• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Radiation-induced Dark Current Random Telegraph Signal on CMOS Image Sensor

    2021-12-15 14:35:30LIUBingkaiLIYudongWENLinZHOUDongGUOQi
    原子能科學技術(shù) 2021年12期

    LIU Bingkai, LI Yudong, WEN Lin, ZHOU Dong, GUO Qi

    (1.Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China; 2.Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; 3.Xinjiang Key Laboratory of Electronic Information Material and Device, Urumqi 830011, China; 4.University of Chinese Academy of Sciences, Beijing 100049, China)

    Abstract: Radiation damage causes the dark current random telegraph signal (DC-RTS) on CMOS image sensors used for space and nuclear applications. Several 0.18 μm CMOS image sensors were irradiated by distinct proton energy and gamma rays, and the characteristic parameters of DC-RTS were analyzed after irradiation. Experimental results show that there are discrepancies between DC-RTS pixels due to displacement damage and to total ionizing dose effects in terms of discrete level, maximum transition amplitude and average time. This is because both kinds of radiation damage induced RTS defects are different. Contrary to the DC-RTS due to displacement damage, total ionizing dose induced DC-RTS features small transition amplitude and low transition frequency, which gives rise to the test and analysis challenge for this DC-RTS. Transfer gate voltage during integration has an important impact on total ionizing dose induced DC-RTS. The above work provides an important reference for the better understanding of DC-RTS phenomenon on CMOS image sensor, and the exploration of relevant suppression techniques.

    Key words:CMOS image sensor; displacement damage effect; total ionizing dose effect; dark current random telegraph signal

    1 Introduction

    CMOS image sensors (CIS) as the core imaging device are widely used in space imaging and nuclear industry missions[1-2]. The CIS used for the above applications are exposed to harsh radiation environment and the particles (protons, electrons and heavy ions) cause various radiation effects including total ionizing dose (TID), displacement damage (DD) and single event effects (SEE)[3-4]. Among these radiation effects, TID and DD are the cumulative radiation effects. TID induces oxide charges and interface states in the dielectrics and both kinds of defects lead to the degradation of the key parameters. DD produces bulk defects at the space charge region (SCR), and introduces the energy level within the Si bandgap. The bulk defects play as recombination-generation centers and limit the performance of the CIS. TID and DD generate dark current random telegraph signal (DC-RTS) in the pinned photodiode (PPD) of the CIS. DC-RTS refers to the random fluctuations of dark current output with time between two or more discrete levels and has an influence on in-flight calibration of the dark current.

    In 1993, Hopkinson et al.[5]firstly reported the DC-RTS phenomenon in proton-irradiated CCD. In the past 30 years, many researchers have carried out a series of studies on DC-RTS[6-10]. Research topics mainly focus on: optimizing RTS software to improve the detection efficiency of DC-RTS; establishing physical model to predict the occurrence probability of DD-induced DC-RTS (DDD-RTS); the first report of TID-induced DC-RTS (TID-RTS), which breaks the inherent understanding that only DD can produce DC-RTS; exploring the influence of annealing temperature on DC-RTS behavior; and investigating the effects of radiation and technology parameters on DC-RTS. In these published literatures, more efforts are made in improving the understanding of DDD-RTS, but few papers focus on TID-RTS[11-12]. This is because TID-RTS exhibits fluctuation characteristics different from the DDD-RTS, which brings challenges to the test and analysis of TID-RTS.

    The purpose of this paper is to obtain the comprehensive understanding of radiation-induced DC-RTS. Firstly, the main characteristics of the studied CIS and the experimental details are introduced. Then the results of DC-RTS after exposure to proton and γ rays are presented and the behaviors of both kinds of DC-RTS are compared. Finally, the influence of transfer gate (TG) voltage during integration on TID-RTS is analyzed.

    2 Experimental detail

    2.1 Device information

    The devices under study are the 0.18 μm CIS. The sensor consists of 2048×2048-11 μm-pitch pixels. The pixel scheme is the 4T PPD as detailed in Fig.1. Apart from the PPD, it includes a reset transistor, a TG tran-sistor, a source follower transistor and a row select transistor. The CIS integrates a 12-bit ADC, a temperature sensor, a phase locked loop and serial peripheral interface control on chip. The pixel is electrically and optically isolated by a shallow trench isolation (STI) structure. All the CIS used in this work are from the same lot.

