• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characterization of Single Event Transient in 14 nm FinFET Technology

    2021-12-15 14:35:38WANGBinSHIZhuYUEHongjuLIHaisongLUHongliYANGBo
    原子能科學(xué)技術(shù) 2021年12期

    WANG Bin, SHI Zhu, YUE Hongju, LI Haisong, LU Hongli, YANG Bo

    (Xi’an Microelectronics Technology Institute, Xi’an 710065, China)

    Abstract: In order to evaluate the intrinsic radiation hardness of the fin field effect transistor (FinFET) device, the characteristics of single event transient (SET) were studied by 3D technology computer-aided design (TCAD) simulations in the 14 nm FinFET technology. The results show that the single-event sensitivity varies according to LET values and incident positions. The width of SET pulse broadens with the increase of LET values. Besides, the response of SET has a complicated relationship with the strike location. For low-LET values (LET≤1 MeV·cm2/mg), the SET response has a strong dependency on the place where it is struck by heavy ions. For high-LET values (LET>10 MeV·cm2/mg), the strike location dependency of the SET response diminishes due to the enhanced substrate charge collection.

    Key words:single event transient; FinFET; heavy ion; LET; TCAD

    1 Introduction

    With the scaling of the feature size of integrated circuits (ICs), short-channel effects (SCEs) limit the application of planar technologies. To solve this problem, fin field-effect transistor (FinFET) was proposed by professor Hu[1], firstly. Consequently, the power supply voltage and the node capacitance also diminish, which leads to more and more serious soft errors caused by ion exposure[2-5]. As the feature size of device is reduced to 14 nm and below, the proportion of SET increases significantly[6], which is one of the key factors affecting the reliability of nano FinFET devices.

    International scholars have researched the SET response of bulk FinFET and conventional planar devices in both simulation and experiment extensively. Fang et al.[7]simulated charge collection of bulk FinFET and planar devices under neutron irradiation. The results show that FinFET devices exhibit a lower soft error rate than planar devices, since the charge collection and the diffusion of substrate charge are reduced by the drain region of FinFET devices decreasing. Hubert et al.[8]studied the effects of technology scaling on soft error rate in the planar and FinFET technology. The results demonstrate that FinFET technology exhibits better single-event (SE) performance than planar counterpart due to the smaller sensitive region of the device. Nsengiyumva et al.[9]compared the SET pulse widths between 16 nm bulk FinFET and 28/20 nm planar device using technology computer aided design (TCAD) simulation tool. It is found that a SET pulse width reduction as high as 50% is achieved in comparison with the planar technology. Harrington et al.[10]investigated the correlation of SET characteristics of 14/16 nm bulk FinFET technology with device threshold voltage change and the number of transistor fins by heavy ion radiation. The results illustrate that transistor drive current plays an important role to the SET cross-section at high LET values and determines the SET pulse width. In addition, heavy ion experiments were carried out to compare the SEU trends of DFF in the 16 nm bulk FinFET technology and 28/20 nm bulk planar technology by Patrick et al[9]. The experimental results show that SEU cross-section of a DFF in the 16 nm FinFET technology has several orders of magnitude lower cross-section than that of 28/20 nm planar technology when LET is less than 10 MeV·cm2/mg. However, for higher LET values, the SEU cross-section decrease isn’t observed with the shrinking of size. In conclusion, the SET characteristics of FinFET devices have a complex relation with heavy ion and incident positions[11-14].

    In this paper, the sensitivity of SET with different LET values and incident locations will be studied by using three-dimensional (3D) TCAD simulation tools in the 14 nm FinFET technology. The results can provide a good complement to the SET characteristics of the FinFET technology, as well as give a theoretical guidance for the radiation hardening strategy of 14 nm FinFET devices.

    2 Device under test and experimental setup

    3D TCAD modeling and simulations of devices are useful in providing insight into physical mechanisms and failure models due to single-event effects. In this work, 3D TCAD simulations are utilized to investigate charge collection mechanisms and SET pulse widths in the 14 nm FinFET technology.

