• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adverse Effect of Inappropriately Implementing Source-isolation Mitigation Technique

    2021-12-15 14:35:44DINGLiliCHENWeiWANGTanXUJingyan
    原子能科學技術 2021年12期

    DING Lili, CHEN Wei, WANG Tan, XU Jingyan

    (State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi’an 710024, China)

    Abstract: Single event transient (SET) response was compared between various structures considering source-isolation mitigation technique. The simulation results prove the existence of adverse effects. Besides bipolar amplification effects, both drive strength and node capacitance should be considered when trying to improve SET tolerance. Due to the nonuniqueness of related factors, unless one factor is definitely the main contributor, careful consideration and quantitative evaluation are highly suggested before implementing mitigation techniques.

    Key words:source-isolation; single event transient; mitigation technique; adverse effects

    1 Introduction

    As technology of CMOS integrated circuits scales, decreased supply voltage and increased frequency bring an enhanced contribution of single event transient (SET) in combinational data paths to soft error vulner-ability[1-2]. To control the impacts, various radiation hardened by design (RHBD) techniques have attracted much attention. Some techniques have no net effect on the circuit function or logical size. Layout-level RHBD techniques including guard ring[3], guard drain[4-5], pulse quenching effects[6], etc., definitely belong to this category. Circuit-level techniques including dummy gate[7], drain/source extension[8], etc., are supposed to change the circuit schematic, but still have no effect in logical size. Meanwhile, other techniques, including source isolation, are supposed to change the logical size[9-10].

    It is well known that RHBD techniques are inclined to bring extra area or power penalty. In fact, not only the common characteristics, bus also the radiation tolerance is not straightforward to get improved. Some studies have proven that pulse quenching effects are very useful in mitigation SET[11]. However, some other reports show only limited or even negative effectiveness[12]. In this study, SET in various hardening structures regarding source isolation were evaluated and compared. From the simulation results, the adverse impacts were confirmed and presented. If implementing the hardening methods without careful consideration or quantitative evaluation, adverse consequence might be reached.

    This paper is organized as follows. Section 2 presents the description of source-isolation technique. Section 3 presents the simulation results. The dependence of key parameters related with hardening structures on SET tolerance will be discussed in detail. Conclusions are drawn in Section 4.

    2 Description of source-isolation technique

    Source-isolation was meant for P-hit (striking at N-well region) SET mitigation. According to Fig.1, an additional serial PMOS transistor is added to the layout, to prevent the holes being injected from the source of the struck PMOS to the active nodes. Thus, the bipolar amplification effects can be suppressed. The newly added transistor can share the same active region with the previously existing transistor, as illustrated in Fig.1b, or else, the transistor can be isolated from the previous existing one, as illustrated in Fig.1c and Fig.1d.

    Referring to reference [13], shallow trench isolation (STI) using to isolate the two serial PMOSs will break the parasitic BJT structure, which could weaken the parasitic bipolar effect efficiently. Thus, layout 3 and layout 4 are supposed to be more robust than layout 1 and layout 2.Fig.2b and Fig.2c illustrate two layout designs implementing various source-isolation techniques, from reference [10] and reference [13] accordingly. Comparing to the original layout in Fig.2a, area penalty exists for sure. At the same time, from Fig.2b, the added PMOS reduces the pull-up circuit strength of the circuit. The output will have imbalanced rise and fall times. The design in Fig.2c is supposed to maintain the rise and fall times with balanced pull-up and pull-down circuits.

    a—Original layout (layout 1); b—Typical source-isolation layout (layout 2); c—Parallel source-isolation layout (layout 3); d—In-line source-isolation layout (layout 4)Fig.1 Different layout techniques for PMOS

    a—INV1, original layout; b—INV2, with source-isolation design; c—INV3, with source-isolation and balanced pull-down circuitFig.2 Different layout techniques for inverter

    3 Simulation results and discussion

    Sentaurus TCAD from Synopsys was adopted in our work to perform structure construction and device simulation. The following physical models were used: 1) band-gap narrowing effect; 2) doping dependent SRH recombination and Auger recombination; 3) the impacts of doping, electric field, and carrier-carrier scattering on mobility. Three-dimensional TCAD simulations were conducted to evaluate the possible adverse effects of RHBD techniques.Fig.3 illustrates the circuit used for the simulation. The first inverter is modeled as TCAD numerical device model, the other 5 stages of inverters are modeled as SPICE model.

