• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High Energy Proton Radiation Effect on Flexible Thin-film Inverted Metamorphic Triple-junction Solar Cell

    2021-12-15 14:35:40ZHANGYanqingZHOUJiamingLIUChaomingSHIXiangleiYANGYangJIAOXiaoyuSUNLijieWANGXunchunXIAOLiyiWANGTianqiHUOMingxue
    原子能科學(xué)技術(shù) 2021年12期

    ZHANG Yanqing, ZHOU Jiaming, LIU Chaoming,*, SHI Xianglei, YANG Yang, JIAO Xiaoyu, SUN Lijie, WANG Xunchun, XIAO Liyi, WANG Tianqi, HUO Mingxue

    (1.Space Environment Simulation Research Infrastructure, Harbin Institute of Technology, Harbin 150001, China; 2.State Key Laboratory of Space Power Technology, Shanghai Institute of Space Power Sources, Shanghai 200245, China; 3.Microelectronics Center, Harbin Institute of Technology, Harbin 150001, China)

    Abstract: A flexible thin-film GaInP/GaAs/InGaAs inverted metamorphic triple-junction (IMM3J) solar cell with conversion efficiency up to 32.47% (air mass (AM) 0, 1 367 W/cm2) was prepared to meet the requirements of space solar cells for lightweight and high efficiency. High-energy proton radiation (1, 3 and 5 MeV) was carried out to study its anti-irradiation performance. The SRIM simulation models indicate that 1, 3 and 5 MeV proton irradiation will cause approximately uniform damage in IMM3J cells. The light IV (LIV) results show that the degradation of the open-circuit voltage (Voc), short-circuit current (Isc) and maximum output power (Pmax) follows the logarithm change of the proton fluence. The fluences of different energy protons were converted into the displacement damage dose (DDD) through non-ionizing energy loss (NIEL). The Voc and Pmax decrease with an approximative logarithmic change of DDD, while the Isc follows two different degradation behaviors. The spectral response tests prove that GaInP sub-cell has excellent anti-irradiation performance, but InGaAs (1.0 eV) sub-cell has the worst anti-irradiation resistance and is the current-limiting sub-cell during the 1, 3 and 5 MeV protons irradiation continuously.

    Key words:IMM3J solar cell; radiation effect; displacement damage dose

    1 Introduction

    In order to complete space missions successfully, solar cells with higher efficiencies and particle irradiation tolerance are expected to be used in space power systems. GaInP/GaAs/InGaAs inverted metamorphic triple-junction (IMM3J) solar cells were studied and considered as next-generation space solar cells since their higher efficiency than that of the currently-used InGaP/GaAs/Ge triple-junction (TJ) space solar cells[1-3]. Besides, the semiconductor substrate will be removed and the IMM3J solar cell structure is transferred to a new substrate during the device fabrication process. It allows a flexible lightweight substrate to support cell structure, which leads to an increasing in the specific power on spacecraft power panels[4-5]. The weight of IMM3J solar cell layers mounted on film with 10-20 μm is 1/15 of TJ cell with Ge substrate[6]. Thin film IMM3J solar cells are also successfully prepared by dry-epitaxial lift-off technology[7].

    However, initial performance is not the most important for solar cells to be used in aerospace. Maintaining excellent performance in harsh space environments is the prerequisite for aerospace applications. In other words, performance at end of life (EOL) is more important than begin of life (BOL)[8]. The radiation degradation characteristics of each sub-cell in a multi-junction structure are necessary for the research of multi-junction space solar cell. In the case of the IMM3J cells, the degradation characteristics of the GaInP and GaAs sub-cells are well understood because they are already adopted in TJ cell structure. The radiation resistance of InGaAs (1.0 eV) sub-cell has been verified by electron and proton with different energy irradiation[9-12]. In spite of the fact that the IMM solar cell is the most important candidate for next-generation space solar cells, its irradiation damage behaviors have not been adequately reported. The existing results indicate that the remaining maximum output power (Pmax) of IMM3J solar cell on Si substrate can reach 79% when the 1 MeV electron radiation fluence reaches 1×1015cm-2. The spectral response and photoluminescence (PL) amplitude analysis show that InGaAs(1.0 eV) sub-cell exhibits the most severe damage as a result of 1 MeV electron irradiation and the InGaAs (1.0 eV) sub-cell is the rate-limiting sub-cell during irradiation[12].

    The remainingPmaxof IMM3J solar cell on the Si handle is 73.7% when the 10 MeV proton radiation fluence reaches 4.35×1012cm-2[13]. To predict the service life of IMM3J solar cell in space, the proton irradiation damage behaviors on thin film IMM3J solar cells need to be further researched.