    2.1 3D device design and calibration

    The physical device of two-fin n-channel FinFET (nFinFET) is designed by Sentaurus TCAD in the 14 nm technology node, as shown in Fig.1. The design parameters of the simulated device are listed in Table 1. The electrical characteristic curves of the nFinFET are calibrated against theI-Vdata from commercial process design kits (PDKs), and the calibration results are shown in Fig.2.

    Fig.1 Structure of 14 nm NMOS FinFET designed by TCAD

    Table 1 Design parameter for 14 nm nFinFET device

    a—Transconductance characteristic curve; b—Output characteristic curveFig.2 Electrical characteristic curve of nFinFET

    2.2 3D TCAD simulation setup

    Fig.3 Schematic diagram of TCAD mixed simulation

    A mixed-mode is conducted to study the radiation effect of an inverter in the 14 nm FinFET technology. The diagram of the mixed simulation is shown in Fig.3. In the inverter, p-channel FinFET (pFinFET) uses the BSIM-CMG model which comes from the PDKs, and the nFinFET uses the physical devices. The nFinFET and pFinFET devices each consist of two fins and one single gate finger (NFIN=2 and NF=1). These nFinFET and pFinFET transistors are designed as minimum size transistors according to the design rules of the 14 nm bulk FinFET technology. The gate length of PMOS (Lg) is set to 16 nm, and the load capacitance (CL) is equal to 0.1 fF. The supply voltage of the inverter is set to 0.8 V.

    In the selection of physical models, the following models are used: 1) Fermi-Dirac statistic, 2) bandgap narrowing effect, 3) con-centration dependent Shockley-Reed-Hall and Auger recombination model, 4) considering the effects of temperature, doping, electric field and carrier scattering on carrier mobility, 5) the carrier transport equation is based on the hydrodynamic model, 6) heavy ion model with Gaussian distribution, a characteristic coefficient of 1/e, a radius of 10 nm. Unless specifically defined, other models or parameters use the default parameters of the Sentaurus TCAD software.

    The position of heavy ion strike is set to the single-fin drain center (SFDC) and the double-fins space center(DFSC) at normal incident and room temperature, as shown in Fig.4. For all of these simulations, the particle LET is changed from as low as 0.1 MeV·cm2/mg to 40 MeV·cm2/mg.

    Fig.4 Diagram of location of FinFET device struck by heavy ion

    3 3D TCAD simulation results

    To investigate charge collection mechanisms and SET pulse width trends for the 14 nm bulk FinFET, 3D TCAD simulations are conducted. The results of simulation are shown in Fig.5, which depicts the inverter output as a function of simulation time at different LET values and incident positions. During the simulation, the input of the inverter is biased to a low level (Vin=0 V), and normally the output is high (Vout=0.8 V). The simulation time is set to 500 ps. The specific locations (SFDC and DFSC) of nFinFET are hit by heavy ions at 100 ps. The SET pulse width is defined as the width corresponding to the half of supply voltage (VDD/2). The results are listed in Table 2.

    Fig.5 Output of 14 nm FinFET inverter with different LET values and different incident positions

    The simulation results in Table 2 show that the SET pulse width broadens with the increase of LET values. There is no SEU observed in the inverter when LET<0.5 MeV·cm2/mg. The LET threshold of SFDC struck by heavy ion are 0.5 MeV·cm2/mg, while the LET threshold of DFSC is greater than 1 MeV·cm2/mg. The SET pulse width as a function of LET value is shown in Fig.6.

    Table 2 SET pulse width at different LET and incidence positions

    Fig.6 SET pulse width as a function of LET value

    In addition, when the LET is less than 1 MeV·cm2/mg, the pulse current of the SET is similar to a double exponential current source. However when the LET is greater than 10 MeV·cm2/mg, the pulse current of the SET has a unique platform region as shown in Fig.7. The platform width determines the voltage pulse width of the SET.