    Fig.1 Schematic of 4T pixel

    2.2 Irradiation experiment

    The proton irradiation experiments were performed at the cyclotron accelerator (at China Institute of Atomic Energy, Beijing, CHN) with the energy of 50, 60 and 70 MeV. The proton fluence rate is 5×106cm-2·s-1. The used image sensor applies the pin grid array (PGA) package, and it is unnecessary to decap the device since proton range is enough to reach the SCR. The γ irradiation experiments were carried out at60Co-γ radiation source (at Xinjiang Technical Institute of Physics and Chemistry, Urumqi, CHN). Dose rate was set to 50 rad(Si)/s and the maximum dose is 50 krad(Si). All the irradiation experiments were carried out at room temperature and the CIS was unbiased with all pins grounded during irradiation. Irradiation experiment details are shown in Table 1.

    Table 1 Irradiation experiment detail

    2.3 DC-RTS test

    Proton-irradiated CIS is used to study DDD-RTS and γ-irradiated CIS for TID-RTS. DC-RTS test was carried out at 24 ℃ after irradiation. The test chamber has air-conditioning to control the measurement temperature. The raw images were successively grabbed by a data acquisition software at the frequency of 2 s per frame, and the integration time was set to 0.2 s during image acquisition. Except for the considerations mentioned above, other issues are VLOTG and test duration. VLOTG corresponds to the TG voltage during integration and the voltage has an impact on TG channel regime (accumulation or depletion). For DDD-RTS, the VLOTG was set to -0.2 V to exclude the contribution of TG oxide to DC-RTS and the test duration is 2 hours. As for TID-RTS, the VLOTG options include -0.2 V, 0 V and 0.2 V to investigate the influence of TG oxide on the DC-RTS and the image acquisition duration is 5 hours. To reduce the pressure of data storage and analysis caused by long-term image acquisition, the windowing operation mode was applied during image acquisition. After test, RTS software, which is implemented using Matlab software, is used to automatically detect the DC-RTS pixels on a subarray and extract the characteristic parameters including DC-RTS pixel count, discrete level, maximum transition amplitude and average time.

    3 Result and discussion

    3.1 DDD-RTS characteristic

    The definition of the characteristic parameters of DC-RTS is presented in Fig.2. Each dark current value corresponds to a DC-RTS level, and the minimum dark current is defined as the first level. Dark current difference between levels is the transition amplitude and the maximum difference among all the transition amplitudes is the maximum transition amplitude. The average of all the retention time at a given level is defined the average time specific to this level.

    DDD-RTS level distributions are shown in Fig.3. It can be seen that the number of 2-level DC-RTS accounts for 60% of the total DDD-RTS pixels, and the highest level is 8. DDD-RTS is the result of the proton-induced metastable bulk defects at the SCR. Metastable defects feature two or more configurations, each of which corresponds to a generation rate. DC-RTS phenomenon is observed when the metastable defect randomly jumps between the generation rates. DC-RTS level represents the structural information of metastable defects. 2-level DC-RTS is caused by a metastable defect containing two configurations (called bistable defect). The generation mechanism of multilevel DC-RTS is complex and there are two possible physical explanations. The first hypothesis supports that multilevel DC-RTS is due to a metastable defect featuring multiple configurations (called multi-stable defect). The other hypothesis thinks that multilevel DC-RTS is the result of the combination of several bistable defects.

    Fig.3 DDD-RTS pixel level distribution

    f(x)=k/λ·exp(-x/λ)

    (1)

    Wherekis determined byy-intercept,λis the average of the exponential law, andxis the transition maximum amplitudes. From Fig.4, one can see that the average of exponential law is 1100 e-/s, and the value is same for the considered proton energy. This suggests thatλis a characteristic value dependent on the radiation effect type.

    Fig.4 DDD-RTS transition maximum amplitude and fitting using exponential function

    Fig.5 depicts the fluctuation trace of 2-level DDD-RTS. There are obvious differences in transition frequency for these DDD-RTS pixels. In order to quantify the transition fre-quency, the average time of DC-RTS is calculated as detailed in Table 2. The mean value of average time for the first level is 64 s, and the one for the second level is 131 s. Transition from first level to second level is more frequent than from second level to first level, which indicates that there is a higher potential barrier when metastable defect jump from the second level to first level. Moreover, transition frequency for DDD-RTS is approximately 10-2s-1at 24 ℃. Such a frequent transition suggests that more concern should be taken in DDD-RTS when calibrating the dark current in orbit.