    In order to promote the aerospace application of flexible thin film IMM3J solar cells, the flexible thin film IMM3J solar cells will be irradiated with 1, 3, 5 MeV protons in this paper, and the degradation mechanism of their electrical properties in space environment will be studied by light IV(LIV) and spectral response tests.

    2 Device under test and experimental setups

    Samples are the flexible thin film IMM3J solar cells with the surface area of each cell is 43 mm×28 mm. All cells are epitaxially grown by metal organic chemical vapor deposition (MOCVD). The epitaxial layer of the cells grown on a GaAs substrate was successfully transported to the polyimide substrate with copper film. Electrodes for both p-type and n-type are firmly attached on the front surface to avoid wiring on the back. The base region is made of p-type material with a thickness of 3000 nm and a doping concentration of 2×1017cm-3. The emitter region is made of n-type material with a thickness of 100 nm and a doping concentration of 2×1018cm-3. Each sub-cell with window and back-surface field (BSF) is connected by a tunnel junction. A 7-order lattice mismatch gradient buffer layer structure with a thickness of 3000 nm is used to bridge the metamorphic GaAs and InGaAs(1.0 eV) cells.Fig.1 shows the configuration and schematic illustration of the GaInP (1.8 eV)/GaAs (1.41 eV)/InGaAs (1.0 eV) IMM3J solar cells.Fig.2 shows theI-Vcurve of the IMM3J solar cells at AM0. The short circuit current (Isc), the open circuit voltage (Voc), and the maximum output power (Pmax) of the non-irradiated sample are 210.66 mA, 3024.54 mV, and 528.99 mW, respectively.

    Fig.1 Schematic structure and photograph of thin film IMM3J cell

    1, 3, 5 MeV proton radiation was carried out through a tandem accelerator in Peking University, the radiation flux is 5×109cm-2·s-1, and the maximum radiation fluence is 5×1013cm-2. The electrical performance of the IMM3J solar cells was measured with the Spectrolab X25 Mark Ⅱ solar simulator under AM0 and 1-sun solar spectrum illumination. The spectral responses within 300-1800 nm were measured using the quantum efficiency measurement system (QEX10) of Photovoltaic Measurements Inc.

    Fig.2 I-V curve of non-irradiated IMM3J cell at AM0

    A SRIM simulation of the IMM3J solar cell structure was carried out using the SRIM-2008 software. The thickness of the material of each layer was set according to Fig.1a, and a GaAs substrate far exceeding the thickness of the IMM3J solar cell was set on the backside of InGaAs (1.0 eV) sub-cellsFig.3 and Fig.4 are the trajectories and particle deposition depths of different energy protons in the IMM3J solar cells. According to the SRIM codes, the majority of protons with 1-5 MeV energy are stopped within the substrate, which imply the approximately uniform displacement damage is caused in the IMM3J solar cell due to 1-5 MeV proton radiation.

    Fig.3 Trajectories of different energy protons

    Fig.4 Particle deposition depths of protons with different energy

    3 Results and analyses

    Fig.5 shows the degradation caused by protons with 1, 3 and 5 MeV on the remaining factors ofVoc,Isc, andPmax. The degree of electrical damage increases and the damage rate decreases gradually when the proton fluence increases up to 5×1013cm-2. To determine the degradation law ofIsc,Voc, andPmax, the experimental data were fitted as a function of the logarithm of the proton fluence (φ):

    P=1-cPlg(1+φ/φ0P)

    (1)

    Where,Prepresents each electrical property (Isc,Voc, andPmax);cPis the corresponding degradation rate, it represents the magnitude of the performance damage caused by 1-5 MeV proton radiation;φ0Pis the critical damage fluence of the solar cell, it indicates the speed of electrical damage caused by irradiation. Both ofcPandφ0Pare used to measure the impact of charged particle radiation damage on solar cell performance degradation, which is related to the solar cell material, structure, and doping concentration. The fitting curve is also displayed in Fig.5. ThecPandφ0Pfitting constants of IMM3J solar cells are given in Table 1. The fitting curve and the experimental data show a good degree of coincidence. TheIscdecreases more than theVoc. ThePmaxdecreases the most when the fluence increases, which is because its proportionality to the product of the voltage and the current.