    Fig.7 SET pulse current as a function of simulation time

    4 Analysis and discussion

    4.1 Effect of characteristic radius of ion track structure on SET pulse width

    In the modern CMOS circuits, characteristic gate length of devices are now less than 20 nm, and the response time of circuit-switching is below 10 ps. Therefore, it is very important to choose the spatial and temporal distribution when simulating the device and circuit SET using 3D TCAD. As shown in Fig.8, the influence of characteristic radius on the SET pulse width is studied by using 3D TCAD simulation. The results show that the SET pulse width increases with the decrease of ion track radius in the 14 nm bulk FinFET inverter when the LET is equal to 1 MeV·cm2/mg. However, the SET pulse width is similar regardless of the characteristic radius when the LET increases to 40 MeV·cm2/mg, due to the enhanced FinFET substrate charge collection. These results are also consistent with the simulated FinFET SE response trends reported in reference [15]. The article points out that the simulation results are in good agreement with the experimental results when the radius of ion track is set to 10 nm in the 14 nm bulk FinFET technology. Therefore, the characteristic radius of ion track is set to 10 nm in this study. In the other technology the value of characteristic radius must be chosen carefully, especially for low LET particles.

    Fig.8 SET pulse width as a function of characteristic radius of ion

    4.2 Effect of angular effect on single-event mechanism

    It is well known that the total charge collection increase with the increase of the incident angle in the planar bulk technology, because the length of charge collection is longer than normal incident. This is equivalent to increase the effective LET value. For a FinFET technology, angular effects have an important influence on SE mechanisms due to the discrete structure of FinFET device[16-17]. The results of researchers show that angular upset cross sectional characteristics can be attributed to different charge deposition regions in the fin and the subfin bulk structures[17]. Zhang et al.[16]have studied angular effects of heavy-ion strikes on single-event upset response of flip-flop designs in 16 nm bulk FinFET technology. The results show that upset probability and SEU cross-sections increase with tilt angles, but those decrease with the increase of roll angles for low-LET heavy-ion incidence. The main reason for this behavior is posited to be variations in charge track length within active Si regions.

    4.3 Effect of LET value on characteristic of SET

    The simulated SET pulse widths for the 14 nm bulk FinFET technology increase with LET value, as shown in Fig.6. As we all know, if the LET value is higher, the ionization capability is stronger, generating higher concentration electron-hole pairs. Then enough charge is collected by the sensitive nodes of the device and the wider SET pulse is obtained. Charge collection mainly consists of two processes that are drift under the electric field of drain and diffusion forced by concentration gradient, respectively. At low-LET values, the drift process plays an important role in charge collection, sustaining the tens of picoseconds after heavy ion incidence. At high-LET values, the diffusion process will dominate the charge collection after drift process, and form the current platform which determines the width of SET pulse. The SE response behavior of FinFET circuits at high-LET values is attributed to the increased charge collection from the substrate.

    4.4 Effect of incident position on characteristic of SET

    The physical mechanisms of charge collection varies according to the incident positions. When the SFDC is struck directly by heavy ion, charges are collected through drift and diffusion, as shown in Fig.9a. When the DFSC is struck, charges are collected through diffusion, as shown in Fig.9b. As a result, the SET response of the 14 nm bulk FinFET inverter has a strong dependency on the ion strike location for low-LET particle strike (LET≤1 MeV·cm2/mg). Results show that a direct ion striking at the fin generates an observable SE transient while an ion striking between two fins results in a very small voltage perturbation at LET=1 MeV·cm2/mg. For struck by particles with high-LET values, the strike location dependency of FinFET SE response diminishes due to the enhanced substrate (diffusion) charge collection.

    a—Collected through drift and diffusion; b—Collected through diffusion Fig.9 Charge collection at different incident locations

    5 Conclusion

    In this paper, 3D TCAD simulations of the struck inverter are used to explore charge collection mechanisms and SET pulse widths as a function of particle LET values and incident positions in 14 nm bulk FinFET technology. The results show that the SET pulse width increases with the LET value. For low-LET values (LET≤1 MeV·cm2/mg), the SET response of the 14 nm bulk FinFET inverter has a strong dependency on the ion strike location. For high-LET values (LET>10 MeV·cm2/mg), the SET response dependency on the strike location diminishes due to the enhanced substrate (diffusion) charge collection.