    Fig.5 Examples of typical 2-level DDD-RTS pixels

    Table 2 Average time at distinct discrete levels for DDD-RTS pixel

    3.2 TID-RTS characteristic

    It is well known that the sensitive region of DD effect is the SCR and thus fabrication process dependence of DDD-RTS is weak. As for TID-RTS, sensitive region is the depleted-Si/SiO2. There are several sources of depleted-Si/SiO2in a 4T PPD pixel, such as STI, pre-metal dielectric (PMD) and TG oxide. Unlike STI and PMD dependent on the fabrication process and pixel design, the influence of TG oxide on TID response depends on the operation mode of the CIS. For this, the VLOTG should be carefully chosen. When TG channel is in the accumulation regime, the electrons of the saturated pixel (such as hot pixel) can not be collected by the float node due to the existence of high potential barrier. These electrons are collected by the adjacent pixel through the epitaxial layer with a relatively low doping concentration, which causes the dark current blooming effects and seriously affects the image quality. When TG channel is in the depletion regime, dark electrons due to the interface states of TG oxide are collected effectively by SCR and thus total dark current significantly increases, which leads to the increase of dark current shot noise and the drop of sensitivity.

    The influence of VLOTG on TID-RTS is shown in Fig.6. Compared to the DDD-RTS, TID-RTS is caused by the metastable interface states. VLOTG of -0.2 V and 0.2 V corresponds to accumulation and depletion regime of the TG channel, respectively. When TG channel is in the depletion regime, the number of TID-RTS significantly increases since more metastable interface states of TG oxide become active. It can be seen fro Fig.6a that 2-level DC-RTS accounts for 90% of total TID-RTS and the highest level is 5. This suggests that γ ray produces a large number of bistable interface states, and the structure of metastable interface states is simpler than the metastable bulk defects. From >Fig.6b, one can see that the transition maximum amplitude of TID-RTS has same slope under distinct VLOTG, and the average of the exponential law is 110 e-/s, which is much smaller than that of DDD-RTS. Such a small transition amplitude brings a challenge to the TID-RTS test, that is, RTS software is able to accurately identify slight transition without the misjudgment of TID-RTS.

    Fig.6 TID-RTS pixel level (a) and transition maximum amplitude (b) under different VLOTGs

    Fig.7 Examples of typical 2-level TID-RTS pixel

    Fig.7 depicts the fluctuation trace of 2-level TID-RTS. Apart from the RTS#3 and #8, other RTS pixels exhibit low transition frequency during 5 hours observation time. The results of average time of TID-RTS are presented in Table 3. The mean value of average time for the first level is 1519 s, and the one for the second level is 1745 s. The transition frequency of TID-RTS is around 10-3s-1, which is much smaller than that of DDD-RTS. To obtain enough jumps, long-term test is required for the TID-RTS, which brings another challenge, such as data storage and analysis.

    3.3 DC-RTS defect concentration

    As discussed above, the defects responsible for RTS behavior are the metastable defects. RTS defect concentration is determined according to the calculation method from Ref.[8].Fig.8 depicts the metastable bulk defect concentration as a function of DDD. It is shown that metastable bulk defect concentration linearly increases with DDD at the considered DDD range. RTS factor (KRTS) represents the occurrence of RTS defects per unit volume and per unit DDD (corresponding to the slope of the curve). In our work,KRTSis 30 Def·cm-3·(MeV/g)-1and this value is independent on particle energy and radiation fluence. This means that RTS defects concentration can be predicted with the determination of the volume of SCR and the absorbed dose.Fig.9 shows metastable interface state concentration at 50 krad(Si) for several VLOTGs. Metastable interface state concentration is the order of 107cm-2at the considered TID range. And RTS defect concentration significantly increases when the TG transistor is in the further depletion regime (corresponding to 0.2 V). This suggests that TG gate oxide is an important source of TID-RTS and the depletion regime should be avoided in the TID-rich applications.

    Table 3 Average time at distinct discrete levels for TID-RTS pixel

    Fig.8 Metastable bulk defect concentration as a function of DDD

    Fig.9 Metastable interface state concentration at 50 krad(Si) for several VLOTGs

    4 Conclusion

    Several 0.18 μm 4T PPD CIS were irradiated by proton and γ rays to investigate the radiation-induced DC-RTS. The difference between TID-RTS and DDD-RTS is analyzed through the comparison of characteristic parameters including DC-RTS pixel count, discrete level, maximum transition amplitude and average time. The experimental results are as follows.

    1) After irradiation, a large number of DC-RTS is 2-level, regardless of radiation damage types. The percentage of multilevel DDD-RTS is larger than that of multilevel TID-RTS. This suggests that proton-induced metastable bulk defects are more complex than metastable interface states produced by γ rays.