    Fig.3 Circuit used for simulation

    The 3-D TCAD structures and doping distributions were calibrated with a commercial 40 nm CMOS technology, the supply voltage (Vdd) equals to 1.1 V. The substrate depth is set as 20 μm. from Fig.4, spaced N-well and P-well contacts are implemented considering the typical structures in the commercial standard cell library. The TCAD models of inverters are corresponding to the layout techniques in Fig.2, namely INV1_spaced, INV2_spaced, and INV3_spaced.

    a—Original layout (INV1_spaced); b—Layout with source-isolation design (INV2_spaced); c—Layout with source-isolation and balanced pull-down circuit (INV3_spaced)Fig.4 TCAD model of inverters with spaced well contacts

    Fig.5 illustrates the simulated SET pulse width when striking at the center region of PMOS drain (P-hit) and NMOS drain (N-hit). from Fig.5a, INV2_spaced does improve the SET tolerance of the inverter chain, P-hit SET pulsewidth gets evidently arrower, which is consistent with the results in references [9] and [13]. However, the P-hit pulsewidth of INV3_spaced is almost the same as that of INV1_spaced. Comparing to INV2_spaced, due to the serial nMOS transistors, the drive strength of INV3_spaced pull-down circuit gets smaller. from Fig.5b, N-hit SET pulsewidth values of both INV2_spaced and INV3_spaced are bigger than that of INV1_spaced. With the introduction of serial PMOS transistor and reduction in pull-up circuit drive strength, N-hit SET tolerance gets weakened clearly. Since the bipolar amplification effects of N-hit can be suppressed in INV3_spaced, INV3_spaced behaves stronger N-hit SET tolerance than INV2_spaced.

    From the results in Fig.5, it can be seen that the whole picture is not consistent with the initial estimation. Although source-isolation is meant only for suppressing bipolar amplification effects, along with the introduction of hardening strategies, other parameters related with SET tolerance get changed at the same time. There are at least three key parameters related with P-hit and N-hit SET tolerance. As illustrated in Table 1, suppression in bipolar amplification effects is inclined to increase the SET tolerance. A negative relationship has been confirmed. Decrease in circuit drive strength or increase in node capacitance has negative impacts in SET tolerance. The relationships of circuit drive strength and node capacitance with SET tolerance should be positive and negative correspondingly. The overall impacts depend on the comparative contributions of all the factors. For INV2_spaced layout, increased P-hit SET tolerance is due to the main contribution of bipolar amplification effects. And the corresponding N-hit SET tolerance gets decreased due to the decrease in pull-up circuit drive strength. For INV3_spaced layout, due to the reduced drive strength of pull-down circuit, the overall P-hit SET tolerance gets even worse than that for original INV1_spaced. Comparing to INV2_spaced, due to the suppression in N-hit bipolar amplifications effects, the N-hit SET tolerance is reasonable to be stronger.

    Fig.5 SET pulsewidth for inverters with spaced well contacts under P-hit (a) and N-hit (b) conditions

    Table 1 Key factors related with P-hit and N-hit SET tolerance of inverters with spaced well contacts

    To prove the deduction, layout techniques with guard-ring well contacts are also considered, namely INV1_guard, INV2_guard, and INV3_guard. As illustrated in Fig.6, the well contacts area gets evidently larger than that in Fig.4, the other parts including the PMOS and NMOS arrangements remain unchanged.

    Due to the guard-ring protection, the revised layout techniques should have negligible bipolar amplification effects. From Table 2, it can be predicted that the ranks of P-hit SET tolerance should be INV1_guard>INV2_guard>INV3_guard. And the ranks of N-hit SET tolerance should be also INV1_guard>INV2_guard>INV3_guard.