    99久久人妻综合| 少妇人妻一区二区三区视频| 99视频精品全部免费 在线| 欧美3d第一页| 伊人久久国产一区二区| 日本黄色片子视频| av在线老鸭窝| 亚洲精品一区蜜桃| 久久这里有精品视频免费| 十八禁高潮呻吟视频 | 国产一区二区三区综合在线观看 | 蜜桃久久精品国产亚洲av| 亚洲不卡免费看| 日韩精品免费视频一区二区三区 | 黑人猛操日本美女一级片| 亚洲婷婷狠狠爱综合网| 人妻少妇偷人精品九色| 秋霞在线观看毛片| 伊人久久国产一区二区| 午夜免费男女啪啪视频观看| h视频一区二区三区| 黄色一级大片看看| 日本-黄色视频高清免费观看| 欧美日韩视频精品一区| 国产精品三级大全| 成人无遮挡网站| 亚洲人与动物交配视频| 极品教师在线视频| 99久久精品一区二区三区| 夫妻性生交免费视频一级片| 亚洲欧美成人精品一区二区| 另类亚洲欧美激情| 全区人妻精品视频| av免费观看日本| 国产视频首页在线观看| 亚洲av免费高清在线观看| 自线自在国产av| 久久久久久久久久成人| 日韩av不卡免费在线播放| 街头女战士在线观看网站| 欧美精品一区二区大全| 国产黄频视频在线观看| 99久久精品热视频| 日韩中文字幕视频在线看片| 久久综合国产亚洲精品| 高清av免费在线| 一本色道久久久久久精品综合| 国内揄拍国产精品人妻在线| 亚洲美女视频黄频| 久久综合国产亚洲精品| 亚洲精品日本国产第一区| 欧美 日韩 精品 国产| 日韩欧美一区视频在线观看 | 亚洲欧美日韩卡通动漫| 亚洲精品国产av成人精品| 国产视频内射| 亚洲精品乱码久久久v下载方式| 中文资源天堂在线| 少妇精品久久久久久久| 一二三四中文在线观看免费高清| 我要看黄色一级片免费的| 如何舔出高潮| 91精品一卡2卡3卡4卡| 午夜福利在线观看免费完整高清在| 精品久久久久久久久亚洲| 男女边吃奶边做爰视频| 精品卡一卡二卡四卡免费| 国产视频内射| 久久久欧美国产精品| av有码第一页| 精品人妻熟女毛片av久久网站| 肉色欧美久久久久久久蜜桃| 精品国产乱码久久久久久小说| 国产精品免费大片| 亚洲情色 制服丝袜| 18禁在线无遮挡免费观看视频| 一级黄片播放器| 精品久久久噜噜| 看免费成人av毛片| 亚洲av国产av综合av卡| 久久久久久久久大av| 国产黄片视频在线免费观看| 熟女人妻精品中文字幕| 午夜影院在线不卡| 肉色欧美久久久久久久蜜桃| 又黄又爽又刺激的免费视频.| 另类亚洲欧美激情| 夜夜看夜夜爽夜夜摸| av播播在线观看一区| 一级毛片 在线播放| 一级毛片久久久久久久久女| 简卡轻食公司| 99久久人妻综合| 国产伦在线观看视频一区| 国产免费福利视频在线观看| 国产欧美日韩综合在线一区二区 | 国产av国产精品国产| 51国产日韩欧美| 免费黄频网站在线观看国产| 国产探花极品一区二区| 十八禁网站网址无遮挡 | 美女福利国产在线| 好男人视频免费观看在线| 午夜久久久在线观看| 91久久精品国产一区二区成人| 激情五月婷婷亚洲| 精品少妇内射三级| 丰满饥渴人妻一区二区三| 精品视频人人做人人爽| 精品国产一区二区三区久久久樱花| 国产熟女午夜一区二区三区 | 七月丁香在线播放| 大片电影免费在线观看免费| 免费久久久久久久精品成人欧美视频 | 日本黄大片高清| a级毛片在线看网站| 美女大奶头黄色视频| 国产一区二区在线观看日韩| 丰满乱子伦码专区| 最近2019中文字幕mv第一页| 欧美变态另类bdsm刘玥| 国产亚洲5aaaaa淫片| av在线观看视频网站免费| 亚洲内射少妇av| 黄色视频在线播放观看不卡| 