    2) Maximum transition amplitude distributions of two kinds of DC-RTS feature same shape and it is composed of Gaussian peak and exponential tail. The average of exponential function is a useful tool to distinguish DDD-RTS from TID-RTS. The average of exponential law for DDD-RTS is 1100 e-/s,while the one for TID-RTS is 110 e-/s. Small transition amplitude brings a challenge to TID-RTS test, such as the ability of RTS software.

    3) Average time reflects the stability of RTS defect at a discrete level. At room temperature, the transition frequency of DDD-RTS is about 10-2s-1, and the one for TID-RTS is around 10-3s-1. This discrepancy in transition frequency shows that DDD-RTS have an important influence on in-orbit dark current calibration compared to TID-RTS. Low transition frequency brings another challenge to TID-RTS test, that is, data storage and analysis due to a long-term test.

    4) At the considered DDD range, metastable bulk defect concentration linearly increases with DDD. AndKRTSis 30 Def·cm-3·(MeV/g)-1in our work. In a 4T PPD pixel, there are several sources of TID-RTS, such as STI, PMD and TG oxide. Among these sources, the contribution of TG gate oxide can be decreased effectively by VLOTG. When the TG channel is in the depletion regime, metastable interface state concentration reaches the order of 108cm-2and this case should be avoided in the TID-rich applications.