    It is obvious that the proton radiation damage decreases with the increase of energy of 1,3 and 5 MeV. The displacement defects introduced by charged particle radiation are the main reason for the decline in electrical performance. Non-ionizing energy loss (NIEL) can be used to measure the ability of charged particles to introduce displacement defects in the material. Table 2 shows the NIEL values of 1-5 MeV protons in GaInP, GaAs and InGaAs (1.0 eV) calculated by screened relativistic (SR) NIEL calculator[14]. The NIEL values of three kinds of sub-cell materials decrease with the increase of the radiation proton energy at 1-5 MeV. Larger NIEL means more displacement defects introduced by charged particle radiation.

    Fig.5 Remaining factors of Voc, Isc and Pmax with fluence at 1, 3 and 5 MeV protons

    Table 1 Fitting results of degradation factors for Voc, Isc, and Pmax after irradiation by 1, 3, 5-MeV protons

    Table 2 NIEL of GaInP, GaAs and InGaAs (1.0 eV) irradiated by 1, 3 and 5 MeV protons

    The NIEL in Table 2 was used to convert the proton fluence with different energy into displacement damage dose (DDD).Fig.6 is the curve of remainingVoc,IscandPmaxas a function with DDD. It is shown that the relationship between remainingVoc,IscandPmaxand DDD follows formula (1). The fitted curves are also shown in Fig.6, and the fitted results are listed in Table 3. The remainingVocandPmaxfollow a single function with DDD, while the remainingIscof IMM3J solar cells irradiated by the 1 MeV proton, but that by the 3 and 5 MeV protons follow different functions. The most possible reason is that 1 MeV proton deposition depth is close to the base region of the InGaAs (1.0 eV) sub-cell and a part of protons deposite in the InGaAs (1.0 eV) base region, which is demonstrated in SRIM simulation. This is different from the uniform damage caused by the complete penetration of protons. The energy of protons loses faster at the end of the trajectory (near the deposited depth), it could cause more displacement damages. TheVocdegradation is affected by defects in junction regions, and there is almost uniform deposition in the three junction regions of the IMM3J solar cell. ThePmaxis affected by the voltage and current, but it shows obviousVocdependence.

    Fig.6 Remaining Voc, Isc and Pmax with DDD

    Table 3 Fitted results of degradation factors for Voc, Isc, and Pmax

    The external quantum efficiency (EQE) curves of GaInP, GaAs and InGaAs (1.0 eV) sub-cells irradiated by 1, 3 and 5 MeV protons were obtained through the spectral response test, which is shown as the Fig.7. The EQE curve of each sub-cell gradually decreases when the proton fluence increases up to 5×1013cm-2. The EQE degradation of the GaInP sub-cell is not obvious until the proton irradiation fluence up to 5×1013cm-2, which proves its excellent irradiation resistance. However, the EQE curves of the GaAs and InGaAs (1.0 eV) sub-cells are significantly degraded, especially at the longer wavelengths. It is because that the defects introduced by proton irradiation uniform distribute in the active region. And the base region of cells is much thicker than the emitter region. As a result of the different lengths of diffusion path, the probability of photogenerated carriers at the bottom of the base region being trapped by defects is greater than that of the emitter and junction regions. The shorter wavelength photons will be absorbed by the upper material, while the carriers generated in the lower base region should originate from the longer wavelength photons. Therefore, the EQE exhibits a more sensitive decrease in long wavelength.

    The short-circuit current density (Jsc) of each sub-cell was also obtained by spectral response test, which can be used to quantitatively characterize the degradation degree of each sub-cell.Fig.8 shows theJscof each sub-cell radiated by 1, 3 and 5 MeV protons with different fluences. It can be seen that the initialJscof GaInP, GaAs and InGaAs (1.0 eV) sub-cells is equivalent. Radiation defects will damage theJscof each sub-cell andJscdecreases as the radiation fluence increases. Low energy proton in the range of 1-5 MeV radiation will cause a greater decrease inJscat the same fluence, which is consistent with the conclusion of LIV. In addition, InGaAs (1.0 eV) sub-cell presents the minimum ofJscand the maximum degradation atJscamong the three sub-cells in proton radiation. It has the worst anti-irradiation performance and it always be the current limiting junction of the IMM3J solar cell. Normally, the sub-cell with the worst anti-irradiation performance is not the best choice as the current limiting junction. It will cause an obvious difference in the performance of space solar cells at the BOL and EOL.