    Fig.7 illustrates the simulated results corresponding to the revised layout techniques. As shown in Fig.7a, on one hand, INV2_guard still has better P-hit SET tolerance than INV3_guard, similar to the results in Fig.5a. On the other hand, the SET pulsewidth of INV2_guard gets even larger than that of original inverter layout. For N-hit condition, SET pulsewidth values of both INV2_guard and INV3_guard are bigger than that of INV1_guard. All the tendencies are consistent with the analysis.

    a—Original layout (INV1_guard); b—Layout with source-isolation design (INV2_guard); c—Layout with source-isolation and balanced pull-down circuit (INV3_guard)Fig.6 TCAD model of inverters with guard-ring well contacts

    Table 2 Key factors related with P-hit and N-hit SET tolerance of inverters with guard-ring well contacts

    Fig.7 SET pulsewidth for inverters with guard-ring well contacts under P-hit (a) and N-hit (b) conditions

    Furthermore, as illustrated in Fig.8, we keep controlling the factors to propose revised layout designs based on source-isolation technique but with constant logical size, namely INV4_spaced and INV4_guard. From Table 3, INV4_spaced and INV4_guard are supposed to have the same N-hit transient response as the original inverters (INV1). For P-hit, it is hard to tell if the SET tolerance of INV4_spaced could be better due to the two competitive mechanisms. However, INV4_guard is inclined to have weaker tolerance than INV1_guard. The simulation results show that the P-hit SET pulsewidth of INV4_spaced is almost the same as that of INV1_spaced. And all the tendencies agree with the predictions.

    a—Schematic of PMOS transistors; b—Inverters with spaced well contacts; c—Guard-ring well contacts; d—Simulated difference in SET pulse widthFig.8 Layout design based on source-isolation technique with constant logical size

    Table 3 Analysis of inverters based on source-isolation technique with constant logical size

    From the above analysis and simulation results, source-isolation technique is not for sure to improve the SET tolerance. There are at least three factors affecting the SET response. Only modulating one factor is clearly not enough, unless the factor is definitely the main contributor.

    4 Conclusion

    SET response was compared between various structures considering source-isolation mitigation technique. For the structures with spaced well contacts, source-isolation does improve the P-hit SET tolerance evidently, due to the domination of bipolar amplification effects. However, the whole picture is not always like this. Although source-isolation is meant only for suppressing bipolar amplification effects, along with the introduction of hardening strategies, other parameters related with SET tolerance get changed at the same time. There are at least three key parameters related with P-hit and N-hit SET tolerance, bipolar amplification effects, drive strength and node capacitance. Suppression in bipolar amplification effects is inclined to increase the SET tolerance. Decrease in circuit drive strength or increase in node capacitance has negative impacts. The results of structures with guard-ring well contacts prove the analysis. All the tendencies agree with the predictions.

    Through investigating the layout techniques regarding source isolation, the adverse impacts were confirmed and presented. Besides bipolar amplification effects, both drive strength and node capacitance should be considered when trying to improve SET tolerance. Due to the nonuniqueness of related factors, unless one factor is definitely the main contributor, careful consideration and quantitative evaluation are highly suggested before implementing mitigation techniques.