日韩欧美一区视频在线观看 | 一级黄片播放器| 日日摸夜夜添夜夜添av毛片| 国产 一区精品| 亚洲,一卡二卡三卡| 亚洲不卡免费看| 五月开心婷婷网| 日本av免费视频播放| 亚洲av电影在线观看一区二区三区| 少妇人妻精品综合一区二区| h视频一区二区三区| 国产成人精品久久久久久| 菩萨蛮人人尽说江南好唐韦庄| 国产综合精华液| 久久精品夜色国产| 99热这里只有精品一区| 黄色欧美视频在线观看| 国产成人精品一,二区| 在线播放无遮挡| 成人免费观看视频高清| 一级,二级,三级黄色视频| 久久久久久久久大av| 国产黄片视频在线免费观看| 亚洲欧美日韩另类电影网站| 伊人久久国产一区二区| 99国产精品免费福利视频| 午夜福利网站1000一区二区三区| 色婷婷av一区二区三区视频| 国产视频首页在线观看| 嫩草影院入口| 丰满饥渴人妻一区二区三| av专区在线播放| 亚洲欧美一区二区三区黑人 | 狂野欧美白嫩少妇大欣赏| 欧美激情国产日韩精品一区| 亚洲国产欧美在线一区| 香蕉精品网在线| 99精国产麻豆久久婷婷| 久久久精品94久久精品| 在线亚洲精品国产二区图片欧美 | 国产男女内射视频| 青春草亚洲视频在线观看| 综合色丁香网| 国产深夜福利视频在线观看| 久久这里有精品视频免费| h日本视频在线播放| 国产黄色免费在线视频| 日日啪夜夜撸| 搡老乐熟女国产| 男女国产视频网站| 26uuu在线亚洲综合色| av播播在线观看一区| 国国产精品蜜臀av免费| 国产精品熟女久久久久浪| 亚洲欧美一区二区三区国产| 妹子高潮喷水视频| 亚洲人成网站在线观看播放| 欧美区成人在线视频| 亚洲av中文av极速乱| 18禁裸乳无遮挡动漫免费视频| 搡老乐熟女国产| 偷拍熟女少妇极品色| 在线免费观看不下载黄p国产| 亚洲精品乱码久久久v下载方式| tube8黄色片| av有码第一页| 在线天堂最新版资源| 免费高清在线观看视频在线观看| 丰满迷人的少妇在线观看| 午夜免费鲁丝| 美女内射精品一级片tv| 色婷婷久久久亚洲欧美| 99久久精品国产国产毛片| 国产精品嫩草影院av在线观看| 国产高清有码在线观看视频| 老司机亚洲免费影院| 一级毛片aaaaaa免费看小| 亚洲精品日韩在线中文字幕| 少妇被粗大猛烈的视频| 国产精品国产三级国产av玫瑰| 亚洲色图综合在线观看| 王馨瑶露胸无遮挡在线观看| 在线亚洲精品国产二区图片欧美 | 亚洲性久久影院| 你懂的网址亚洲精品在线观看| 视频区图区小说| 成人漫画全彩无遮挡| 免费在线观看成人毛片| 内射极品少妇av片p| 欧美日韩在线观看h| 久久国产亚洲av麻豆专区| 啦啦啦啦在线视频资源| 亚洲国产精品999| 国产极品天堂在线| 我要看日韩黄色一级片| 亚洲欧美日韩另类电影网站| 国产91av在线免费观看| 亚洲成色77777| 欧美日韩视频精品一区| 精品久久国产蜜桃| 久久久久网色| 一级毛片aaaaaa免费看小| 亚洲一区二区三区欧美精品| 各种免费的搞黄视频| 女性被躁到高潮视频| 欧美高清成人免费视频www| 夜夜看夜夜爽夜夜摸| 国产欧美另类精品又又久久亚洲欧美| 成年人午夜在线观看视频| 日本欧美视频一区| 日韩熟女老妇一区二区性免费视频| 日韩伦理黄色片| 亚洲精品乱久久久久久| 日日爽夜夜爽网站| 免费在线观看成人毛片| 男人添女人高潮全过程视频| 在线看a的网站| 色哟哟·www| 99九九在线精品视频 | av在线观看视频网站免费| 天美传媒精品一区二区| 日本黄色片子视频| 黑人巨大精品欧美一区二区蜜桃 | 2018国产大陆天天弄谢| 