    Fig.7 EQE curves of IMM3J solar cell irradiated by 1, 3 and 5 MeV proton at different fluences

    Fig.8 Jsc of three sub-cells in IMM3J solar cell irradiated with proton

    4 Conslusion

    This paper introduces a flexible thin-film IMM3J solar cell with a maximum conversion efficiency of 32.47%. 1, 3 and 5 MeV proton radiation experiments were carried out to study its anti-radiation performance. The SRIM simulation models indicate that 1, 3 and 5 MeV protons will cause approximately uniform damage in IMM3J solar cells and the proton with high energy will cause low electrical performance loss. LIV results show that the electrical properties (such asIsc,Voc, andPmax) decrease with the logarithmic change of proton fluence. The degradation ofVocis slightly more pronounced than that ofIscin IMM3J solar cells. Besides, the fluences of protons with different energy are converted into DDD through NIEL according to the DDD method. It is shown that theVocandPmaxdecrease with an approximative logarithmic change of DDD, while theIscfollows two different degradation behaviors. The reason is that more 1 MeV protons would be deposited in the base region of the InGaAs (1.0 eV) sub-cells, instead of penetrating the active region IMM3J solar cell completely. It would introduce more displacement defects. The deposited protons will introduce more displacement defects, resulting in a more decrease in theIscof the InGaAs (1.0 eV) sub-cell. In addition, the spectral response test illustrates that the EQE of each sub-cell decreases as the fluence increases. The damage degree of each sub-cell is different in the different wavelengths. The EQE curves of GaInP sub-cells show a decline in short wavelength, while that of the GaAs and InGaAs (1.0 eV) sub-cells show a serious decline in long wavelength. TheJscof each sub-cell indicates that the InGaAs (1.0 eV) sub-cell has the worst anti-radiation performance and is the current-limiting junction of the IMM3J solar cell continuously during the 1, 3 and 5 MeV protons irradiation.

