• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dose Detecting of RADFETs Based on PMOS Extended to Elevated Temperature Applications

    2021-12-15 14:35:34MAHanSUNJingHEChengfaXUNMingzhu
    原子能科學(xué)技術(shù) 2021年12期

    MA Han, SUN Jing, HE Chengfa, XUN Mingzhu

    (1.Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; 2.University of Chinese Academy of Sciences, Beijing 100049, China)

    Abstract: The radiation response of 100 nm- and 400 nm-RADFETs was investigated at room temperature and elevated temperatures. A total radiation dose of 80 krad(Si) was reached with two different dose rates of 3 rad(Si)/s and 0.098 rad(Si)/s. The mid-gap technique was used to separate influence of the oxide trap charge and the interface trap charge. The microscopic mechanism of radiation response at elevated temperatures was analyzed. The annealing effect of the oxide-trap charge is the main reason for the nonlinear response. The changes of the oxide-trap charge with different oxide thicknesses have great difference, while the interface-trap charge densities have little difference at elevated temperatures. The feasibility of using RADFETs at elevated temperatures was discussed, providing a reference for the application of RADFETs in elevated temperature environment.

    Key words:elevated temperature condition; RADFETs; radiation response

    1 Introduction

    The RADFETs (radiation sensing field effect transistors) which are also called PMOS dosimeter were first proposed by Holmes-Siedle in 1974[1]. RADFETs offer many advantages over the other commonly used dosimeters for its good linearity, small volume and weight, convenient use for direct readout without delay, and low-power consumption. After years of development, RADFETs have been shown to be suitable for dose measurements in various applications such as space science, radiotherapy, nuclear industry and other conditions[2-3].

    To stabilize the performance, the ambient temperature the dosimeters work at is limited. But dose measurement at high temperature conditions such as affiliated facilities in nuclear reactor and space missions is needed. The external temperature of the International Space Station can reach 120 ℃. Different solutions are used to deal with the predicament such as temperature controllers and specially designed dosimeters[4-5]. These methods cost a lot and the RADFETs can be an excellent candidate if the performance of RADFETs at elevated temperatures is fully understood.

    For a calibrated RADFET, the shift of threshold voltage (ΔVth) is a function of the radiation dose received, but ΔVthis also affected by the external temperature. In order to suppress the response difference of RADFETs at different temperatures, previous researchers proposed several temperature compensation methods[6-10], including minimum temperature coefficient (MTC), differential circuit and real-time temperature feedback and other solutions. The influence of temperature onI-Vcharacteristics exists a minimum value, called MTC point, at that point the corresponding voltage can be used as a sensitive parameter to minimize the influence of temperature. However, in a large temperature range, the use of MTC is subject to many limitations, such as the change of MTC with the cumulative dose. Differential circuit is widely used as an effective temperature compensation method. Two RADFETs with the same technology are applied with different bias voltage and the difference value of ΔVthunder irradiation is taken as the sensitive parameter, thus eliminating the influence of temperature. Another way to compensate is to integrate a temperature-sensitive diode into the RADFETs to provide real-time temperature feedback, allowing for later correction of the data. However, this approach requires additional signal-processing circuits, which increase the load and instability.

    The previous researches on the temperature effects of RADFETs range from -40 ℃ to 80 ℃ under irradiation[6-12]. As for higher temperatures, only the effects of post-irradiation annealing were considered. In order to develop a PMOS dosimeter suitable for elevated temperature radiation environment, the RADFETs was subjected to a comparative irradiation test under elevated temperature and room temperature conditions. The mid-gap technique was used to separate the effects of oxide-trap charge density (Not) and the interface-trap charge density (Nit)[13]. The radiation response characteristics of RADFETs under high temperature environment were studied from the microscopic mechanism. The existing problems and causes of the application of RADFETs in high temperature environment were discussed, and the basic solutions were obtained. It provides a reference and a possible method for the development and application of RADFETs at high temperature.

    2 Devices under test and experimental setups

    For the experiment, a set of Tyndall RADFETs with 100 nm and 400 nm gate oxide thickness was used. The chips were assembled in ceramic 14-pin DIP packages capped with kovar lids. The part consists of two identical p-channel RADFETs and two temperature sensing diodes. TheW/Lof RADFETs are 300 μm/50 μm and 868 μm/11 μm respectively. The two RADFETs have individual gate, source and drain terminals, while the bulk are connected together. Only one RADFET of each chip was tested.

    All of transistors examined in this work were exposed to the total dose of 80 krad(Si) with all pins shorted during the irradiation[11-12]. To avoid the change of MTC with the cumulative dose, the gate sweep characteristics and sub-threshold sweep characteristics were tested using a KEITHLEY 4200SCS parameter analyzer after irradiation.