    国产精品精品国产色婷婷| av专区在线播放| 中国美女看黄片| 久久精品影院6| 日本精品一区二区三区蜜桃| 久久婷婷人人爽人人干人人爱| 波多野结衣高清无吗| 国产乱人偷精品视频| 国产亚洲av嫩草精品影院| 狠狠狠狠99中文字幕| 欧美一区二区亚洲| 精品国产三级普通话版| 欧美日本亚洲视频在线播放| 伦理电影大哥的女人| 人人妻人人看人人澡| 国产精品久久久久久久久免| 国产亚洲av嫩草精品影院| 69人妻影院| 国产精品一区二区三区四区久久| www日本黄色视频网| 久久国产乱子免费精品| 日韩欧美精品v在线| 国产精品1区2区在线观看.| 国产在线男女| 亚洲av电影不卡..在线观看| 狂野欧美白嫩少妇大欣赏| 日本黄色视频三级网站网址| 久久久a久久爽久久v久久| 高清毛片免费看| 99热这里只有精品一区| 非洲黑人性xxxx精品又粗又长| 91久久精品国产一区二区成人| 一进一出好大好爽视频| 又粗又爽又猛毛片免费看| 欧美最新免费一区二区三区| 赤兔流量卡办理| 麻豆av噜噜一区二区三区| 亚洲欧美清纯卡通| 亚洲av熟女| 国产精品美女特级片免费视频播放器| av中文乱码字幕在线| 国产成人a区在线观看| 极品教师在线视频| 99riav亚洲国产免费| 露出奶头的视频| 一a级毛片在线观看| 成年女人看的毛片在线观看| 91狼人影院| 最近最新中文字幕大全电影3| 最新在线观看一区二区三区| 成人性生交大片免费视频hd| 国产精品久久久久久av不卡| 一夜夜www| 亚洲最大成人av| 色综合亚洲欧美另类图片| 日本五十路高清| 变态另类成人亚洲欧美熟女| 国产伦精品一区二区三区四那| 蜜桃久久精品国产亚洲av| 欧美3d第一页| 1024手机看黄色片| 成人无遮挡网站| 亚洲无线在线观看| 国产亚洲91精品色在线| 日本色播在线视频| 国产精品一及| 免费电影在线观看免费观看| 噜噜噜噜噜久久久久久91| 成年女人永久免费观看视频| 久久精品国产自在天天线| 日韩人妻高清精品专区| 成人高潮视频无遮挡免费网站| 99久久精品一区二区三区| 国产大屁股一区二区在线视频| 日本黄色片子视频| 秋霞在线观看毛片| 日本黄大片高清| 国产在线男女| 99精品在免费线老司机午夜| 99热精品在线国产| 天堂av国产一区二区熟女人妻| 国产在视频线在精品| 亚洲av电影不卡..在线观看| 麻豆av噜噜一区二区三区| 亚洲成a人片在线一区二区| 成人性生交大片免费视频hd| 成人av在线播放网站| 久久国内精品自在自线图片| 亚洲五月天丁香| 嫩草影院新地址| 激情 狠狠 欧美| 国产成人福利小说| 俄罗斯特黄特色一大片| 色综合站精品国产| 免费电影在线观看免费观看| 精品久久久久久久久亚洲| 久久热精品热| 国产精品久久久久久久电影| 免费看光身美女| 国产午夜精品论理片| 日韩一区二区视频免费看| 国内精品久久久久精免费| 欧美高清性xxxxhd video| 欧美3d第一页| 亚洲人与动物交配视频| 好男人在线观看高清免费视频| av卡一久久| 我要看日韩黄色一级片| 亚洲熟妇中文字幕五十中出| 国产精品久久久久久精品电影| 亚洲成人中文字幕在线播放| 亚洲av中文av极速乱| 永久网站在线| 亚洲专区国产一区二区| 欧美+日韩+精品| a级一级毛片免费在线观看| 人妻丰满熟妇av一区二区三区| 午夜久久久久精精品| 亚洲不卡免费看| 亚洲欧美精品综合久久99| 蜜桃亚洲精品一区二区三区| 麻豆乱淫一区二区| 日韩亚洲欧美综合| 中国美女看黄片| 18禁在线无遮挡免费观看视频 | 亚洲av免费高清在线观看| 夜夜爽天天搞| 成人午夜高清在线视频| 国产黄色小视频在线观看| 91久久精品国产一区二区三区| 国产男人的电影天堂91| 变态另类丝袜制服| 亚洲av电影不卡..在线观看| 在线免费观看不下载黄p国产| 午夜爱爱视频在线播放| 能在线免费观看的黄片| 最近的中文字幕免费完整| 国产真实乱freesex| 精品一区二区三区视频在线| 少妇熟女欧美另类| 亚洲不卡免费看| 美女被艹到高潮喷水动态| 青春草视频在线免费观看| 可以在线观看毛片的网站| 国产精品人妻久久久久久| 国产精品亚洲一级av第二区| 天天躁夜夜躁狠狠久久av| 国产精品久久久久久久电影| www日本黄色视频网| 听说在线观看完整版免费高清| 国产欧美日韩一区二区精品| 一卡2卡三卡四卡精品乱码亚洲| 国产色婷婷99| 国产探花在线观看一区二区| 国产黄片美女视频| 又粗又爽又猛毛片免费看| 国产三级中文精品| 长腿黑丝高跟| 免费观看人在逋| 能在线免费观看的黄片| 日韩大尺度精品在线看网址| .