    午夜精品国产一区二区电影| 国产伦在线观看视频一区| 免费看光身美女| 男的添女的下面高潮视频| 亚洲国产av新网站| 国产免费一区二区三区四区乱码| 国产精品一二三区在线看| 免费黄网站久久成人精品| 一个人看视频在线观看www免费| 午夜福利在线观看免费完整高清在| 国产亚洲5aaaaa淫片| 午夜久久久在线观看| 欧美 亚洲 国产 日韩一| 久久精品国产a三级三级三级| 伊人久久精品亚洲午夜| 观看av在线不卡| 日韩强制内射视频| a 毛片基地| 国产免费又黄又爽又色| 高清黄色对白视频在线免费看 | 久久久久网色| 大又大粗又爽又黄少妇毛片口| 欧美最新免费一区二区三区| 美女国产视频在线观看| 久久久久久久精品精品| 香蕉精品网在线| 成人午夜精彩视频在线观看| 亚洲激情五月婷婷啪啪| 搡老乐熟女国产| 最近的中文字幕免费完整| 久久精品熟女亚洲av麻豆精品| 免费观看在线日韩| 自拍欧美九色日韩亚洲蝌蚪91 | 日韩av在线免费看完整版不卡| 午夜激情久久久久久久| 精品人妻熟女av久视频| 免费看不卡的av| 久久久久久久久久久久大奶| 黑人猛操日本美女一级片| 久久久久网色| 亚洲人成网站在线观看播放| 亚洲精品久久久久久婷婷小说| 欧美国产精品一级二级三级 | 成人黄色视频免费在线看| 亚洲国产精品一区三区| 久久99热6这里只有精品| 欧美变态另类bdsm刘玥| 汤姆久久久久久久影院中文字幕| 一级二级三级毛片免费看| 日韩一区二区三区影片| 欧美激情国产日韩精品一区| av福利片在线| 精品卡一卡二卡四卡免费| 丝瓜视频免费看黄片| 黄色一级大片看看| 极品人妻少妇av视频| 热re99久久国产66热| 午夜精品国产一区二区电影| 看十八女毛片水多多多| 一级毛片 在线播放| 性色avwww在线观看| av在线app专区| 国产男女超爽视频在线观看| 丰满人妻一区二区三区视频av| 一区二区三区乱码不卡18| 涩涩av久久男人的天堂| 国产免费福利视频在线观看| 多毛熟女@视频| 国产黄色视频一区二区在线观看| 日日摸夜夜添夜夜添av毛片| 国产一区二区三区av在线| 视频中文字幕在线观看| 成年av动漫网址| 国产精品99久久久久久久久| 国产精品一区二区在线观看99| 美女大奶头黄色视频| 亚洲内射少妇av| 简卡轻食公司| 少妇的逼水好多| 日韩av在线免费看完整版不卡| 欧美另类一区| 91精品国产九色| 免费大片黄手机在线观看| 精品久久久久久久久亚洲| 国产高清有码在线观看视频| 蜜桃久久精品国产亚洲av| 久久女婷五月综合色啪小说| 欧美精品国产亚洲| 国产视频内射| 黄色一级大片看看| 亚州av有码| 色婷婷久久久亚洲欧美| 日韩欧美一区视频在线观看 | 国产欧美日韩一区二区三区在线 | 视频区图区小说| 国产视频首页在线观看| 视频中文字幕在线观看| 亚洲激情五月婷婷啪啪| 亚洲精品亚洲一区二区| 色吧在线观看| 人人妻人人添人人爽欧美一区卜| 国产精品嫩草影院av在线观看| 丝袜脚勾引网站| 欧美 日韩 精品 国产| 免费人成在线观看视频色| 大香蕉久久网| 22中文网久久字幕| 人人妻人人澡人人看| 夫妻午夜视频| 精品国产国语对白av| 亚洲av综合色区一区| 久久婷婷青草| 熟女电影av网| 国产 一区精品| 精品久久国产蜜桃| 一级毛片我不卡| 欧美3d第一页| 80岁老熟妇乱子伦牲交| av天堂中文字幕网| 日本av免费视频播放| 亚洲欧美精品专区久久| 看非洲黑人一级黄片| 99热国产这里只有精品6| 一本色道久久久久久精品综合| 欧美日韩视频高清一区二区三区二| 曰老女人黄片| 亚洲图色成人| 乱码一卡2卡4卡精品| 人人妻人人看人人澡| 日本与韩国留学比较| 中文字幕av电影在线播放| 精品亚洲成a人片在线观看| 国产成人精品久久久久久| √禁漫天堂资源中文www| 一级黄片播放器| 亚洲欧美日韩东京热| 国产伦精品一区二区三区视频9| 亚洲综合精品二区| 亚洲精品一二三| 精华霜和精华液先用哪个| 好男人视频免费观看在线| 精品久久久噜噜| 亚洲av中文av极速乱| 99九九线精品视频在线观看视频| 国产精品蜜桃在线观看| 色网站视频免费| 国产男人的电影天堂91| 夜夜骑夜夜射夜夜干| 国产精品99久久99久久久不卡 | 91精品一卡2卡3卡4卡| 黄色配什么色好看| 日日啪夜夜撸| 