• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    10 MeV Proton Radiation Effect on 8-Transistor CMOS Star Sensor Performance

    2021-12-15 14:35:30FENGJieLIYudongFUJingWENLinGUOQi
    原子能科學(xué)技術(shù) 2021年12期

    FENG Jie, LI Yudong,*, FU Jing,3, WEN Lin, GUO Qi

    (1.Xinjiang Technical Institute of Physics and Chemistry, Urumqi 830011, China; 2.Xinjiang Key Laboratory of Electronic Information Material and Device, Urumqi 830011, China; 3.University of Chinese Academy of Sciences, Beijing 100049, China)

    Abstract: The effects of total ionizing dose (TID) and displacement damage from proton irradiation on an 8-transistor global shutter exposure CMOS image sensor (CIS) within a star sensor were presented to analyze the sources of star sensor performance degradation and the decrease of attitude measurement accuracy. The dark current, dark signal non-uniformity, and photon response non-uniformity versus the displacement damage dose (DDD) were investigated. The star diagonal distance accuracy, and star point centroid positioning accuracy of the star sensor versus the DDD were also analyzed. The influence of space radiation on star sensor performance parameter was analyzed innovatively from a system level point of view. This work lays the foundation for the research of star sensor attitude error measurement and correction technology, and also provides some theoretical basis for the design of high-precision star sensor.

    Key words:star sensor; CIS; proton irradiation; performance degradation

    1 Introduction

    Star sensors, important equipment for the attitude determination of spacecraft such as satellites and spaceships, are designed to detect the stars in the sky, create star-parallel-light through the optical components, and pool into a star point. According to the exposure diagram of the image sensor, the data process unit of the star tracker can then determine the pre-process of the image, star point centroid, star identification, and attitude calculation[1-4]. Star sensors generally consist of an optical system, an imaging system, a data processing system, and a data exchange system. The imaging system is an important part of the star sensor, and its performance determines the star sensor detection capability. The imaging system of the star sensor is primarily composed of a charge coupled device (CCD) or complementary metal oxide semiconductor (CMOS) image sensor, which captures the star image. Owing to low power consumption, high levels of integration, and low cost, CMOS image sensors have reached, and even exceeded, the performance level of CCDs[5]. Moreover, CMOS image sensors meet the requirements of space equipment due to their miniaturization and because they are lightweight and have low power consumption. Currently, most star sensors have adopted the imaging system based on 8-transistor (8T) global shutter exposure CMOS image sensors (CIS)[6-7]. High-energy charged particles in a space radiation environment can produce cumulative radiation effects (total ionization dose and displacement damage) and single particle effects on the CIS, resulting in the degradation of performance parameters such as dark current, dark signal non-uniformity noise, light response non-uniformity noise, and even functional failure. Many studies have been dedicated to radiation effects on 4T-CMOS image sensors[8-11], but fewer studies have focused on the radiation effects on an 8T CIS. Le Roch et al. identified the displacement damage defects induced by proton and carbon irradiation in a commercial off-the-shelf (COTS) PPD 8T CIS dedicated to space applications and operating in global shutter mode[7].

    In practical applications, there are numerous examples of star sensor performance degradation, due to radiation damage of the CIS. For example, when a certain type satellite passed through the South Atlantic anomaly (SAA), performance degradation of the 8T CIS image sensor was caused by space radiation. As a result, the star sensor generated invalid data in orbit navigation. Counting the coordinate positions of star points corresponding to invalid data, we find that most of invalid data corresponding to the star positions are concentrated in SAA region. The radiation in the SAA area is mainly composed of protons, and the central area of proton irradiation is concentrated near longitude-40° and latitude-30°. When high energy protons are incident into CIS, both ionization and displacement effects occur in the device.

    At present, there are many studies on ionization and displacement effects of CIS due to space proton irradiation at home and abroad, but the mechanism of CIS proton radiation effect on star sensor performance has not been carried out. The purpose of this work is to establish the correspondence between space radiation, CIS proton radiation sensitivity parameters, and star sensor performance parameters, the transfer mechanism of CIS parameter degradation to star sensor parameter degradation is revealed. This work is not only the basis for the reliability growth of current star sensors, but also an inevitable requirement for the development of high-performance star sensors in the future.