国产精品久久| 久久这里只有精品中国| 欧美zozozo另类| 蜜桃久久精品国产亚洲av| 在线天堂最新版资源| 久久婷婷人人爽人人干人人爱| 夜夜爽天天搞| 天堂影院成人在线观看| 午夜福利在线观看免费完整高清在 | 午夜激情福利司机影院| 国产探花在线观看一区二区| 人妻夜夜爽99麻豆av| 亚洲av.av天堂| 一级毛片我不卡| 尤物成人国产欧美一区二区三区| 成人高潮视频无遮挡免费网站| 99国产极品粉嫩在线观看| 久久精品国产自在天天线| 日韩欧美三级三区| or卡值多少钱| 51国产日韩欧美| 欧美日韩国产亚洲二区| 男人舔奶头视频| 免费不卡的大黄色大毛片视频在线观看 | 97碰自拍视频| 国产私拍福利视频在线观看| 性插视频无遮挡在线免费观看| 在线看三级毛片| 观看免费一级毛片| 久久鲁丝午夜福利片| 神马国产精品三级电影在线观看| 波多野结衣高清作品| 最近中文字幕高清免费大全6| 久久精品国产亚洲网站| 亚洲人成网站高清观看| 亚洲专区国产一区二区| 看非洲黑人一级黄片| 中国国产av一级| 国产亚洲精品久久久com| 精品日产1卡2卡| 尾随美女入室| 国产女主播在线喷水免费视频网站 | 午夜福利高清视频| 黄色配什么色好看| 国产精品一区二区三区四区久久| 一卡2卡三卡四卡精品乱码亚洲| 两个人的视频大全免费| 亚洲精品久久国产高清桃花| 伦精品一区二区三区| 免费av毛片视频| 可以在线观看的亚洲视频| 久久鲁丝午夜福利片| 国产亚洲91精品色在线| 国产乱人偷精品视频| 大型黄色视频在线免费观看| 精品久久久久久久末码| 在线播放无遮挡| 99热网站在线观看| 欧美成人免费av一区二区三区| 国内精品美女久久久久久| 欧美日韩乱码在线| 波多野结衣巨乳人妻| 国产伦精品一区二区三区视频9| 美女 人体艺术 gogo| 在线a可以看的网站| 欧美性猛交黑人性爽| 久久久久精品国产欧美久久久| 国产av在哪里看| 国产精华一区二区三区| 看免费成人av毛片| 我要看日韩黄色一级片| 精品久久久噜噜| 亚洲成人中文字幕在线播放| 99热全是精品| 国产爱豆传媒在线观看| 国内精品宾馆在线| 在线观看免费视频日本深夜| 搡老妇女老女人老熟妇| 成人欧美大片| 国产精品人妻久久久影院| 蜜桃亚洲精品一区二区三区| 久久久久久九九精品二区国产| 69av精品久久久久久| 麻豆一二三区av精品| 久久99热这里只有精品18| 欧美xxxx性猛交bbbb| 色综合色国产| 欧美一区二区国产精品久久精品| 亚洲国产精品国产精品| 2021天堂中文幕一二区在线观| videossex国产| 中国美白少妇内射xxxbb| 国产精品av视频在线免费观看| 麻豆国产av国片精品| 不卡视频在线观看欧美| 变态另类丝袜制服| 国产在视频线在精品| 婷婷精品国产亚洲av在线| 男女视频在线观看网站免费| 免费一级毛片在线播放高清视频| 国产伦精品一区二区三区视频9| 国产真实乱freesex| av在线老鸭窝| 久久精品人妻少妇| 69av精品久久久久久| 老司机福利观看| 在线天堂最新版资源| 俄罗斯特黄特色一大片| 美女被艹到高潮喷水动态| 日本 av在线| 狂野欧美白嫩少妇大欣赏| 国产精品1区2区在线观看.| 综合色av麻豆| 国产精品一区二区免费欧美| 国产高清激情床上av| 99热6这里只有精品| 精品不卡国产一区二区三区| 成人午夜高清在线视频| 中国美白少妇内射xxxbb| 精品乱码久久久久久99久播| 色av中文字幕| 神马国产精品三级电影在线观看| 别揉我奶头~嗯~啊~动态视频| 99久久九九国产精品国产免费| 男女边吃奶边做爰视频| 乱码一卡2卡4卡精品| 亚洲精品日韩av片在线观看| 在线免费十八禁| 亚洲经典国产精华液单| 我要搜黄色片| 真人做人爱边吃奶动态| 精品乱码久久久久久99久播| 亚洲人成网站在线播| 22中文网久久字幕| 亚洲精品久久国产高清桃花| 国产毛片a区久久久久| 国国产精品蜜臀av免费| 久久久久精品国产欧美久久久| 久久国产乱子免费精品| 可以在线观看的亚洲视频| 在线a可以看的网站| 成人漫画全彩无遮挡| 成人美女网站在线观看视频| 国产蜜桃级精品一区二区三区| 成年免费大片在线观看| 日本免费一区二区三区高清不卡| 亚洲婷婷狠狠爱综合网| 久久鲁丝午夜福利片| 成人特级av手机在线观看| 国产精品永久免费网站| 免费大片18禁| 亚洲丝袜综合中文字幕| 国产精品一区二区三区四区久久| 精品久久久噜噜| 美女黄网站色视频| 久久精品国产鲁丝片午夜精品| 成人三级黄色视频| 国产69精品久久久久777片| 国产三级中文精品| 非洲黑人性xxxx精品又粗又长| 12—13女人毛片做爰片一| 18禁裸乳无遮挡免费网站照片| 国产白丝娇喘喷水9色精品| 我要搜黄色片| 国产成人freesex在线 | 国产精品1区2区在线观看.