    The experiments were performed on the cobalt-60 irradiation facility in the Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. The panoramic cobalt-60 source and irradiation position were calibrated using a graphite cavity ionization chamber before radiation experiments. In experiment group 1, the dose rate(DR) used for different temperature conditions was 3 rad(Si)/s. Temperature chamber was used during irradiation to control the temperature of devices, and the temperature spots were 20, 80, 100, and 120 ℃. Group 2 with the DR of 0.098 rad(Si)/s and the temperatures of 20 ℃ and 100 ℃ was carried out to investigate the effects of DR at elevated temperatures. Test time was in seconds so that the NBTI effect of PMOS under test sweep voltage can be negligible.

    3 Results and discussion

    3.1 Threshold voltage shift and sensitivity change

    The basis of RADFETs as a dosimeter is the relation between the threshold voltage shift induced by the radiation dose. The dependence of ΔVthinduced by radiation dose D can be expressed as:

    ΔVth=A·Dn

    (1)

    whereAandnis the degree of linearity dependent on electric field, oxide thickness and absorbed radiation dose. Ideally, the dependence should be linear, which meansn=1, and in that case ‘A’ represents the sensitivitySof PMOS dosimeter:

    (2)

    A TID of 80 krad(Si) was reached during the irradiation stage of the experiments. The transistorVthbefore irradiation, as well as during irradiation, was determined by the transfer characteristics. The ΔVthwith cumulative dose at different temperatures of 400 nm-RADFETs is shown in Fig.1a. The slope at each point was calculated to obtain the sensitivity. The relationship between the sensitivity and the cumulative dose is shown in Fig.1b. It can be seen that for 400 nm-RADFETs,the sensitivity is much high at low total dose under high temperature environment, up to 0.35 mV/rad(Si), and the difference between the sensitivity under room temperature condition is up to 0.1 mV/rad(Si). With the increase of total dose, the sensitivity of the device decreases continuously. The sensitivity at elevated temperature decreases more obviously with the cumulative dose, for the sensitivity at high temperature is lower than that at room temperature when the total dose is higher than 30 krad(Si).

    Fig.1 Characteristic change of 400 nm-RADFETs at different temperatures

    The ΔVthand sensitivity change with cumulative dose of 100 nm-RADFETs are shown in Fig.2a and Fig.2b, respectively.

    For 100 nm-RADFETs, due to the thin gate oxide thickness, the total energy deposited by gamma rays in the oxide layer is reduced, and the total number of electron hole pairs generated is reduced. Therefore, a larger measurement range can be achieved, but the sensitivity of response is also reduced. In the low total dose range, the sensitivity is only 0.02-0.035 mV/rad(Si), which is about 1/10 of the 400 nm-RADFETs. In the measurement range, the sensitivity of 100 nm-RADFETs decreases less, that means, the linearity of 100 nm-RADFETs is better. At high temperatures, the 100 nm-RADFETs has improved sensitivity while achieving better linearity.

    Fig.2 Characteristic change of 100 nm-RADFETs at different temperatures

    3.2 Effects of oxide-trap charge and interface-trap charge

    The threshold voltage drift of MOS device caused by irradiation is mainly caused by trap charge buildup and annealing in gate oxide layer[14-18]. In order to explain the difference of sensitivity change, the mid-gap technique was used to separate the ΔVthcaused by oxide-trap charge and interface-trap charge[13]. Equations (3)-(5) are used to calculate the changes ofNotandNit:

    ΔVth=ΔVit+ΔVot

    (3)

    (4)

    (5)

    The ΔNotand ΔNitof 400 nm-RADFETs with the cumulative dose at different temperatures are shown in Fig.3a and Fig.3b respectively. It can be seen that the annealing of the oxide traps charge is obvious, and high temperatures intensify the annealing effect. The change of the interface-trap charge can maintain a good linearity, and it has certain annealing at high temperature and high dose, for it reaches a maximum between 80 ℃ and 120 ℃.

    Numbers of theories and models have been reported for the discussion of traps charge buildup and annealing[14-15]. TheE′ center model and the dipole hypothesis were effective in explanation of hole traps activities in oxide, the energetic particles passing through the oxide layer generate electron-hole pairs.