    2 Experimental detail

    2.1 Devices

    An 8T global shutter exposure CMV4000-type CIS, produced by CMOSIS of Belgium, was selected for our experiment. The CMV4000 is a high speed CMOS image sensor with 2048 pixel×2048 pixel (one optical inch) developed for machine vision applications. The image array consists of 5.5 μm× 5.5 μm global shutter pixels, which allows exposure during read out while performing correlated double sampling (CDS) operation. The main modules of the CMV4000 are the internal timing generator, serial peripheral interface, temperature sensor, pixel array, analog front-end, and low-voltage differential signal transmission channel.

    Fig.1 shows a schematic structure of the 8T CIS pixel unit.

    Fig.1 Schematic of 8T CIS pixel unit

    Compared to a 4T basic pixel unit, the 8T pixel unit adds transistors, such as sampling tubes (S1 and S2) and a pixel internal pole follower (SF2). Global exposure is realized by storing voltage signals in capacitors C1 and C2.

    2.2 Irradiation conditions

    Irradiations were performed with proton sources at Institute of Heavy Ion Physics, Peking University. The deviation of dosimetry in all sources is within ±5%. All devices were covered before irradiation. All pins of the devices were grounded during irradiation. The irradiation parameters are listed in Table 1.

    Table 1 Irradiation parameters

    3 CIS proton radiation result and discussion

    3.1 Dark current

    Dark current represents the signal response when a photo-detector is not exposed to light, i.e., the signal measured in the absence of incident photons. It was found that the dark current increased significantly with the DDD as shown in Fig.2. The incident protons interact with the device through coulombic and nuclear interactions, which lead to total ionizing and displacement damages. The ionizing damage occurs in the SiO2and generates positive charges as well as interface states at the Si/SiO2interfaces. However, displacement damage is caused by protons which collide with the silicon atoms within the crystal lattice of the detector array and create vacancy-interstitial pairs. Most of these will recombine after the collision but some will migrate through the lattice and form stable bulk traps with energy levels within the band-gap[12].

    Fig.2 PPD CIS dark current versus DDD

    3.2 Dark signal non-uniformity

    The CIS readout images include a series of pixel output and vary from pixel to pixel. The inhomogeneities are no-noise, which makes the output signal vary with time. The inhomogeneities only distribute randomly; therefore, it is better to describe this effect as non-uniformity. There are two basic non-uniformities. First, the dark signal can vary from pixel to pixel. This effect is called dark signal non-uniformity (DSNU). Second, the variation of the sensitivity is called photon response non-uniformity (PRNU). Both DSNU and PRNU of a CIS will be degraded by displacement damage.

    In one hand she held a sceptre, and in the other the imperial globe, and on either side of her stood two rows of halberdiers, each smaller than the other, from a seven-foot giant to the tiniest little dwarf25 no higher than my little finger

    The DSNU represents the non-uniformity of dark images, which results from the variance of the output from pixel to pixel in the CIS. DSNU is measured according to the EMVA1288 standard. The proton radiation induces an increase not only in the dark signal but also in its pixel to pixel non-uniformity. The change of DSNU with DDD is shown in Fig.3. Proton irradiation increases the pixel-to-pixel non-uniformity. The degradation of DSNU is considered to be due to dark signal fluctuations within the pixels of sensors induced by the various generation states[13-14], and related to the nonionizing energy loss of a particle in elastic and inelastic collisions[15].

    Fig.3 Change of DSNU versus DDD

    3.3 Photon response non-uniformity

    Fig.4 Change of PRNU versus DDD

    Photon response non-uniformity (PRNU) is defined as a standard deviation relative to the mean value and presents the spatial standard deviation of the photo response non-uniformity in percent from the mean. The relation between the PRNU and DDD was investigated with light, as shown in Fig.4. We observed that as the DDD increases, the non-uniformity of the light response of the output image becomes worse. The electrons and holes will recombine randomly while migrating, and the random recombination probability of each pixel unit is different, resulting in non-uniformity of the device. It is speculated that the defect energy levels generated by the radiation effect act as the carrier generation-recombination centers, which also increases the electron-hole generation-recombination probability, thereby increasing non-uniformity.