    欧美久久黑人一区二区| 亚洲一区高清亚洲精品| 少妇裸体淫交视频免费看高清 | 少妇裸体淫交视频免费看高清 | 长腿黑丝高跟| 色哟哟哟哟哟哟| 高潮久久久久久久久久久不卡| 夜夜躁狠狠躁天天躁| 国产av一区在线观看免费| 非洲黑人性xxxx精品又粗又长| 99香蕉大伊视频| 久久国产精品男人的天堂亚洲| 中文字幕人妻熟女乱码| 免费搜索国产男女视频| 91av网站免费观看| 美女高潮喷水抽搐中文字幕| 午夜a级毛片| 国产又爽黄色视频| 久久久久久人人人人人| 国产精品1区2区在线观看.| 精品国产国语对白av| 欧美中文综合在线视频| 午夜精品久久久久久毛片777| 一本久久中文字幕| 午夜免费激情av| 黄片大片在线免费观看| 亚洲自拍偷在线| 免费少妇av软件| 美女午夜性视频免费| 美女午夜性视频免费| 日韩精品免费视频一区二区三区| 午夜福利一区二区在线看| 日韩欧美一区二区三区在线观看| 成人国产一区最新在线观看| 久久国产乱子伦精品免费另类| 国产亚洲精品av在线| 色综合婷婷激情| 久久久久久久久免费视频了| 亚洲欧洲精品一区二区精品久久久| 成熟少妇高潮喷水视频| 免费久久久久久久精品成人欧美视频| 亚洲免费av在线视频| 欧美黄色淫秽网站| 最新在线观看一区二区三区| aaaaa片日本免费| 午夜老司机福利片| 久久午夜亚洲精品久久| 精品欧美国产一区二区三| 久久久国产成人免费| 国产熟女午夜一区二区三区| 男人操女人黄网站| 亚洲精华国产精华精| 国产高清有码在线观看视频 | 日韩精品免费视频一区二区三区| 亚洲精品在线观看二区| 成人三级黄色视频| 好男人电影高清在线观看| 亚洲成人久久性| 国语自产精品视频在线第100页| 午夜福利影视在线免费观看| 又黄又粗又硬又大视频| 9191精品国产免费久久| 国产成人精品久久二区二区免费| 校园春色视频在线观看| 亚洲成国产人片在线观看| 日本vs欧美在线观看视频| 日韩有码中文字幕| 亚洲av电影不卡..在线观看| 免费久久久久久久精品成人欧美视频| 午夜成年电影在线免费观看| 欧洲精品卡2卡3卡4卡5卡区| 久久影院123| av天堂久久9| 欧美久久黑人一区二区| 一卡2卡三卡四卡精品乱码亚洲| 99久久综合精品五月天人人| 后天国语完整版免费观看| 欧美日韩亚洲综合一区二区三区_| 亚洲精品粉嫩美女一区| 国内毛片毛片毛片毛片毛片| 久久久久国内视频| 无人区码免费观看不卡| 很黄的视频免费| 一区在线观看完整版| 午夜精品久久久久久毛片777| 国产亚洲av嫩草精品影院| 无人区码免费观看不卡| 操美女的视频在线观看| 69av精品久久久久久| av有码第一页| 欧美日韩中文字幕国产精品一区二区三区 | 精品日产1卡2卡| 久久伊人香网站| 黄色毛片三级朝国网站| 国产精品久久电影中文字幕| 国产在线精品亚洲第一网站| 国产av一区在线观看免费| 亚洲精品国产一区二区精华液| 欧美另类亚洲清纯唯美| 高清在线国产一区| 成人三级做爰电影| 自拍欧美九色日韩亚洲蝌蚪91| 国产97色在线日韩免费| 老司机午夜十八禁免费视频| 久久伊人香网站| 国产亚洲精品av在线| www日本在线高清视频| 侵犯人妻中文字幕一二三四区| 亚洲三区欧美一区| 伊人久久大香线蕉亚洲五| av中文乱码字幕在线| 欧美在线黄色| 91麻豆精品激情在线观看国产| 亚洲熟妇中文字幕五十中出| 天天添夜夜摸| 一夜夜www| a在线观看视频网站| 国产色视频综合| av视频在线观看入口| av网站免费在线观看视频| cao死你这个sao货| 性色av乱码一区二区三区2| 国产精品久久久久久人妻精品电影| 