男人和女人高潮做爰伦理| 国产av一区二区精品久久| 你懂的网址亚洲精品在线观看| 国产亚洲欧美精品永久| 在线观看国产h片| 国产一级毛片在线| 九九在线视频观看精品| av一本久久久久| 成年av动漫网址| 肉色欧美久久久久久久蜜桃| 黑人猛操日本美女一级片| 久热久热在线精品观看| 三级经典国产精品| 国产欧美另类精品又又久久亚洲欧美| 国产精品一区www在线观看| 日日摸夜夜添夜夜添av毛片| 最新中文字幕久久久久| 色婷婷久久久亚洲欧美| 在线播放无遮挡| 日韩制服骚丝袜av| 丰满少妇做爰视频| 亚洲不卡免费看| 亚洲成人av在线免费| 七月丁香在线播放| 中文乱码字字幕精品一区二区三区| 中文资源天堂在线| 国产极品粉嫩免费观看在线 | 日韩中字成人| 天美传媒精品一区二区| a 毛片基地| 日本欧美视频一区| 成人毛片60女人毛片免费| 久久久久视频综合| 少妇 在线观看| 99re6热这里在线精品视频| 国产伦精品一区二区三区视频9| 亚洲欧美清纯卡通| 久久久国产欧美日韩av| 婷婷色麻豆天堂久久| 美女xxoo啪啪120秒动态图| 免费黄色在线免费观看| 国产成人一区二区在线| 亚洲欧美成人综合另类久久久| 久久精品久久精品一区二区三区| 中文字幕免费在线视频6| 亚洲欧美成人精品一区二区| 汤姆久久久久久久影院中文字幕| 国产亚洲午夜精品一区二区久久| 国产精品熟女久久久久浪| 乱人伦中国视频| 国产熟女欧美一区二区| 黑人高潮一二区| 成年人午夜在线观看视频| 亚洲国产精品999| av福利片在线| 视频中文字幕在线观看| 国产乱人偷精品视频| 国内少妇人妻偷人精品xxx网站| 国产精品一区二区在线不卡| 国产在线一区二区三区精| 寂寞人妻少妇视频99o| 美女xxoo啪啪120秒动态图| 热re99久久精品国产66热6| 成人亚洲精品一区在线观看| 草草在线视频免费看| 国内精品宾馆在线| 赤兔流量卡办理| 国产亚洲5aaaaa淫片| 久久97久久精品| 国产一区有黄有色的免费视频| 亚洲精品日韩av片在线观看| av国产久精品久网站免费入址| 国产日韩欧美亚洲二区| 亚洲激情五月婷婷啪啪| 亚洲高清免费不卡视频| 国产色婷婷99| av网站免费在线观看视频| 伦理电影免费视频| 亚洲av不卡在线观看| 黄色日韩在线| 国产精品欧美亚洲77777| 亚洲av综合色区一区| 两个人的视频大全免费| 少妇猛男粗大的猛烈进出视频| a级一级毛片免费在线观看| 国产精品偷伦视频观看了| 最近中文字幕高清免费大全6| 中文在线观看免费www的网站| 伊人亚洲综合成人网| 卡戴珊不雅视频在线播放| 少妇被粗大的猛进出69影院 | 性色av一级| 欧美人与善性xxx| 久久久久久久久大av| 嫩草影院入口| 日韩视频在线欧美| 亚洲精品自拍成人| 校园人妻丝袜中文字幕| 免费黄频网站在线观看国产| freevideosex欧美| 好男人视频免费观看在线| 欧美一级a爱片免费观看看| 国产一区二区三区av在线| 人妻人人澡人人爽人人| 久久久精品免费免费高清| 看非洲黑人一级黄片| av不卡在线播放| 午夜免费男女啪啪视频观看| 精品国产乱码久久久久久小说| 亚洲av免费高清在线观看| 国产精品99久久久久久久久| 一区二区av电影网| 亚洲欧美一区二区三区国产| 亚洲中文av在线| 一级a做视频免费观看| 18禁动态无遮挡网站| 两个人的视频大全免费| 精品少妇久久久久久888优播| 国产色爽女视频免费观看| 极品人妻少妇av视频| 成年av动漫网址| 少妇被粗大猛烈的视频| 亚洲av在线观看美女高潮| 精品一区二区免费观看| 亚洲国产精品国产精品| 国产欧美另类精品又又久久亚洲欧美| tube8黄色片| 国产精品人妻久久久影院| 又黄又爽又刺激的免费视频.