    4 Static star simulator result and discussion

    4.1 Test system and test procedure

    The test system, includes a turntable, collimator, microscope, auto-collimation theodolite, image acquisition system, and static star simulator. Five CMV4000 detectors irradiated by 9×109, 1.35×1010, 1.8×1010, 3.6×1010, and 9×1010cm-2were installed on the test circuit board. The focal length of the optical lens is 24 mm, and the optical field of view is 20°.

    First, the calibrations of the turntable and collimator were performed by the auto-collimation theodolite. Then, the relationship between the collimator and installation surface of the turntable was established, and the structure was installed on the turntable. The turntable position was then set to the relative zero position. The camera circuit module, adjusted under the microscope, was installed on the structure. In the experiment, the zero-magnitude and second-magnitude star points were imaged by adjusting the voltage of the static star simulator. The single star point was imaged using the camera, and the optical lens was simultaneously adjusted to optimize star point imaging. The corresponding star point coordinates were used as the main point position (x0,y0). The turntable rotated from approximately -3° to +3°, with a pitch from approximately -3° to +3°, in each direction, according to the cross shape positioning in 1° steps. A total of 13 datasets were collected. The data collection locations are listed in Table 2. Each dataset was stored in 100 frames.

    Table 2 Data collection location

    4.2 Star diagonal distance accuracy

    Star diagonal distance refers to the angle between the directions of two stars in the geocentric equatorial inertial coordinate system. Considering two stars A and B, their right ascension and declination are (αA,δA) and (αB,δB), respectively. The vectors of stars A and B are given by

    (1)

    and

    (2)

    θ=arccosVAVB

    (3)

    A static star simulator and collimator were used to simulate a star on the celestial sphere. The rotation of the turntable was used to simulate the change of the direction of the star's incident, that is, another star was simulated. The rotation angle of the turntable represented the change angle of the incident direction of the star. The theoretical value of the star diagonal distance can be calculated using the position of the turntable twice. The calculation method is given by

    θ=arccosV1V2

    (4)

    whereV1andV2are the position vectors of the turntable.

    The test value of star diagonal distance is obtained by the following method. The star light generated by simulation is imaged in the detector array of the star sensor. First, the star position coordinates (xi,yi) are extracted. According to Eq. (5), the direction of the star point can be calculated by

    (5)

    where (x0,y0) is the position of the main point calibrated during the experiment, that is, the coordinate position of the star point when the rotation angle and pitch angle of the turntable are equal to 0°. In Eq. (5), (xi,yi) are the coordinates of the star point corre-sponding to the turntable’s rotation and pitch angles (AandE, respectively);fis the focal length of the static star simulator; and

    (6)

    The star diagonal distance can also be calculated by

    θ1=arccosViVj

    (7)

    The differences between the measured value (θ1) and (θ) theoretical value of the star diagonal distance is equal to the star diagonal distance accuracy. The change of star diagonal distance accuracy of the zero-magnitude star and the second-magnitude star with TID are listed in Table 3. As the proton cumulative fluence increases, the measurement accuracy of the star diagonal distance decreases. When irradiated to 9×1010cm-2, the star diagonal distance of the zero-magnitude star increases by 19.7% compared with the 9×109cm-2value. When irradiated to 9×1010cm-2, the star diagonal distance of the second-magnitude star increases by 106% compared with the 9×109cm-2value. Therefore, the radiation has a great influence on the star diagonal distance.

    Table 3 Star diagonal distance accuracy of zero-magnitude star and second-magnitude star versus fluence and DDD

    4.3 Star point centroid positioning accuracy

    The centroid extraction algorithm, with a threshold, was used to calculate the centroid position of the star. The formula for calculating the centroid position of the star with threshold is given by

    (8)

    and

    (9)

    whereI(x,y) is the gray value of the star point at (x,y) andσthis the threshold of star point extraction. Due to the influence of radiation noise and the plug-in detector, the calculated centroid position of the star is different from the theoretical value. This deviation is generally evaluated by the centroid positioning accuracy.

