩一区二区视频免费看| 日韩制服骚丝袜av| 女的被弄到高潮叫床怎么办| 只有这里有精品99| 午夜激情福利司机影院| 国内少妇人妻偷人精品xxx网站| 91av网一区二区| 99在线视频只有这里精品首页| 99久久九九国产精品国产免费| 丰满乱子伦码专区| 成人综合一区亚洲| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产黄色小视频在线观看| 欧美潮喷喷水| 国产精品人妻久久久影院| 久久久久久久国产电影| 亚洲精品成人久久久久久| 熟女人妻精品中文字幕| 国内精品美女久久久久久| 嫩草影院入口| 欧美不卡视频在线免费观看| av在线播放精品| 国产又色又爽无遮挡免| 五月玫瑰六月丁香| 亚洲人成网站高清观看| 丰满人妻一区二区三区视频av| 中文字幕制服av| 只有这里有精品99| 久久精品国产亚洲网站| 日本免费一区二区三区高清不卡| 精品欧美国产一区二区三| av天堂中文字幕网| 天天躁日日操中文字幕| 熟妇人妻久久中文字幕3abv| 国产精品女同一区二区软件| 亚洲无线观看免费| 久久99热这里只有精品18| 亚洲av免费高清在线观看| 日韩欧美国产在线观看| 熟女电影av网| 免费不卡的大黄色大毛片视频在线观看 | 久久久久久九九精品二区国产| 中文字幕熟女人妻在线| 亚洲国产成人一精品久久久| 免费观看在线日韩| 亚洲国产欧美人成| 乱系列少妇在线播放| av黄色大香蕉| 国产午夜福利久久久久久| 久久人人爽人人爽人人片va| 水蜜桃什么品种好| 亚洲在久久综合| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日韩国内少妇激情av| 久久久久久伊人网av| 久久精品夜色国产| 久久久久国产网址| 亚洲精品乱久久久久久| 在线免费观看不下载黄p国产| 欧美激情久久久久久爽电影| 免费电影在线观看免费观看| 国产真实乱freesex| 欧美人与善性xxx| 亚洲熟妇中文字幕五十中出| 99热这里只有是精品50| 丰满人妻一区二区三区视频av| 亚洲精品乱码久久久v下载方式| 欧美日韩在线观看h| 韩国av在线不卡| 欧美精品一区二区大全| 成人av在线播放网站| 国产午夜福利久久久久久| 欧美成人一区二区免费高清观看| 国产精品国产高清国产av| 免费看美女性在线毛片视频| 搞女人的毛片| 欧美性猛交╳xxx乱大交人| 久久这里有精品视频免费| 久久99热这里只有精品18| 国产成人aa在线观看| 欧美高清成人免费视频www| 蜜臀久久99精品久久宅男| 久久久久久久午夜电影| 久久久国产成人精品二区| www.av在线官网国产| 国产成人91sexporn| 亚洲成人久久爱视频| 九草在线视频观看| 精品午夜福利在线看| 久久精品国产99精品国产亚洲性色| av.在线天堂| 免费大片18禁| 一级爰片在线观看| 亚洲欧美精品专区久久| 春色校园在线视频观看| 麻豆成人av视频| 七月丁香在线播放| 99热这里只有是精品在线观看| 小说图片视频综合网站| 国产精品日韩av在线免费观看| 啦啦啦啦在线视频资源| 亚洲自拍偷在线| 国产69精品久久久久777片| 免费看a级黄色片| 久久精品国产亚洲网站| 亚洲乱码一区二区免费版| 久久精品夜色国产| 国产三级在线视频| 嘟嘟电影网在线观看| 深夜a级毛片| 午夜激情福利司机影院| 熟女电影av网| 国产亚洲最大av| 亚洲精品456在线播放app| 精品一区二区三区人妻视频| 国产精品精品国产色婷婷| 