    Fig.3 Characteristic change of 400 nm-RADFETs at different temperatures

    Within the time of picoseconds after electron-hole pairs are created, most of the electrons will rapidly drift toward the gate. And holes will drift toward the SiO2/Si interface slowly. As the holes approach the interface, some fraction of holes will be trapped, forming a positive oxide-trap charge for the existent of large amounts of vacancies. Generally, trapped holes annealing can proceed by either of two processes, tunneling or thermal excitation. Tunneling is the dominant mechanism at room temperature, while the thermal excitation will eventually dominate at elevated temperature, so that the annealing of oxide trap charge at elevated temperature will be intensified.

    The interface-trap charge buildup is mainly explained by hydrogen transport model[16-18]. In the process of irradiation, some protons will be released by the gate oxide, and the protons will be transported to the SiO2/Si interface through the jump between the potential wells. The high temperature will accelerate this transport process. After reaching the interface, protons will move laterally along the interface due to the potential barrier of SiO2/Si interface and may be captured to form the interface trap charge. AsNitincreases, protons may form Si—H bonds with Si suspension bonds and eliminate an interface-trap charge, until the interface-trap charge generated and eliminated to form an equilibrium state. The study results of Rashkee et al. show that the dependence of the interface states to establish equilibrium state and temperature during the irradiation process will reach a maximum between 80 ℃ and 150 ℃[17]. For 100 nm- and 400 nm-RADFETs, the maximum value is between 80 ℃ and 120 ℃, because theNitincrement at 120 ℃ has shown a downward trend at high doses.

    The ΔNotand ΔNitof 100 nm-RADFETs with cumulative dose at different temperatures are shown in Fig.4a and Fig.4b. It can be seen that as the thickness of gate oxide becomes thinner, both the oxide-trap charge and the interface-trap charge at room temperature become much smaller for the decrease of total deposition energy. At high temperatures, ΔNotis about 1/3 of that of 400 nm-RADFETs, but the difference between the interface-trap charge density is not so great, and the difference of ΔNitbetween 100 nm-RADFETs and 400 nm-RADFETs at the total dose of 80 krad(Si) at 100 ℃ and 120 ℃ is less than 5%. This result can be interpreted by that the proton transport distance to the interface becomes shorter, which makes the interface states increase faster, thus compensating for the decrease in proton release caused by the decrease in total deposited energy. And it should be noted that the difference in the distribution of the internal electric field when the gate oxide thickness becomes thinner leads to the difference in the recombination rate of the generated electron-hole pairs. Johnston et al. studied the dependence between the charge yield and the electric field at different temperatures based on the Onsager model[19]. This is also the reason for increased sensitivity at high temperatures. The trap charge produced in the thin oxide layer modulates the internal electric field more obviously.

    3.3 Effects of dose rate

    An experiment group with low dose rate (LDR) of 0.098 rad(Si)/s at 20 ℃ and 100 ℃ was used as a comparation to the high dose rate (HDR) of 3 rad(Si)/s, and the ΔVthresults were shown in Fig.5.

    Fig.4 Characteristic change of 100 nm-RADFETs at different temperatures

    Fig.5 ΔVth with different DR

    It can be seen from Fig.6 that the ΔVthof 400 nm-RADFETs at LDR was lower than HDR, and the difference between 20 ℃ and 100 ℃ at LDR was quite small up to 50 krad(Si). For 100 nm-RADFETs, the ΔVthat LDR was close to HDR, and the effect of temperature was the same. For the LDR condition, a longer irradiation time could make a greater annealing of oxide-traps charge and the greater buildup of interface-traps charge for both 100 nm- and 400 nm-RADFETs. The ΔNotand ΔNitby MGT at different DR of 400 nm- and 100 nm-RADFETs were displayed in Fig.6 and Fig.7, respectively.

    An exception was found that for 400 nm-RADFETs at 100 ℃, the interface-traps charge buildup of LDR was smaller than HDR. This is because proton loss processes limit the increased buildup at elevated temperatures[18]. Irradiation with LDR at elevated temperatures reached a high concentration of molecular hydrogen at lower cumulative dose, which passivated the interface-traps. For 100 nm-RADFETs, the low concentration of hydrogen in thinner oxide and fewer radiation-induced hole activities make them show very little enhanced passivation at elevated temperatures.

    The experimental data and microcosmic mechanism indicated that RADFETs are suitable for using as a dosimetric sensor to the applications at elevated temperature. The dose response of RADEFTs at elevated temperatures still keeps a good mathematic relation with cumulative dose. In the LDR environment such as space, 400 nm-RADFETs show higher radiation sensitivities and independence on temperature when doses were below 50 krad(Si). For an environment where the dose rate changes, 100 nm-RADFETs can be quite suitable because of its stability to dose rate and a better linearity at different temperatures and DR which make them more convenient using calibration data. A calibration of certain temperature range and the real-time temperature feedback by temperature-sensitive diode are needed for RADFETs using in actual elevated temperature environments. A combination of RADFETs with different gate oxide thicknesses can achieve more accurate measurement.