99riav亚洲国产免费| 91国产中文字幕| 18禁裸乳无遮挡免费网站照片 | 搡老熟女国产l中国老女人| 手机成人av网站| 欧美亚洲日本最大视频资源| 亚洲aⅴ乱码一区二区在线播放 | 国产成人啪精品午夜网站| 久久草成人影院| 欧美国产日韩亚洲一区| 可以在线观看毛片的网站| 老熟妇乱子伦视频在线观看| 日韩欧美三级三区| av超薄肉色丝袜交足视频| 亚洲精品国产一区二区精华液| 一二三四在线观看免费中文在| 久久人人97超碰香蕉20202| 亚洲精品美女久久久久99蜜臀| 午夜福利视频1000在线观看 | 亚洲 欧美 日韩 在线 免费| 19禁男女啪啪无遮挡网站| 后天国语完整版免费观看| 亚洲在线自拍视频| 不卡一级毛片| 18禁国产床啪视频网站| 久久午夜亚洲精品久久| 男男h啪啪无遮挡| 丝袜在线中文字幕| 一个人免费在线观看的高清视频| 成年女人毛片免费观看观看9| 色播在线永久视频| 色婷婷久久久亚洲欧美| 亚洲欧美一区二区三区黑人| 中文字幕人妻丝袜一区二区| 亚洲熟妇中文字幕五十中出| 国产高清有码在线观看视频 | 如日韩欧美国产精品一区二区三区| 亚洲欧美激情综合另类| 国产精品永久免费网站| 亚洲av成人一区二区三| 在线十欧美十亚洲十日本专区| 亚洲三区欧美一区| 无遮挡黄片免费观看| 人人妻人人爽人人添夜夜欢视频| 亚洲成av片中文字幕在线观看| 狠狠狠狠99中文字幕| 精品午夜福利视频在线观看一区| 亚洲五月色婷婷综合| 在线免费观看的www视频| x7x7x7水蜜桃| 人妻丰满熟妇av一区二区三区| 无限看片的www在线观看| 欧美av亚洲av综合av国产av| 免费搜索国产男女视频| 精品国产乱子伦一区二区三区| 丝袜在线中文字幕| 嫩草影院精品99| 久久久精品国产亚洲av高清涩受| 可以在线观看毛片的网站| 激情视频va一区二区三区| 91麻豆精品激情在线观看国产| 又大又爽又粗| 亚洲第一电影网av| 18禁观看日本| 精品免费久久久久久久清纯| 黄色丝袜av网址大全| 一区二区三区激情视频| 欧美黄色片欧美黄色片| 国产一区二区三区在线臀色熟女| 亚洲第一欧美日韩一区二区三区| 国产精品乱码一区二三区的特点 | 亚洲成a人片在线一区二区| 午夜福利成人在线免费观看| 亚洲国产高清在线一区二区三 | 欧美午夜高清在线| 国产成人影院久久av| xxx96com| 黑人巨大精品欧美一区二区蜜桃| 淫秽高清视频在线观看| 日韩欧美在线二视频| 激情在线观看视频在线高清| 精品国产一区二区三区四区第35| 亚洲av电影在线进入| 欧美成人性av电影在线观看| 国产一级毛片七仙女欲春2 | 18禁裸乳无遮挡免费网站照片 | 日日爽夜夜爽网站| 亚洲色图av天堂| 91成人精品电影| 久久精品影院6| 亚洲精华国产精华精| 久久久国产成人精品二区| 可以在线观看毛片的网站| 手机成人av网站| 99国产极品粉嫩在线观看| 国产精品一区二区三区四区久久 | 精品一区二区三区av网在线观看| 12—13女人毛片做爰片一| 亚洲人成77777在线视频| 国产区一区二久久| 黑人操中国人逼视频| 国产av一区二区精品久久| 在线观看免费日韩欧美大片| 精品福利观看| 久久久国产精品麻豆| 欧美丝袜亚洲另类 | 久久久国产精品麻豆| 成人手机av| 日韩欧美国产在线观看| 国产精品1区2区在线观看.| 日韩成人在线观看一区二区三区| av在线天堂中文字幕| 免费在线观看亚洲国产| 自线自在国产av| 国产亚洲欧美在线一区二区| 国产亚洲av嫩草精品影院| 最新美女视频免费是黄的| 久久久久国产精品人妻aⅴ院| 亚洲自拍偷在线| 亚洲,欧美精品.