| 桃花免费在线播放| av黄色大香蕉| 啦啦啦在线观看免费高清www| 亚洲av成人精品一区久久| 亚洲国产欧美在线一区| a级一级毛片免费在线观看| 欧美少妇被猛烈插入视频| 赤兔流量卡办理| 噜噜噜噜噜久久久久久91| 亚洲欧美成人精品一区二区| 天美传媒精品一区二区| 三级经典国产精品| 亚洲精品国产av成人精品| 欧美三级亚洲精品| 乱系列少妇在线播放| 日韩av在线免费看完整版不卡| 久久精品夜色国产| 欧美一级a爱片免费观看看| 亚洲精品色激情综合| 国产免费又黄又爽又色| 午夜久久久在线观看| 欧美变态另类bdsm刘玥| 一级毛片久久久久久久久女| 国产精品一区二区三区四区免费观看| 最后的刺客免费高清国语| 高清午夜精品一区二区三区| 国产片特级美女逼逼视频| 美女大奶头黄色视频| 国产精品99久久99久久久不卡 | 精品午夜福利在线看| 青春草视频在线免费观看| 国产精品免费大片| 中国美白少妇内射xxxbb| 免费大片18禁| 国产黄片美女视频| 欧美 亚洲 国产 日韩一| 寂寞人妻少妇视频99o| 欧美日韩av久久| 日日啪夜夜撸| 亚洲国产成人一精品久久久| 一级毛片 在线播放| 欧美一级a爱片免费观看看| 精品久久国产蜜桃| 国产伦在线观看视频一区| 啦啦啦中文免费视频观看日本| 女人久久www免费人成看片| 欧美日韩国产mv在线观看视频| 日本免费在线观看一区| 国模一区二区三区四区视频| 久久久久久久久久久免费av| 精品久久国产蜜桃| 精品一区二区三卡| 日本av免费视频播放| 99九九在线精品视频 | 亚洲国产av新网站| 国产成人a∨麻豆精品| 日韩精品免费视频一区二区三区 | 国产黄频视频在线观看| 日韩亚洲欧美综合| 黄色日韩在线| 91在线精品国自产拍蜜月| 国产伦精品一区二区三区四那| 日本vs欧美在线观看视频 | 亚洲天堂av无毛| 国产淫片久久久久久久久| 黑丝袜美女国产一区| 成人漫画全彩无遮挡| 99久久精品一区二区三区| 国产精品国产三级国产av玫瑰| 18禁动态无遮挡网站| 日韩一本色道免费dvd| 99久国产av精品国产电影| 国产黄片美女视频| 嫩草影院新地址| 久久av网站| 亚洲精品国产色婷婷电影| h视频一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久久久久久大av| av线在线观看网站| 2018国产大陆天天弄谢| 久久久久久久久久成人| 亚洲国产最新在线播放| a级毛片在线看网站| a 毛片基地| 亚洲精品亚洲一区二区| 91精品国产九色| 日日撸夜夜添| 亚洲人成网站在线观看播放| 啦啦啦视频在线资源免费观看| 99视频精品全部免费 在线| a 毛片基地| 国产一区二区三区av在线| 老熟女久久久| 多毛熟女@视频| 不卡视频在线观看欧美| 亚洲欧美清纯卡通| 最新的欧美精品一区二区| 亚洲精品国产av蜜桃| 我的女老师完整版在线观看| 18+在线观看网站| 国产成人免费无遮挡视频| 在线天堂最新版资源| 狂野欧美激情性bbbbbb| 日韩中字成人| 成人综合一区亚洲| 人人澡人人妻人| 成人亚洲欧美一区二区av| 国产片特级美女逼逼视频| 街头女战士在线观看网站| 亚洲精品乱码久久久v下载方式| 在线观看三级黄色| 亚洲无线观看免费| 性色avwww在线观看| 国内少妇人妻偷人精品xxx网站| 国产一级毛片在线| 97超视频在线观看视频| 日韩成人伦理影院| 