    Fig.6 Characteristic change of 400 nm-RADFETs at different DR

    Fig.7 Characteristic change of 100 nm-RADFETs at different DR

    4 Conclusion

    A wider temperature range that 100 nm- and 400 nm-RADFETs could be applicative was investigated. A total radiation dose of 80 krad(Si) was reached with two different dose rates of 3 rad(Si)/s and 0.098 rad(Si)/s. Three main results were obtained. Firstly, 100 nm-RADFETs perform more stably and linearly at different temperatures and dose rates, while 400 nm-RADFETs show higher sensitivity and independence on temperature below 50 krad(Si) at LDR. Secondly, the sensitivity decreased with the dose accumulation, and that is worse in elevated temperature and thicker oxide. Thirdly, the annealing effect of oxide-trap charge is the major cause of nonlinear response, while the ΔNitcan keep good linearity. At elevated temperature, the difference of ΔNitbetween 100 nm- and 400 nm-RADFETs is small, the built-in electric field distribution and the kinetics of proton activities could be the influencing factors. It can be concluded that in the mentioned temperature range, the adequate response of RADFETs ensure an effective use of them in dosimetry.

    香蕉av资源在线| 欧美又色又爽又黄视频| 欧美乱色亚洲激情| 久久伊人香网站| 精品国产乱子伦一区二区三区| 美女高潮的动态| 日韩有码中文字幕| 久久中文字幕一级| 99精品欧美一区二区三区四区| 日韩欧美一区二区三区在线观看| 在线观看一区二区三区| 人人妻,人人澡人人爽秒播| 久久久久久九九精品二区国产| 国产精品99久久99久久久不卡| 成年版毛片免费区| 日本成人三级电影网站| 亚洲va日本ⅴa欧美va伊人久久| 特级一级黄色大片| 一级毛片女人18水好多| 中文字幕久久专区| 99热精品在线国产| 天堂影院成人在线观看| 国产高清videossex| 夜夜躁狠狠躁天天躁| 91麻豆av在线| 伦理电影免费视频| 亚洲国产精品久久男人天堂| 九色国产91popny在线| 成人一区二区视频在线观看| 免费一级毛片在线播放高清视频| 国产欧美日韩精品一区二区| 好看av亚洲va欧美ⅴa在| 岛国在线观看网站| 91麻豆av在线| 黄色丝袜av网址大全| 99久久成人亚洲精品观看| 国产成人av激情在线播放| 精品国内亚洲2022精品成人| 国产欧美日韩精品一区二区| 香蕉久久夜色| 婷婷亚洲欧美| h日本视频在线播放| 日韩中文字幕欧美一区二区| 精品一区二区三区视频在线观看免费| 国产99白浆流出| 一进一出抽搐gif免费好疼| 