| 美女免费视频网站| 男女做爰动态图高潮gif福利片 | 久久久久亚洲av毛片大全| 少妇被粗大的猛进出69影院| 黄频高清免费视频| 十分钟在线观看高清视频www| 国产1区2区3区精品| 午夜视频精品福利| 国产成年人精品一区二区| 亚洲精华国产精华精| 人妻久久中文字幕网| 一本综合久久免费| 欧美激情久久久久久爽电影 | 国产精品,欧美在线| 欧美激情 高清一区二区三区| 狠狠狠狠99中文字幕| 极品人妻少妇av视频| 99精品在免费线老司机午夜| 亚洲精品在线美女| 亚洲中文av在线| 日本vs欧美在线观看视频| 久久精品亚洲熟妇少妇任你| 国产精品香港三级国产av潘金莲| 午夜福利在线观看吧| 久久国产精品人妻蜜桃| 老熟妇仑乱视频hdxx| 亚洲九九香蕉| 欧美中文综合在线视频| 啦啦啦免费观看视频1| 久久久精品国产亚洲av高清涩受| 午夜福利高清视频| 香蕉国产在线看| 曰老女人黄片| 国产伦人伦偷精品视频| 久久国产亚洲av麻豆专区| 精品国产美女av久久久久小说| 夜夜夜夜夜久久久久| 一边摸一边抽搐一进一出视频| 91精品三级在线观看| tocl精华| 美女国产高潮福利片在线看| 亚洲精品国产精品久久久不卡| 少妇的丰满在线观看| 亚洲中文字幕日韩| 90打野战视频偷拍视频| 色尼玛亚洲综合影院| ponron亚洲| 欧美激情极品国产一区二区三区| 老司机午夜福利在线观看视频| 精品国产亚洲在线| 亚洲aⅴ乱码一区二区在线播放 | 亚洲狠狠婷婷综合久久图片| 最近最新中文字幕大全电影3 | 一二三四在线观看免费中文在| 老汉色av国产亚洲站长工具| √禁漫天堂资源中文www| 一区二区三区高清视频在线| 免费女性裸体啪啪无遮挡网站| 久久国产精品人妻蜜桃| 日韩成人在线观看一区二区三区| 两性夫妻黄色片| 欧美一级a爱片免费观看看 | 99在线视频只有这里精品首页| 欧美日韩瑟瑟在线播放| 免费看美女性在线毛片视频| 亚洲国产欧美网| 国产精品久久久人人做人人爽| 中出人妻视频一区二区| 91成人精品电影| 无人区码免费观看不卡| 自线自在国产av| 国产精品日韩av在线免费观看 | 久久国产精品影院| 亚洲国产精品成人综合色| 日本一区二区免费在线视频| 大型黄色视频在线免费观看| 麻豆国产av国片精品| 97人妻天天添夜夜摸| 国产高清有码在线观看视频 | 90打野战视频偷拍视频| 日韩欧美国产在线观看| 涩涩av久久男人的天堂| 日韩有码中文字幕| 色播在线永久视频| 91精品三级在线观看| 午夜福利成人在线免费观看| 久久精品91蜜桃| 美女高潮到喷水免费观看| 亚洲av电影不卡..在线观看| 黑人巨大精品欧美一区二区mp4| 免费av毛片视频| 免费不卡黄色视频| 亚洲国产欧美日韩在线播放| 琪琪午夜伦伦电影理论片6080| 夜夜躁狠狠躁天天躁| 国产真人三级小视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 变态另类成人亚洲欧美熟女 | 精品久久久精品久久久| 国产精品一区二区三区四区久久 | 十分钟在线观看高清视频www| 国产精品免费视频内射| 国产成人精品久久二区二区91| 啦啦啦观看免费观看视频高清 | 黄色视频,在线免费观看| 国产成人免费无遮挡视频| 久久精品国产清高在天天线| 大码成人一级视频| 亚洲精品在线观看二区| 亚洲av第一区精品v没综合| 女人爽到高潮嗷嗷叫在线视频| 日韩欧美三级三区| 亚洲av电影不卡..