国国产精品蜜臀av免费| 插阴视频在线观看视频| 久久99热6这里只有精品| 国产乱人偷精品视频| www.av在线官网国产| 在线观看免费日韩欧美大片 | a级毛片免费高清观看在线播放| 老司机亚洲免费影院| 亚洲精品乱码久久久v下载方式| 久久精品国产亚洲av涩爱| 亚洲精品日韩在线中文字幕| 自拍欧美九色日韩亚洲蝌蚪91 | 人体艺术视频欧美日本| 久久精品国产自在天天线| 综合色丁香网| 人妻系列 视频| 国产在线男女| 亚洲精品自拍成人| √禁漫天堂资源中文www| 国产精品一区www在线观看| 久久婷婷青草| 成人亚洲精品一区在线观看| 午夜福利影视在线免费观看| 亚洲人成网站在线播| 人妻制服诱惑在线中文字幕| 国产 一区精品| 免费av中文字幕在线| 韩国av在线不卡| 熟女av电影| 3wmmmm亚洲av在线观看| 校园人妻丝袜中文字幕| 三上悠亚av全集在线观看 | 一级a做视频免费观看| 下体分泌物呈黄色| 高清在线视频一区二区三区| 久久鲁丝午夜福利片| 亚洲激情五月婷婷啪啪| 精品久久久久久久久av| 2021少妇久久久久久久久久久| 99久久人妻综合| 国产精品.久久久| 最新中文字幕久久久久| 亚洲欧美日韩卡通动漫| 久久久久久久国产电影| 中文字幕亚洲精品专区| 亚洲人成网站在线播| 国产av精品麻豆| 街头女战士在线观看网站| 日本av手机在线免费观看| 国产精品一二三区在线看| 人妻一区二区av| 欧美bdsm另类| 日本爱情动作片www.在线观看| 一级黄片播放器| 在线播放无遮挡| 免费高清在线观看视频在线观看| 国产亚洲最大av| 免费黄色在线免费观看| 久久毛片免费看一区二区三区| 男女啪啪激烈高潮av片| 黑人猛操日本美女一级片| 最近的中文字幕免费完整| 午夜视频国产福利| 中文天堂在线官网| 有码 亚洲区| 精品人妻熟女av久视频| 人妻 亚洲 视频| 亚洲一区二区三区欧美精品| 久久午夜综合久久蜜桃| 久久精品久久久久久久性| 国产在线视频一区二区| 日本av免费视频播放| 国产精品久久久久成人av| 欧美人与善性xxx| 五月玫瑰六月丁香| 亚洲不卡免费看| 亚洲精品亚洲一区二区| 国产精品嫩草影院av在线观看| 亚洲国产日韩一区二区| 久久久久人妻精品一区果冻| 亚洲三级黄色毛片| av免费在线看不卡| 欧美 亚洲 国产 日韩一| 少妇精品久久久久久久| 91aial.com中文字幕在线观看| 日韩免费高清中文字幕av| 熟女av电影| 18禁裸乳无遮挡动漫免费视频| av线在线观看网站| 亚洲成人av在线免费| 婷婷色麻豆天堂久久| 午夜老司机福利剧场| 国产深夜福利视频在线观看| 精品国产露脸久久av麻豆| 亚洲av成人精品一二三区| 久久久久久久久大av| 99久久精品国产国产毛片| 在线观看免费视频网站a站| 一级,二级,三级黄色视频| av一本久久久久| 一区二区三区四区激情视频| 欧美3d第一页| 高清在线视频一区二区三区| 亚洲精品乱码久久久v下载方式| 人人妻人人看人人澡| 久久女婷五月综合色啪小说| 天天躁夜夜躁狠狠久久av| 久久久久久久精品精品| 亚洲美女搞黄在线观看| 国产成人精品久久久久久| 成人18禁高潮啪啪吃奶动态图 | 久久久国产一区二区| 久久精品国产亚洲网站| 人妻一区二区av| 草草在线视频免费看| 亚洲av免费高清在线观看| 夜夜爽夜夜爽视频| 91午夜精品亚洲一区二区三区| 成人特级av手机在线观看| 另类精品久久| 国产av精品麻豆| 欧美性感艳星| 少妇精品久久久久久久| 深夜a级毛片| 亚洲av免费高清在线观看| 欧美日本中文国产一区发布| 美女国产视频在线观看| 国产 精品1| 欧美+日韩+精品| 国产精品人妻久久久影院| 99热全是精品| 人人妻人人澡人人爽人人夜夜| av又黄又爽大尺度在线免费看| 国产乱来视频区| 免费观看在线日韩| 人人澡人人妻人| 丝瓜视频免费看黄片| 一级,二级,三级黄色视频| 一区二区三区四区激情视频| 美女中出高潮动态图| av福利片在线| 人妻少妇偷人精品九色| 九草在线视频观看| 日本av免费视频播放| 精品卡一卡二卡四卡免费| 一级爰片在线观看| 寂寞人妻少妇视频99o| 国产男女内射视频| 亚洲欧美日韩另类电影网站| 欧美+日韩+精品| 搡女人真爽免费视频火全软件| av国产久精品久网站免费入址| 夜夜爽夜夜爽视频| 