| 69人妻影院| 18+在线观看网站| 国产一区二区亚洲精品在线观看| 波多野结衣巨乳人妻| 国产成人福利小说| 亚洲三级黄色毛片| 色哟哟·www| 亚洲欧美日韩高清在线视频| 天堂动漫精品| 99精品在免费线老司机午夜| 亚洲熟妇熟女久久| 青春草视频在线免费观看| 亚州av有码| av黄色大香蕉| 国产精品免费一区二区三区在线| 日韩欧美国产在线观看| 国产精品国产三级国产av玫瑰| aaaaa片日本免费| 国产高清不卡午夜福利| 午夜老司机福利剧场| 亚洲色图av天堂| 亚洲国产精品成人综合色| 国产成人freesex在线 | av.在线天堂| 最后的刺客免费高清国语| 欧美最新免费一区二区三区| 日韩高清综合在线| 一级黄色大片毛片| 亚洲精品国产av成人精品 | 亚洲人与动物交配视频| 99国产极品粉嫩在线观看| 99热6这里只有精品| 嫩草影视91久久| 国产黄色视频一区二区在线观看 | 你懂的网址亚洲精品在线观看 | 成人午夜高清在线视频| h日本视频在线播放| 99久久无色码亚洲精品果冻| 精品不卡国产一区二区三区| 给我免费播放毛片高清在线观看| 两个人的视频大全免费| 国产麻豆成人av免费视频| 精品人妻偷拍中文字幕| 午夜激情欧美在线| 自拍偷自拍亚洲精品老妇| 国产精品一二三区在线看| 亚洲真实伦在线观看| a级毛色黄片| 亚洲乱码一区二区免费版| 最新在线观看一区二区三区| 97人妻精品一区二区三区麻豆| 亚洲一区高清亚洲精品| 色噜噜av男人的天堂激情| 精品午夜福利视频在线观看一区| 久久精品国产自在天天线| 午夜精品国产一区二区电影 | 少妇的逼好多水| 欧美潮喷喷水| 亚洲最大成人av| 久久久久免费精品人妻一区二区| 日日干狠狠操夜夜爽| 国产毛片a区久久久久| 一个人观看的视频www高清免费观看| 少妇高潮的动态图| 天天躁日日操中文字幕| 成年女人看的毛片在线观看| 国产精品一区www在线观看| 久久精品人妻少妇| 成人鲁丝片一二三区免费| 亚洲成人精品中文字幕电影| 成年av动漫网址| 久久久成人免费电影| 又爽又黄a免费视频| 日韩欧美三级三区| 免费一级毛片在线播放高清视频| 欧美性感艳星| 婷婷亚洲欧美| 春色校园在线视频观看| 老熟妇仑乱视频hdxx| 51国产日韩欧美| 免费看a级黄色片| 成年女人毛片免费观看观看9| 国产不卡一卡二| 久久久久久久久久久丰满| 99热网站在线观看| 啦啦啦韩国在线观看视频| 久久久久久国产a免费观看| 欧美高清成人免费视频www| 一级毛片久久久久久久久女| 黄色配什么色好看| 一本久久中文字幕| 在线观看av片永久免费下载| 久久久国产成人精品二区| 色噜噜av男人的天堂激情| 国产精品永久免费网站| 免费高清视频大片| 18+在线观看网站| 综合色丁香网| 免费av不卡在线播放| 久久国内精品自在自线图片| 国产爱豆传媒在线观看| 久久久国产成人精品二区| 色噜噜av男人的天堂激情| 99久久成人亚洲精品观看| 国产精品,欧美在线| 国产色婷婷99| 18禁在线播放成人免费| 婷婷亚洲欧美| 禁无遮挡网站| 日韩精品青青久久久久久| 免费看av在线观看网站| 热99在线观看视频| 亚洲在线观看片| 成人特级av手机在线观看| 特级一级黄色大片| 久久久久国内视频| 亚洲成人久久性| 99热6这里只有精品| 97人妻精品一区二区三区麻豆| 欧美国产日韩亚洲一区| 日日撸夜夜添| 赤兔流量卡办理| 少妇裸体淫交视频免费看高清| 少妇高潮的动态图| 午夜精品在线福利| 人人妻人人澡欧美一区二区| 欧美高清性xxxxhd video| 久久久久久久久久黄片| 成人精品一区二区免费| av视频在线观看入口| 成人欧美大片| 国产高清视频在线观看网站| 在线播放无遮挡| 