亚洲一区二区三区色噜噜| 日韩精品青青久久久久久| 亚洲真实伦在线观看| 男女下面进入的视频免费午夜| 欧美黄色片欧美黄色片| 亚洲国产欧美人成| 一个人免费在线观看的高清视频| 性色av乱码一区二区三区2| 欧美zozozo另类| 俺也久久电影网| 好男人在线观看高清免费视频| 别揉我奶头~嗯~啊~动态视频| 久久久色成人| 午夜激情欧美在线| 91麻豆av在线| 久久午夜综合久久蜜桃| 波多野结衣巨乳人妻| 国产精品亚洲美女久久久| 欧美不卡视频在线免费观看| 亚洲中文字幕日韩| 日本免费一区二区三区高清不卡| 国产精品影院久久| 亚洲片人在线观看| 国产av不卡久久| 一个人免费在线观看的高清视频| 母亲3免费完整高清在线观看| 丝袜人妻中文字幕| 午夜精品久久久久久毛片777| e午夜精品久久久久久久| 一卡2卡三卡四卡精品乱码亚洲| 久久久久久久久免费视频了| 麻豆一二三区av精品| 亚洲自偷自拍图片 自拍| 亚洲精品一卡2卡三卡4卡5卡| 国产极品精品免费视频能看的| 嫩草影视91久久| 村上凉子中文字幕在线| 一a级毛片在线观看| 日韩欧美三级三区| 亚洲狠狠婷婷综合久久图片| 欧美在线一区亚洲| 国产淫片久久久久久久久 | 老司机午夜福利在线观看视频| 久久伊人香网站| 国产精品野战在线观看| 欧美不卡视频在线免费观看| 国产精品98久久久久久宅男小说| 日本黄大片高清| 国产男靠女视频免费网站| 精品国产三级普通话版| 19禁男女啪啪无遮挡网站| 亚洲av熟女| 99精品久久久久人妻精品| 狂野欧美激情性xxxx| 精品久久久久久久久久久久久| 国产精品野战在线观看| 免费看光身美女| 久久久久国产精品人妻aⅴ院| 亚洲专区国产一区二区| av在线蜜桃| 五月伊人婷婷丁香| 88av欧美| 免费观看人在逋| 高清毛片免费观看视频网站| 国产日本99.免费观看| 精品久久久久久久久久久久久| 看黄色毛片网站| 国语自产精品视频在线第100页| 国产一区二区三区视频了| 国产精品影院久久| 少妇丰满av| 国产黄a三级三级三级人| 日韩欧美免费精品| 十八禁人妻一区二区| 免费在线观看亚洲国产| 亚洲第一欧美日韩一区二区三区| 两个人看的免费小视频| 女人被狂操c到高潮| 成人性生交大片免费视频hd| 欧美中文日本在线观看视频| 国产综合懂色| 欧美乱码精品一区二区三区| av福利片在线观看| 国产高潮美女av| 国产av在哪里看| 久久精品影院6| 亚洲aⅴ乱码一区二区在线播放| 亚洲人成电影免费在线| 性欧美人与动物交配| 夜夜躁狠狠躁天天躁| 少妇熟女aⅴ在线视频| 色哟哟哟哟哟哟| 精华霜和精华液先用哪个| 五月玫瑰六月丁香| 亚洲精品中文字幕一二三四区| 高清毛片免费观看视频网站| 国产69精品久久久久777片 | 久久国产乱子伦精品免费另类| 久久久久久久久久黄片| 亚洲av熟女| 老司机午夜十八禁免费视频| 最新美女视频免费是黄的| 欧美乱色亚洲激情| 悠悠久久av| 男女做爰动态图高潮gif福利片| 国产一区二区在线av高清观看| 亚洲黑人精品在线| 中文字幕精品亚洲无线码一区| 伦理电影免费视频| 亚洲国产日韩欧美精品在线观看 | 特级一级黄色大片| 久久香蕉精品热| 欧美又色又爽又黄视频| 日韩欧美一区二区三区在线观看| 亚洲狠狠婷婷综合久久图片| 又大又爽又粗| 99久久精品国产亚洲精品| 黄色丝袜av网址大全| 脱女人内裤的视频| 国产毛片a区久久久久| 我的老师免费观看完整版| 中文字幕人成人乱码亚洲影| 琪琪午夜伦伦电影理论片6080| 性色av乱码一区二区三区2| 在线观看免费午夜福利视频| 99久久成人亚洲精品观看| 久久久久免费精品人妻一区二区| 日本成人三级电影网站| 村上凉子中文字幕在线| 亚洲av美国av| 日日干狠狠操夜夜爽| 亚洲成人久久爱视频| 午夜久久久久精精品| 好看av亚洲va欧美ⅴa在| 麻豆久久精品国产亚洲av| 国内揄拍国产精品人妻在线| 久久久水蜜桃国产精品网| а√天堂www在线а√下载| 久久久国产成人免费| 国产成人啪精品午夜网站| 亚洲av片天天在线观看| 成人特级黄色片久久久久久久| 美女午夜性视频免费| 