久久99精品国语久久久| 久久6这里有精品| 久久久久久久亚洲中文字幕| 久久久久久久久久久久大奶| 久久99热这里只频精品6学生| 久久久久久久久久久丰满| 交换朋友夫妻互换小说| 嫩草影院新地址| 中文字幕人妻熟人妻熟丝袜美| 久久免费观看电影| 国产黄片视频在线免费观看| 一个人免费看片子| 亚洲精品,欧美精品| 亚洲婷婷狠狠爱综合网| 久久精品熟女亚洲av麻豆精品| 自拍偷自拍亚洲精品老妇| 亚洲av.av天堂| 国产精品成人在线| 一区二区三区四区激情视频| 国产一区有黄有色的免费视频| 日本免费在线观看一区| 欧美国产精品一级二级三级 | 久久久午夜欧美精品| 亚洲婷婷狠狠爱综合网| 免费看不卡的av| 国产成人91sexporn| 久久久久精品性色| 成年人免费黄色播放视频 | 99热全是精品| 99视频精品全部免费 在线| 亚洲精品国产色婷婷电影| 精品亚洲乱码少妇综合久久| 亚洲av中文av极速乱| 午夜91福利影院| 国产在线男女| 国产精品无大码| 91在线精品国自产拍蜜月| 伊人久久国产一区二区| 久久热精品热| 激情五月婷婷亚洲| 国产无遮挡羞羞视频在线观看| 国产精品一区二区在线观看99| 国产视频首页在线观看| 亚洲精品一区蜜桃| 久久久久久久久久久久大奶| 亚洲婷婷狠狠爱综合网| 中文资源天堂在线| 国产精品国产三级国产av玫瑰| 日韩 亚洲 欧美在线| 十八禁网站网址无遮挡 | 香蕉精品网在线| 伊人久久精品亚洲午夜| 亚洲精品日韩av片在线观看| 久久国产亚洲av麻豆专区| 国产av一区二区精品久久| 国产精品无大码| 亚洲综合精品二区| 欧美+日韩+精品| 亚洲精品色激情综合| 中文字幕制服av| 亚洲精品视频女| 夜夜骑夜夜射夜夜干| 成年人免费黄色播放视频 | 插阴视频在线观看视频| 男人添女人高潮全过程视频| 久久国产乱子免费精品| 久久6这里有精品| 国产色爽女视频免费观看| 欧美日韩精品成人综合77777| 在线 av 中文字幕| 国产在线视频一区二区| 一级片'在线观看视频| 亚洲精品乱码久久久v下载方式| 久久国产精品大桥未久av | 日韩一区二区视频免费看| 最新中文字幕久久久久| 人妻系列 视频| 美女脱内裤让男人舔精品视频| 在线免费观看不下载黄p国产| h视频一区二区三区| 国产精品无大码| 久久久久网色| 伦理电影大哥的女人| 多毛熟女@视频| 蜜桃久久精品国产亚洲av| 最近中文字幕2019免费版| 精品午夜福利在线看| 欧美成人精品欧美一级黄| 插逼视频在线观看| 欧美少妇被猛烈插入视频| av黄色大香蕉| 午夜av观看不卡| 成年人午夜在线观看视频| 女人久久www免费人成看片| 国产精品三级大全| 亚洲精品一区蜜桃| 日韩av不卡免费在线播放| 国语对白做爰xxxⅹ性视频网站| 久久久欧美国产精品| 日韩制服骚丝袜av| 久久精品久久久久久久性| 人妻夜夜爽99麻豆av| 男男h啪啪无遮挡| 日韩在线高清观看一区二区三区| 一本—道久久a久久精品蜜桃钙片| 啦啦啦啦在线视频资源| 美女大奶头黄色视频| 国产精品嫩草影院av在线观看| 亚洲成色77777| 噜噜噜噜噜久久久久久91| 亚洲国产精品国产精品| 永久网站在线| 久久久久久久精品精品| 国产伦精品一区二区三区四那| 日本av免费视频播放| 狂野欧美激情性bbbbbb| 欧美+日韩+精品| 亚洲自偷自拍三级| 色视频www国产| 免费观看av网站的网址| 久久久久久久精品精品| 青春草视频在线免费观看| 日本wwww免费看| 欧美3d第一页| 久久免费观看电影| 午夜福利影视在线免费观看| 国产成人精品福利久久| 美女xxoo啪啪120秒动态图| 日韩精品免费视频一区二区三区 | 熟女人妻精品中文字幕| av.