狠狠狠狠99中文字幕| 婷婷精品国产亚洲av| 免费观看的影片在线观看| 国产乱人视频| 久久草成人影院| 丰满的人妻完整版| 精品久久久噜噜| 我要看日韩黄色一级片| 一个人看的www免费观看视频| 午夜免费激情av| 久久热精品热| 人妻久久中文字幕网| 亚洲一级一片aⅴ在线观看| 日韩一区二区视频免费看| 日韩欧美免费精品| 国产老妇女一区| 人妻少妇偷人精品九色| 欧美日韩在线观看h| 国产乱人偷精品视频| 有码 亚洲区| 国产精品99久久久久久久久| 久久久久九九精品影院| 日韩一本色道免费dvd| 国产v大片淫在线免费观看| 日日撸夜夜添| 国产亚洲精品综合一区在线观看| 色播亚洲综合网| 精品一区二区三区人妻视频| 国产亚洲欧美98| 精品一区二区免费观看| 欧美潮喷喷水| 99国产精品一区二区蜜桃av| 日本黄大片高清| 欧美丝袜亚洲另类| 久久国产乱子免费精品| 国产高清三级在线| 舔av片在线| 国产精品一区二区三区四区免费观看 | 国产亚洲精品av在线| 六月丁香七月| 91午夜精品亚洲一区二区三区| 晚上一个人看的免费电影| 国产精品免费一区二区三区在线| 国产亚洲精品av在线| 亚洲五月天丁香| 天天躁夜夜躁狠狠久久av| 成人亚洲精品av一区二区| 亚洲国产欧洲综合997久久,| 内射极品少妇av片p| 一本久久中文字幕| 2021天堂中文幕一二区在线观| 国产av一区在线观看免费| 亚洲精品粉嫩美女一区| 少妇高潮的动态图| 久99久视频精品免费| 欧美bdsm另类| 日韩一区二区视频免费看| 99国产精品一区二区蜜桃av| 老熟妇仑乱视频hdxx| 午夜福利成人在线免费观看| 国产亚洲91精品色在线| 人妻制服诱惑在线中文字幕| 午夜精品在线福利| 亚洲成人中文字幕在线播放| 成人综合一区亚洲| 久久6这里有精品| 国产女主播在线喷水免费视频网站 | 一进一出抽搐gif免费好疼| 成人二区视频| 亚洲精品色激情综合| 尾随美女入室| 免费观看的影片在线观看| 色在线成人网| 国产又黄又爽又无遮挡在线| 我要看日韩黄色一级片| 你懂的网址亚洲精品在线观看 | 亚洲人与动物交配视频| 久久精品国产亚洲av香蕉五月| 国产在线男女| 中国美女看黄片| av中文乱码字幕在线| 国产大屁股一区二区在线视频| 18禁在线播放成人免费| 国产午夜福利久久久久久| 免费看日本二区| 久久精品影院6| 婷婷亚洲欧美| 欧美xxxx性猛交bbbb| 日韩制服骚丝袜av| 国产亚洲精品av在线| 男人的好看免费观看在线视频| 最好的美女福利视频网| 久久久久久久亚洲中文字幕| 亚洲av第一区精品v没综合| 国产成人精品久久久久久| 女的被弄到高潮叫床怎么办| 国产国拍精品亚洲av在线观看| 亚洲最大成人中文| 亚洲国产精品成人久久小说 | 欧美xxxx黑人xx丫x性爽| 久久欧美精品欧美久久欧美| av黄色大香蕉| 少妇裸体淫交视频免费看高清| 不卡一级毛片| 精品午夜福利视频在线观看一区| 女生性感内裤真人,穿戴方法视频| 看十八女毛片水多多多| 一级黄片播放器| 久久中文看片网| 欧美+日韩+精品| 麻豆成人午夜福利视频| 国产精品av视频在线免费观看| 日韩在线高清观看一区二区三区| 春色校园在线视频观看| 五月伊人婷婷丁香| 午夜视频国产福利| 一本久久中文字幕| av国产免费在线观看| 天堂av国产一区二区熟女人妻| 六月丁香七月| 久久人人精品亚洲av| 免费观看精品视频网站| 男女视频在线观看网站免费| av在线观看视频网站免费| 成人美女网站在线观看视频| 久久韩国三级中文字幕| av中文乱码字幕在线| 午夜精品一区二区三区免费看| 少妇猛男粗大的猛烈进出视频 | 搡老妇女老女人老熟妇| 久久久久久九九精品二区国产| 国产乱人偷精品视频| 一个人免费在线观看电影| 午夜福利高清视频| 中文在线观看免费www的网站| 日本免费a在线| 国产爱豆传媒在线观看| 一本精品99久久精品77| 嫩草影院新地址| 日韩欧美 国产精品| 国产久久久一区二区三区| 免费看美女性在线毛片视频| 91久久精品电影网| 日韩欧美国产在线观看| 亚洲七黄色美女视频| 国产乱人视频| 又黄又爽又刺激的免费视频.| 国产高清有码在线观看视频| 日韩人妻高清精品专区| 国产色爽女视频免费观看| 免费人成视频x8x8入口观看| 国产精品久久久久久亚洲av鲁大| 久久久精品大字幕| 嫩草影院入口| 村上凉子中文字幕在线|