长腿黑丝高跟| 99久久无色码亚洲精品果冻| 香蕉国产在线看| 午夜成年电影在线免费观看| 香蕉久久夜色| 每晚都被弄得嗷嗷叫到高潮| 久久天堂一区二区三区四区| 日本a在线网址| 国产精品美女特级片免费视频播放器 | 18禁美女被吸乳视频| 可以在线观看的亚洲视频| 亚洲欧洲精品一区二区精品久久久| 99国产精品一区二区三区| 欧美一区二区精品小视频在线| 一进一出好大好爽视频| 亚洲七黄色美女视频| x7x7x7水蜜桃| 丁香六月欧美| 国产一级毛片七仙女欲春2| 丰满的人妻完整版| 精品国产乱码久久久久久男人| 国产成人aa在线观看| 欧美大码av| 成人国产综合亚洲| 国产av在哪里看| av在线天堂中文字幕| 禁无遮挡网站| 精品午夜福利视频在线观看一区| 欧美乱码精品一区二区三区| 人妻夜夜爽99麻豆av| 欧美黄色片欧美黄色片| 色精品久久人妻99蜜桃| 欧美中文日本在线观看视频| 亚洲av片天天在线观看| 日韩欧美 国产精品| 国产精品免费一区二区三区在线| 日韩av在线大香蕉| aaaaa片日本免费| 亚洲国产欧美网| 大型黄色视频在线免费观看| АⅤ资源中文在线天堂| 狠狠狠狠99中文字幕| 欧美色欧美亚洲另类二区| 午夜日韩欧美国产| 麻豆久久精品国产亚洲av| 欧美午夜高清在线| 一个人观看的视频www高清免费观看 | 欧美成狂野欧美在线观看| 性色av乱码一区二区三区2| 真人一进一出gif抽搐免费| 国产av一区在线观看免费| 亚洲精品一卡2卡三卡4卡5卡| 欧美在线黄色| а√天堂www在线а√下载| 欧美黄色淫秽网站| 欧美日韩国产亚洲二区| 黄色 视频免费看| 99精品欧美一区二区三区四区| 日韩av在线大香蕉| 99久久综合精品五月天人人| 国产精品一区二区三区四区免费观看 | 国产av不卡久久| 十八禁人妻一区二区| 日本在线视频免费播放| 婷婷精品国产亚洲av| 男女做爰动态图高潮gif福利片| 国模一区二区三区四区视频 | 村上凉子中文字幕在线| 精品久久久久久久毛片微露脸| 国产成人aa在线观看| 免费在线观看日本一区| 一区二区三区激情视频| 亚洲激情在线av| 一本久久中文字幕| 欧美中文综合在线视频| 手机成人av网站| 欧美在线黄色| 欧美日韩乱码在线| 又爽又黄无遮挡网站| 日本熟妇午夜| 巨乳人妻的诱惑在线观看| 国内毛片毛片毛片毛片毛片| e午夜精品久久久久久久| 国产免费男女视频| av国产免费在线观看| 视频区欧美日本亚洲| 免费在线观看成人毛片| 韩国av一区二区三区四区| 亚洲精品一区av在线观看| 男女之事视频高清在线观看| 精品久久蜜臀av无| 欧美精品啪啪一区二区三区| 亚洲国产看品久久| 91久久精品国产一区二区成人 | 午夜福利在线观看吧| 色尼玛亚洲综合影院| 少妇熟女aⅴ在线视频| 中文字幕人成人乱码亚洲影| 叶爱在线成人免费视频播放| 欧美色欧美亚洲另类二区| 脱女人内裤的视频| 国产爱豆传媒在线观看| 九九热线精品视视频播放| 成人鲁丝片一二三区免费| 亚洲国产精品合色在线| 男人舔女人下体高潮全视频| 午夜福利在线观看吧| 亚洲在线自拍视频| av在线蜜桃| 国产精品九九99| 两人在一起打扑克的视频| 中文资源天堂在线| 亚洲成人精品中文字幕电影| 亚洲精品中文字幕一二三四区| 亚洲男人的天堂狠狠| 夜夜看夜夜爽夜夜摸| 国产av不卡久久| xxxwww97欧美| 亚洲最大成人中文| 国产真人三级小视频在线观看| 99久久无色码亚洲精品果冻| 男女那种视频在线观看| 国产一区二区三区视频了| 亚洲av日韩精品久久久久久密| 午夜精品久久久久久毛片777| 啦啦啦韩国在线观看视频| 成人国产一区最新在线观看| 视频区欧美日本亚洲| 国产97色在线日韩免费| 不卡av一区二区三区| 色综合亚洲欧美另类图片| 精品欧美国产一区二区三| 精品久久久久久久人妻蜜臀av| 精品电影一区二区在线| 亚洲美女黄片视频| 999久久久国产精品视频| 91在线观看av| 午夜亚洲福利在线播放| 国内精品美女久久久久久| 中出人妻视频一区二区| 国产av麻豆久久久久久久| 国产亚洲精品一区二区www| 国产伦精品一区二区三区视频9 | 