在线观看| 国产三级在线视频| 99在线视频只有这里精品首页| 欧美日韩黄片免| 丝袜美腿诱惑在线| 级片在线观看| 久久国产精品男人的天堂亚洲| 一级作爱视频免费观看| 亚洲人成网站在线播放欧美日韩| а√天堂www在线а√下载| 日日夜夜操网爽| 国产av一区二区精品久久| 十分钟在线观看高清视频www| 身体一侧抽搐| 电影成人av| 亚洲国产日韩欧美精品在线观看 | 久久人人精品亚洲av| 久9热在线精品视频| 不卡一级毛片| 国产精华一区二区三区| 在线观看66精品国产| 亚洲国产欧美一区二区综合| 欧美国产精品va在线观看不卡| 天堂动漫精品| 日日夜夜操网爽| 亚洲视频免费观看视频| 欧美成人免费av一区二区三区| 18禁观看日本| 99在线视频只有这里精品首页| 国产视频一区二区在线看| 大型av网站在线播放| 色播在线永久视频| 老汉色av国产亚洲站长工具| 久久人妻av系列| 99re在线观看精品视频| 97超级碰碰碰精品色视频在线观看| 亚洲精品国产区一区二| 桃红色精品国产亚洲av| 超碰成人久久| av网站免费在线观看视频| 搞女人的毛片| 99热只有精品国产| 成人18禁高潮啪啪吃奶动态图| 男人舔女人下体高潮全视频| 很黄的视频免费| 12—13女人毛片做爰片一| 一边摸一边抽搐一进一小说| 欧美国产精品va在线观看不卡| 88av欧美| 亚洲天堂国产精品一区在线| 精品国产一区二区三区四区第35| 少妇的丰满在线观看| www.自偷自拍.com| 久久性视频一级片| 激情在线观看视频在线高清| 黄片小视频在线播放| 欧美成人免费av一区二区三区| 国产三级在线视频| 国产麻豆成人av免费视频| 国产一区二区三区视频了| 色精品久久人妻99蜜桃| 色老头精品视频在线观看| 大陆偷拍与自拍| 国产激情久久老熟女| 国产精品影院久久| 久99久视频精品免费| 无限看片的www在线观看| 淫秽高清视频在线观看| 最新美女视频免费是黄的| 一区二区日韩欧美中文字幕| 国产97色在线日韩免费| 嫩草影视91久久| 好男人在线观看高清免费视频 | x7x7x7水蜜桃| 国产高清视频在线播放一区| 久久九九热精品免费| 女性被躁到高潮视频| 丝袜美腿诱惑在线| 伦理电影免费视频| 免费高清在线观看日韩| 无人区码免费观看不卡| netflix在线观看网站| 女人被躁到高潮嗷嗷叫费观| 久久久久久久精品吃奶| 一级毛片女人18水好多| 成人国产一区最新在线观看| 国产黄a三级三级三级人| 18禁裸乳无遮挡免费网站照片 | 久久青草综合色| av在线播放免费不卡| 久久香蕉国产精品| 久久国产乱子伦精品免费另类| 久久性视频一级片| 亚洲色图av天堂| av网站免费在线观看视频| 久久国产精品影院| 一进一出好大好爽视频| 女人被狂操c到高潮| 少妇粗大呻吟视频| 丝袜人妻中文字幕| 午夜日韩欧美国产| 色综合站精品国产| 可以免费在线观看a视频的电影网站| 丝袜在线中文字幕| 桃红色精品国产亚洲av| 色老头精品视频在线观看| 国产av精品麻豆| 亚洲一区二区三区不卡视频| 国产一区二区三区在线臀色熟女| 久久久久久久久免费视频了| 国产精品香港三级国产av潘金莲| 久久这里只有精品19| 亚洲成人久久性| 亚洲一码二码三码区别大吗| 欧美激情久久久久久爽电影 | 日韩精品中文字幕看吧| 欧美乱妇无乱码| 国内精品久久久久精免费| 男女午夜视频在线观看| 他把我摸到了高潮在线观看| 久久国产精品人妻蜜桃| 日韩精品免费视频一区二区三区| 久久香蕉激情| 妹子高潮喷水视频| 免费观看人在逋| 午夜激情av网站| 久久久精品欧美日韩精品| 夜夜躁狠狠躁天天躁| 99国产精品免费福利视频| 我的亚洲天堂| 视频在线观看一区二区三区| 亚洲色图 男人天堂 中文字幕| 我的亚洲天堂| 啦啦啦免费观看视频1| 又大又爽又粗| 久久久久久久久免费视频了| 黑人巨大精品欧美一区二区蜜桃| 国产精品久久视频播放| 看片在线看免费视频| 美女免费视频网站| 青草久久国产| 国产精品国产高清国产av| 国产黄a三级三级三级人| 成熟少妇高潮喷水视频| 成人国产一区最新在线观看| 色精品久久人妻99蜜桃| 国产亚洲精品综合一区在线观看 | 色尼玛亚洲综合影院| 亚洲,欧美精品.