久久久久久久久久久丰满| 久久热精品热| 18禁在线无遮挡免费观看视频| 国产在线男女| 婷婷六月久久综合丁香| 免费黄色在线免费观看| 国产精品久久久久久久电影| 在线观看美女被高潮喷水网站| 久久久精品大字幕| 婷婷色综合大香蕉| 中文乱码字字幕精品一区二区三区 | 亚洲人成网站在线播| 午夜福利在线在线| 2021少妇久久久久久久久久久| 精品少妇黑人巨大在线播放 | 99久久精品一区二区三区| 99久久中文字幕三级久久日本| 精品99又大又爽又粗少妇毛片| 午夜福利在线在线| 国产精品久久久久久av不卡| 天堂影院成人在线观看| 日本免费一区二区三区高清不卡| 激情 狠狠 欧美| 国产一区有黄有色的免费视频 | 婷婷色麻豆天堂久久 | 国产老妇女一区| 久久久精品94久久精品| 免费黄网站久久成人精品| 日日啪夜夜撸| 禁无遮挡网站| 日韩,欧美,国产一区二区三区 | 精品久久久久久久人妻蜜臀av| 免费电影在线观看免费观看| 中文字幕亚洲精品专区| 亚洲国产高清在线一区二区三| 男女边吃奶边做爰视频| 蜜桃久久精品国产亚洲av| 国产熟女欧美一区二区| 欧美性感艳星| 老女人水多毛片| 久久国产乱子免费精品| 国产真实乱freesex| 亚洲av二区三区四区| 成人性生交大片免费视频hd| 国产成人freesex在线| 国产精品日韩av在线免费观看| 观看免费一级毛片| 黄片wwwwww| a级毛色黄片| 我的老师免费观看完整版| 丰满少妇做爰视频| 成人高潮视频无遮挡免费网站| 舔av片在线| 日韩一区二区视频免费看| 97超视频在线观看视频| 欧美极品一区二区三区四区| 久久久久久九九精品二区国产| 99国产精品一区二区蜜桃av| 欧美潮喷喷水| 亚洲欧美日韩无卡精品| 亚洲国产色片| 亚洲最大成人中文| a级毛片免费高清观看在线播放| 国产又黄又爽又无遮挡在线| 精品国产三级普通话版| 狂野欧美白嫩少妇大欣赏| 三级经典国产精品| 激情 狠狠 欧美| 美女被艹到高潮喷水动态| 97超视频在线观看视频| 成人二区视频| 精品一区二区三区人妻视频| 亚洲精品影视一区二区三区av| 久久久久免费精品人妻一区二区| 日本猛色少妇xxxxx猛交久久| 在线播放国产精品三级| 少妇丰满av| 久久草成人影院| 日本五十路高清| 国产黄色视频一区二区在线观看 | 欧美不卡视频在线免费观看| 一边摸一边抽搐一进一小说| 日本免费一区二区三区高清不卡| 久久精品国产99精品国产亚洲性色| 精品一区二区三区四区五区乱码 | 亚洲综合色惰| 国产免费又黄又爽又色| 亚洲国产精品一区三区| 亚洲经典国产精华液单| www日本在线高清视频| 最新的欧美精品一区二区| 中文字幕制服av| 一本—道久久a久久精品蜜桃钙片| 在线观看免费视频网站a站| 精品第一国产精品| 久久国产精品大桥未久av| 国产精品嫩草影院av在线观看| 91午夜精品亚洲一区二区三区| 国产无遮挡羞羞视频在线观看| 亚洲国产av新网站| 国产淫语在线视频| 最近中文字幕高清免费大全6| 人体艺术视频欧美日本| 最近的中文字幕免费完整| 日本午夜av视频| 免费黄频网站在线观看国产| 久久午夜综合久久蜜桃| 国产成人精品在线电影| 黄色视频在线播放观看不卡| 国产极品天堂在线| 在线免费观看不下载黄p国产| 哪个播放器可以免费观看大片| 亚洲精品国产av蜜桃| 亚洲欧美成人综合另类久久久| 999精品在线视频| 人成视频在线观看免费观看| av卡一久久| 91精品三级在线观看| 国产精品欧美亚洲77777| 青春草视频在线免费观看| 亚洲国产av影院在线观看| 在线亚洲精品国产二区图片欧美| 国产精品成人在线| 建设人人有责人人尽责人人享有的| 日韩av在线免费看完整版不卡| 久久久久精品性色| 成人毛片a级毛片在线播放| 国产精品熟女久久久久浪| 香蕉丝袜av| 国产精品久久久久成人av| av.