亚洲国产最新在线播放| 亚洲av中文av极速乱| 自线自在国产av| 一边亲一边摸免费视频| 一个人看视频在线观看www免费| 精品久久久精品久久久| 国产极品天堂在线| 国产乱人偷精品视频| 黑人猛操日本美女一级片| 欧美激情极品国产一区二区三区 | 一区二区三区免费毛片| 国产永久视频网站| 中文字幕亚洲精品专区| 国产国拍精品亚洲av在线观看| 国产伦理片在线播放av一区| 欧美日韩国产mv在线观看视频| 亚洲精品乱码久久久久久按摩| 成年av动漫网址| 2018国产大陆天天弄谢| 国产在线视频一区二区| 在线 av 中文字幕| 日韩中字成人| 成年女人在线观看亚洲视频| 日日摸夜夜添夜夜爱| 亚洲精品aⅴ在线观看| 晚上一个人看的免费电影| 国产精品人妻久久久影院| 欧美+日韩+精品| 高清欧美精品videossex| 久久99蜜桃精品久久| 免费黄频网站在线观看国产| 免费大片18禁| 亚洲欧美精品自产自拍| 久热久热在线精品观看| 午夜激情久久久久久久| www.av在线官网国产| 亚洲精品日本国产第一区| 免费观看a级毛片全部| 国产免费又黄又爽又色| 一区二区三区四区激情视频| 午夜福利网站1000一区二区三区| 中文字幕亚洲精品专区| 久久久国产一区二区| 99视频精品全部免费 在线| 在线观看av片永久免费下载| 亚洲国产最新在线播放| 日韩欧美一区视频在线观看 | 国产欧美日韩一区二区三区在线 | 欧美精品一区二区免费开放| 简卡轻食公司| 欧美三级亚洲精品| 在线观看免费高清a一片| 欧美日本中文国产一区发布| 国产综合精华液| 精品人妻熟女毛片av久久网站| 热re99久久国产66热| 国内少妇人妻偷人精品xxx网站| 欧美丝袜亚洲另类| 精品一区二区免费观看| 国产精品国产av在线观看| 国精品久久久久久国模美| 日本免费在线观看一区| 久久精品国产亚洲网站| 久久久久久伊人网av| 中国美白少妇内射xxxbb| 插阴视频在线观看视频| 日韩av不卡免费在线播放| 久久精品国产亚洲av天美| 国产精品欧美亚洲77777| 看十八女毛片水多多多| 中文乱码字字幕精品一区二区三区| 午夜av观看不卡| 亚洲第一av免费看| 亚洲色图综合在线观看| 久久久久久久久久久久大奶| 午夜精品国产一区二区电影| 国产精品三级大全| 看十八女毛片水多多多| 国产乱来视频区| 又大又黄又爽视频免费| 国产精品国产av在线观看| 亚洲综合精品二区| 如日韩欧美国产精品一区二区三区 | 国产精品人妻久久久影院| 99re6热这里在线精品视频| 国产精品久久久久成人av| 如日韩欧美国产精品一区二区三区 | 狠狠精品人妻久久久久久综合| 九色成人免费人妻av| 亚洲经典国产精华液单| 97精品久久久久久久久久精品| 国产伦精品一区二区三区视频9| 久久久欧美国产精品| 亚洲综合精品二区| 3wmmmm亚洲av在线观看| 成人午夜精彩视频在线观看| 亚洲婷婷狠狠爱综合网| 欧美精品一区二区免费开放| 一级毛片aaaaaa免费看小| 99久久综合免费| 欧美亚洲 丝袜 人妻 在线| 亚洲av成人精品一区久久| 日日爽夜夜爽网站| 22中文网久久字幕| 久久精品国产鲁丝片午夜精品| 成人漫画全彩无遮挡| 午夜福利在线观看免费完整高清在| 亚洲国产成人一精品久久久| 97在线视频观看| 精品国产露脸久久av麻豆| 婷婷色av中文字幕| 精品久久久久久久久av| 国产高清不卡午夜福利| 热re99久久精品国产66热6| 亚州av有码| av有码第一页| 亚洲欧美日韩另类电影网站| 中国三级夫妇交换| 欧美激情极品国产一区二区三区 |