在线天堂| 99久久综合免费| 亚洲国产日韩一区二区| 亚洲av电影在线观看一区二区三区| 欧美一级a爱片免费观看看| 国产成人精品婷婷| 赤兔流量卡办理| 国产成人精品婷婷| 极品少妇高潮喷水抽搐| 成年av动漫网址| 欧美精品一区二区大全| 老司机影院成人| 欧美区成人在线视频| 卡戴珊不雅视频在线播放| 欧美+日韩+精品| 一边亲一边摸免费视频| 精品人妻一区二区三区麻豆| 久久国产乱子免费精品| 一级黄片播放器| 成人毛片a级毛片在线播放| 一本久久精品| 女性生殖器流出的白浆| 黄色怎么调成土黄色| 91精品一卡2卡3卡4卡| 夫妻午夜视频| 夜夜爽夜夜爽视频| 97超视频在线观看视频| 精品亚洲乱码少妇综合久久| 99热国产这里只有精品6| 亚洲av综合色区一区| 2022亚洲国产成人精品| 欧美xxxx性猛交bbbb| 午夜福利网站1000一区二区三区| 国产亚洲精品久久久com| 欧美区成人在线视频| 久久 成人 亚洲| 免费av不卡在线播放| 国产淫片久久久久久久久| 一区二区三区精品91| 亚洲不卡免费看| 亚州av有码| 日本91视频免费播放| 亚洲综合色惰| 老熟女久久久| 久久99蜜桃精品久久| 精品久久久精品久久久| 一区在线观看完整版| 91在线精品国自产拍蜜月| 熟女电影av网| 久久精品国产亚洲网站| 99久久精品热视频| 日韩欧美一区视频在线观看 | 亚洲丝袜综合中文字幕| 校园人妻丝袜中文字幕| 亚洲电影在线观看av| 99热6这里只有精品| 精品久久久久久久久亚洲| 国产色爽女视频免费观看| 噜噜噜噜噜久久久久久91| 三级经典国产精品| 亚洲国产色片| 美女主播在线视频| 免费少妇av软件| 国产综合精华液| 少妇高潮的动态图| 曰老女人黄片| 日韩伦理黄色片| 国产色婷婷99| 啦啦啦中文免费视频观看日本| 日本免费在线观看一区| 丰满饥渴人妻一区二区三| 少妇人妻久久综合中文| 人人妻人人看人人澡| 男男h啪啪无遮挡| 亚洲av欧美aⅴ国产| 国产精品蜜桃在线观看| 又粗又硬又长又爽又黄的视频| 亚洲久久久国产精品| 插阴视频在线观看视频| 只有这里有精品99| 91成人精品电影| 我要看日韩黄色一级片| 国产精品一区二区在线观看99| 精品人妻熟女av久视频| 亚洲欧洲国产日韩| 国产伦精品一区二区三区四那| 黄色毛片三级朝国网站 | 99热这里只有是精品在线观看| 自拍偷自拍亚洲精品老妇| 国产精品久久久久久精品古装| 欧美日韩在线观看h| 美女视频免费永久观看网站| 欧美日韩视频精品一区| 午夜精品国产一区二区电影| 99久久中文字幕三级久久日本| 中文字幕久久专区| 亚洲自偷自拍三级| 欧美97在线视频| 夫妻午夜视频| 蜜桃在线观看..| 午夜免费鲁丝| 国产免费福利视频在线观看| 美女视频免费永久观看网站| 国产亚洲91精品色在线| 一个人看视频在线观看www免费| 大香蕉97超碰在线| 国产午夜精品久久久久久一区二区三区| 极品少妇高潮喷水抽搐| 精品视频人人做人人爽| 国产黄片视频在线免费观看| 亚洲国产精品一区二区三区在线| 香蕉精品网在线| 国产亚洲欧美精品永久| 欧美激情极品国产一区二区三区 | 美女福利国产在线| a级毛片在线看网站| 乱人伦中国视频| 搡老乐熟女国产| .国产精品久久| 日韩一区二区三区影片| 国产精品国产三级国产av玫瑰| 午夜免费男女啪啪视频观看| 久久人人爽人人爽人人片va| 内地一区二区视频在线| 日韩精品有码人妻一区| 亚洲av不卡在线观看| 中文欧美无线码| 在线免费观看不下载黄p国产| 成人黄色视频免费在线看| 中文字幕亚洲精品专区| 国产成人免费观看mmmm| 在线观看一区二区三区激情| 女人精品久久久久毛片| 亚洲三级黄色毛片| 18禁在线播放成人免费| 日韩熟女老妇一区二区性免费视频| 春色校园在线视频观看| 精品人妻偷拍中文字幕| 日韩一区二区三区影片| 视频区图区小说| 丝袜喷水一区| 国产精品一区二区在线不卡| 另类亚洲欧美激情| 嫩草影院新地址| av福利片在线观看| 在线 av 中文字幕| 亚洲一区二区三区欧美精品| 一级毛片我不卡| 亚洲av日韩在线播放| 一级黄片播放器| 成人黄色视频免费在线看| 男女无遮挡免费网站观看| 国产精品久久久久久av不卡| 亚洲av国产av综合av卡| 观看免费一级毛片| 久久青草综合色| 男女啪啪激烈高潮av片| 在线观看人妻少妇| 国产高清有码在线观看视频| 久久久亚洲精品成人影院| 国产乱人偷精品视频| 综合色丁香网| 久久热精品热| 老女人水多毛片| 嫩草影院新地址| 男女边摸边吃奶| 丝袜喷水一区| 91久久精品国产一区二区成人| 国产精品国产三级专区第一集| 免费少妇av软件| 六月丁香七月| 少妇人妻一区二区三区视频| 日韩欧美一区视频在线观看 | 欧美老熟妇乱子伦牲交| 午夜免费鲁丝| 99精国产麻豆久久婷婷| 老司机亚洲免费影院| 亚洲av中文av极速乱| 亚洲人成网站在线播| 高清av免费在线|