在线天堂| 欧美人与性动交α欧美软件 | 一本久久精品| 99视频精品全部免费 在线| 亚洲高清免费不卡视频| 国产精品.久久久| 热re99久久国产66热| 九九在线视频观看精品| 黄网站色视频无遮挡免费观看| 国产一区二区在线观看av| 精品人妻在线不人妻| 国产成人免费无遮挡视频| 午夜福利网站1000一区二区三区| 晚上一个人看的免费电影| 日韩三级伦理在线观看| 久久久久久久久久成人| 久久国内精品自在自线图片| 国产一区二区三区av在线| 少妇精品久久久久久久| 黑人欧美特级aaaaaa片| 99视频精品全部免费 在线| 国产日韩欧美视频二区| 亚洲av男天堂| 午夜福利,免费看| 国产在视频线精品| 亚洲美女黄色视频免费看| 国产色爽女视频免费观看| 制服人妻中文乱码| 国产精品久久久久久久电影| 妹子高潮喷水视频| 777米奇影视久久| 国产在线视频一区二区| 美女国产高潮福利片在线看| 日本午夜av视频| 青春草视频在线免费观看| 一区二区三区四区激情视频| 成人毛片60女人毛片免费| 亚洲国产欧美日韩在线播放| 大片电影免费在线观看免费| 精品酒店卫生间| 熟女人妻精品中文字幕| 亚洲国产av影院在线观看| 18+在线观看网站| 最后的刺客免费高清国语| 国产黄频视频在线观看| 国产日韩欧美在线精品| 亚洲,一卡二卡三卡| 男的添女的下面高潮视频| 免费黄网站久久成人精品| 男女高潮啪啪啪动态图| 国产av精品麻豆| 啦啦啦啦在线视频资源| 在线观看三级黄色| 黄色一级大片看看| 久久精品夜色国产| 日日撸夜夜添| 欧美激情国产日韩精品一区| 中文乱码字字幕精品一区二区三区| 精品国产乱码久久久久久小说| 久久精品aⅴ一区二区三区四区 | 狂野欧美激情性bbbbbb| 日本vs欧美在线观看视频| 国产伦理片在线播放av一区| 日本欧美国产在线视频| 26uuu在线亚洲综合色| av视频免费观看在线观看| 最后的刺客免费高清国语| 两性夫妻黄色片 | 亚洲综合色惰| 亚洲,欧美,日韩| 男人爽女人下面视频在线观看| 免费播放大片免费观看视频在线观看| 另类亚洲欧美激情| 婷婷色综合www| 婷婷色综合大香蕉| 少妇被粗大的猛进出69影院 | 亚洲国产日韩一区二区| 狂野欧美激情性bbbbbb| 我的女老师完整版在线观看| 精品人妻熟女毛片av久久网站| 欧美日韩av久久| 色婷婷av一区二区三区视频| 亚洲成av片中文字幕在线观看 | 国产成人欧美| 多毛熟女@视频| 九九在线视频观看精品| 亚洲国产欧美日韩在线播放| 夫妻午夜视频| 久久久久久久久久人人人人人人| 超碰97精品在线观看| 午夜久久久在线观看| 99精国产麻豆久久婷婷| 久热久热在线精品观看| 国产精品欧美亚洲77777| 精品国产露脸久久av麻豆| 欧美 日韩 精品 国产| 国产片内射在线| 久久人妻熟女aⅴ| 内地一区二区视频在线| 欧美性感艳星| 交换朋友夫妻互换小说| 99久久人妻综合| 视频中文字幕在线观看| 久久免费观看电影| tube8黄色片| 久久国产亚洲av麻豆专区| 在线观看免费日韩欧美大片| 日韩电影二区| 美国免费a级毛片| 精品国产乱码久久久久久小说| 久久亚洲国产成人精品v| a级毛片黄视频|