久久香蕉国产精品| 免费在线观看成人毛片| 国产毛片a区久久久久| 国产私拍福利视频在线观看| 午夜免费激情av| 国产精品电影一区二区三区| 亚洲av成人不卡在线观看播放网| 91在线精品国自产拍蜜月 | 级片在线观看| 一区二区三区高清视频在线| 少妇裸体淫交视频免费看高清| 欧美国产日韩亚洲一区| 动漫黄色视频在线观看| 噜噜噜噜噜久久久久久91| 色综合欧美亚洲国产小说| 亚洲欧美精品综合一区二区三区| 深夜精品福利| 特大巨黑吊av在线直播| 全区人妻精品视频| 免费电影在线观看免费观看| 国产麻豆成人av免费视频| 欧美日韩国产亚洲二区| 久久久成人免费电影| 狂野欧美白嫩少妇大欣赏| 成人国产综合亚洲| 深夜精品福利| 成人鲁丝片一二三区免费| 国产精品98久久久久久宅男小说| 波多野结衣高清作品| 日本 av在线| 成在线人永久免费视频| 国产久久久一区二区三区| 午夜视频精品福利| 一个人免费在线观看电影 | 国产成人系列免费观看| 久久久久国内视频| 精品久久久久久久人妻蜜臀av| 色噜噜av男人的天堂激情| 1024手机看黄色片| 日本熟妇午夜| 男女床上黄色一级片免费看| 美女高潮的动态| 999久久久精品免费观看国产| 国产精品自产拍在线观看55亚洲| 午夜福利成人在线免费观看| 国内精品美女久久久久久| 我要搜黄色片| 久久久久精品国产欧美久久久| ponron亚洲| 国产高清有码在线观看视频| 一级毛片女人18水好多| 97人妻精品一区二区三区麻豆| 久久久久九九精品影院| 波多野结衣巨乳人妻| 久久婷婷人人爽人人干人人爱| 国产精品精品国产色婷婷| 免费在线观看成人毛片| 小说图片视频综合网站| 老汉色av国产亚洲站长工具| 亚洲精品456在线播放app | 特大巨黑吊av在线直播| 亚洲成人免费电影在线观看| 成人特级av手机在线观看| 国产精品久久电影中文字幕| 久久久久久人人人人人| av视频在线观看入口| 国产探花在线观看一区二区| 18禁黄网站禁片免费观看直播| 午夜精品在线福利| 精品久久久久久久人妻蜜臀av| 亚洲国产精品sss在线观看| 午夜精品在线福利| 又黄又爽又免费观看的视频| 美女高潮喷水抽搐中文字幕| 国产97色在线日韩免费| 在线观看66精品国产| 国产午夜精品久久久久久| 性欧美人与动物交配| 日本黄大片高清| 91av网站免费观看| 国产aⅴ精品一区二区三区波| 国产av在哪里看| 久久久久九九精品影院| 香蕉久久夜色| 国产精品,欧美在线| 国内精品久久久久久久电影| 黄色日韩在线| 一个人免费在线观看的高清视频| 亚洲第一电影网av| av中文乱码字幕在线| 桃红色精品国产亚洲av| 在线国产一区二区在线| 99久久精品热视频| 在线看三级毛片| 免费av不卡在线播放| 精品久久久久久久毛片微露脸| 在线播放国产精品三级| 人人妻人人澡欧美一区二区| 色在线成人网| avwww免费| 可以在线观看的亚洲视频| 国产精品98久久久久久宅男小说| 午夜福利免费观看在线| www.熟女人妻精品国产| 亚洲av成人不卡在线观看播放网| 欧美xxxx黑人xx丫x性爽| 91在线观看av| 波多野结衣高清作品| 成熟少妇高潮喷水视频| 又粗又爽又猛毛片免费看| 麻豆av在线久日| 香蕉久久夜色| 十八禁网站免费在线| 久久伊人香网站| 午夜福利18| 别揉我奶头~嗯~啊~动态视频| av天堂中文字幕网| a级毛片a级免费在线| 九色国产91popny在线| 日韩 欧美 亚洲 中文字幕| 熟女人妻精品中文字幕| 熟女电影av网| 18禁美女被吸乳视频| 窝窝影院91人妻| 亚洲国产看品久久| 久久久久性生活片| 久久香蕉精品热| 18禁美女被吸乳视频| 麻豆一二三区av精品| 国产精品,欧美在线| 精品日产1卡2卡| 免费看a级黄色片| 黄色片一级片一级黄色片| 日本黄色视频三级网站网址| 国产午夜精品久久久久久| 国产 一区 欧美 日韩| www日本黄色视频网| 国产视频内射| 免费在线观看影片大全网站| 亚洲精华国产精华精| 国产伦在线观看视频一区| 老汉色av国产亚洲站长工具| 亚洲欧洲精品一区二区精品久久久| 美女大奶头视频| 