| 日日夜夜操网爽| 亚洲狠狠婷婷综合久久图片| 色婷婷久久久亚洲欧美| 18禁裸乳无遮挡免费网站照片 | 伊人久久大香线蕉亚洲五| 欧美色欧美亚洲另类二区 | 国产人伦9x9x在线观看| 婷婷六月久久综合丁香| 免费观看精品视频网站| 国产亚洲精品久久久久5区| 亚洲va日本ⅴa欧美va伊人久久| 在线观看午夜福利视频| 国产成人欧美| 国产单亲对白刺激| 亚洲精品久久成人aⅴ小说| 国产人伦9x9x在线观看| 亚洲中文av在线| 无限看片的www在线观看| av超薄肉色丝袜交足视频| 亚洲成人久久性| 国产单亲对白刺激| 免费在线观看完整版高清| 精品卡一卡二卡四卡免费| 免费高清在线观看日韩| 亚洲av五月六月丁香网| tocl精华| 91成人精品电影| 正在播放国产对白刺激| 国产一区二区三区综合在线观看| 久久精品亚洲精品国产色婷小说| 国产精品久久视频播放| 国产精品久久久久久亚洲av鲁大| 老司机午夜福利在线观看视频| 久久中文看片网| 免费一级毛片在线播放高清视频 | 亚洲电影在线观看av| 亚洲性夜色夜夜综合| 91老司机精品| 久久国产精品影院| 女人爽到高潮嗷嗷叫在线视频| 日本 av在线| 狂野欧美激情性xxxx| 色婷婷久久久亚洲欧美| 国产黄a三级三级三级人| 人人澡人人妻人| 欧美av亚洲av综合av国产av| bbb黄色大片| 亚洲熟女毛片儿| 性色av乱码一区二区三区2| 窝窝影院91人妻| 国产高清激情床上av| 老司机午夜十八禁免费视频| 亚洲国产欧美日韩在线播放| 亚洲欧美一区二区三区黑人| 久久久久久久久中文| 亚洲男人天堂网一区| 精品欧美一区二区三区在线| 国产精品影院久久| 欧美日韩一级在线毛片| 成年版毛片免费区| 国产精品日韩av在线免费观看 | or卡值多少钱| 久久国产精品影院| 国产成人一区二区三区免费视频网站| 日韩欧美一区二区三区在线观看| 99精品在免费线老司机午夜| 亚洲av熟女| 午夜视频精品福利| 老司机福利观看| 长腿黑丝高跟| 亚洲av五月六月丁香网| 人人妻人人澡人人看| 日韩欧美一区视频在线观看| 啦啦啦韩国在线观看视频| 51午夜福利影视在线观看| 国产一区二区三区视频了| 久久久久国产一级毛片高清牌| 亚洲成人国产一区在线观看| 欧美日本视频| 大香蕉久久成人网| 亚洲国产精品999在线| 人人澡人人妻人| 国产成人精品久久二区二区91| 国产一区二区三区视频了| 校园春色视频在线观看| 国产精品九九99| 国产精品一区二区精品视频观看| 中文字幕人妻熟女乱码| 一区福利在线观看| 91九色精品人成在线观看| 黄片大片在线免费观看| 亚洲av成人不卡在线观看播放网| 中文字幕色久视频| 亚洲av成人av| 国产精品国产高清国产av| 国产精品秋霞免费鲁丝片| 国产精品久久久久久精品电影 | 久久国产乱子伦精品免费另类| 两个人看的免费小视频| 制服丝袜大香蕉在线| 国产成人欧美| 日本三级黄在线观看| 黑丝袜美女国产一区| 日韩中文字幕欧美一区二区| 精品久久蜜臀av无| 国产一区二区激情短视频| 黄色成人免费大全| 夜夜夜夜夜久久久久| 国产av一区二区精品久久| 亚洲精品av麻豆狂野| 母亲3免费完整高清在线观看|