精品一区二区三区四区五区乱码| 亚洲一区二区三区色噜噜| 午夜免费激情av| 黄色成人免费大全| 18禁美女被吸乳视频| 成人永久免费在线观看视频| АⅤ资源中文在线天堂| 精品久久久久久久久久免费视频| 久久这里只有精品中国| 国产单亲对白刺激| 欧美日本亚洲视频在线播放| 国产成人av教育| 此物有八面人人有两片| 午夜激情福利司机影院| ponron亚洲| 在线观看免费午夜福利视频| 两个人的视频大全免费| 男插女下体视频免费在线播放| 国产黄片美女视频| 国产精品久久久久久人妻精品电影| 国产精品乱码一区二三区的特点| 欧美日韩乱码在线| 久久精品国产综合久久久| 国产三级黄色录像| 精品国内亚洲2022精品成人| 亚洲精品456在线播放app | 搡老岳熟女国产| 又爽又黄无遮挡网站| 午夜福利在线在线| av女优亚洲男人天堂 | 最近最新免费中文字幕在线| 国产精品乱码一区二三区的特点| 最近视频中文字幕2019在线8| 小蜜桃在线观看免费完整版高清| 久久精品影院6| 国产精品一区二区免费欧美| 久久久成人免费电影| 日韩欧美在线二视频| www日本黄色视频网| 久久草成人影院| 亚洲自拍偷在线| 国产日本99.免费观看| 欧美又色又爽又黄视频| 日韩有码中文字幕| 午夜福利高清视频| 国产真实乱freesex| 12—13女人毛片做爰片一| 后天国语完整版免费观看| 熟女电影av网| 嫁个100分男人电影在线观看| 女同久久另类99精品国产91| 欧美在线一区亚洲| 国产精品乱码一区二三区的特点| 日本免费a在线| 亚洲自偷自拍图片 自拍| 中文字幕熟女人妻在线| 国产精品野战在线观看| 亚洲熟妇熟女久久| 亚洲 欧美一区二区三区| 亚洲熟妇熟女久久| 免费观看精品视频网站| 亚洲国产欧洲综合997久久,| 国产在线精品亚洲第一网站| 丰满人妻一区二区三区视频av | 亚洲成av人片免费观看| 午夜福利在线观看免费完整高清在 | 成人特级av手机在线观看| 国产伦精品一区二区三区四那| 成年女人永久免费观看视频| 丁香六月欧美| 露出奶头的视频| 91在线观看av| 亚洲狠狠婷婷综合久久图片| 亚洲av成人一区二区三| 中文字幕熟女人妻在线| 好看av亚洲va欧美ⅴa在| 国产精品av久久久久免费| 亚洲无线观看免费| a级毛片a级免费在线| 波多野结衣巨乳人妻| 精品久久久久久久毛片微露脸| 欧美乱码精品一区二区三区| 亚洲狠狠婷婷综合久久图片| 免费一级毛片在线播放高清视频| 琪琪午夜伦伦电影理论片6080| 欧美高清成人免费视频www| 国产精品女同一区二区软件 | 午夜福利在线观看免费完整高清在 | 又大又爽又粗| 亚洲国产高清在线一区二区三| 国产成人影院久久av| 午夜两性在线视频| 嫩草影院入口| 国产精品亚洲一级av第二区| 男插女下体视频免费在线播放| 黄色 视频免费看| 黄色片一级片一级黄色片| 女人高潮潮喷娇喘18禁视频| www国产在线视频色| 亚洲片人在线观看| 99久久成人亚洲精品观看| 国产精品免费一区二区三区在线| 精品一区二区三区av网在线观看| 亚洲熟妇中文字幕五十中出| 精品久久久久久久人妻蜜臀av| 国产一区二区三区在线臀色熟女| 国产精品亚洲美女久久久| 亚洲aⅴ乱码一区二区在线播放| 国产成+人综合+亚洲专区| 亚洲av熟女| 变态另类成人亚洲欧美熟女| 国产亚洲精品久久久com| 1000部很黄的大片| 国内精品久久久久久久电影| 日韩成人在线观看一区二区三区| 狂野欧美激情性xxxx| 久久这里只有精品中国| 观看免费一级毛片| 19禁男女啪啪无遮挡网站| 国产激情欧美一区二区| 听说在线观看完整版免费高清| 少妇熟女aⅴ在线视频| 亚洲精华国产精华精| 999久久久精品免费观看国产| 国产美女午夜福利| 午夜福利18| 亚洲国产精品久久男人天堂| 美女高潮喷水抽搐中文字幕| 国产精品野战在线观看| 亚洲九九香蕉| 久久久久国产精品人妻aⅴ院| 母亲3免费完整高清在线观看| 黑人巨大精品欧美一区二区mp4| 欧美色视频一区免费| 国产精品影院久久| 老司机午夜福利在线观看视频| 国产精品久久久久久精品电影| 精品国内亚洲2022精品成人| 免费大片18禁|