    The change of star point centroid positioning accuracy of zero-magnitude and second magnitude stars with TID are listed in Table 4. As the proton cumulative fluence increases, the star point centroid positioning accuracy decreases. When irradiated to 9×1010cm-2, the star point centroid positioning accuracy of the zero-magnitude star increased by 19.3% compared with the 9×109cm-2case. When irradiated to 9×1010cm-2, the star point centroid positioning accuracy of the second-magnitude star increased by 106% compared with the 9×109cm-2case. Therefore, the radiation has a great influence on the star point centroid positioning accuracy. The increase of DSNU results in the change of the gray distribution of the star point, which leads to the shift of the star point centroid position. The proton radiation introduces interface trap charges at the Si-SiO2interface around the PPD. The distribution area of the interface trap charges in each pixel unit and the carrier generation rate are not the same, showing the growth of DSNU across the entire CMOS image sensor. Ionization damage and displacement damage increases the difference of the dark current generation rate between pixels, which leads to the increase of DSNU. The DSNU is generated by the interface trapped charges. Since the star diagonal distance error is a form of star point centroid positioning error, it is also caused by the increase of DSNU.

    Table 4 Star point centroid positioning accuracy of zero-magnitude star and second-magnitude star versus fluence and DDD

    5 Conclusions

    10 MeV proton radiation effects on an 8T CIS induced by proton radiation were investigated. The parameters of the CIS, such as dark current, DSNU, and PRNU, were measured after irradiation. The internal interface states and trapped positive charges of pixels increase due to irradiation, which lead to the increase of dark current, DSNU, and PRNU.

    As the proton cumulative fluence and DDD increases, the star diagonal distance accuracy and star point centroid positioning accuracy decreased. The increase of DSNU results in the change of gray distribution of the star point, which leads to the shift of the star point centroid position. As star diagonal distance error is a form of star point centroid positioning error, it is also caused by the increase of DSNU.

    The results provided in this study lay a foundation for the research of star sensor attitude error measurement and correction technology. We have also provided a theoretical basis for the design of a high-precision star sensor. In practical applications, due to the invalid data of star sensor in the SAA region, it is necessary to study further the influence of proton radiation on the performance parameters of a star sensor.

    精品无人区乱码1区二区| 桃色一区二区三区在线观看| 69人妻影院| 高清日韩中文字幕在线| 国产精品久久久久久亚洲av鲁大| 国产精品一区二区免费欧美| 1024手机看黄色片| 听说在线观看完整版免费高清| 午夜福利在线在线| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av中文字字幕乱码综合| 亚洲国产精品久久男人天堂| 亚洲欧美日韩高清专用| 69人妻影院| 波多野结衣高清作品| 午夜影院日韩av| .国产精品久久| 看黄色毛片网站| 99久久成人亚洲精品观看| 亚洲成人久久爱视频| 91久久精品国产一区二区成人| 黑人高潮一二区| 美女大奶头视频| 成人av一区二区三区在线看| 亚洲欧美日韩东京热| 国产精品人妻久久久久久| 亚洲专区国产一区二区| 国产高潮美女av| 小说图片视频综合网站| 大型黄色视频在线免费观看| 一区福利在线观看| 色哟哟·www| 亚洲av第一区精品v没综合| 国产亚洲精品久久久com| 免费在线观看成人毛片| 一级黄片播放器| 欧洲精品卡2卡3卡4卡5卡区| 黄色欧美视频在线观看| 中文在线观看免费www的网站| 成年av动漫网址| 精品99又大又爽又粗少妇毛片| 国产视频内射| 俺也久久电影网| 超碰av人人做人人爽久久| 精品午夜福利在线看| 97人妻精品一区二区三区麻豆| 精品一区二区三区视频在线观看免费| 亚洲无线观看免费| 老女人水多毛片| 麻豆精品久久久久久蜜桃| 性色avwww在线观看| 日本免费a在线| 69人妻影院| 免费大片18禁| 亚洲av一区综合| 91麻豆精品激情在线观看国产| 97碰自拍视频| 欧美三级亚洲精品| 三级经典国产精品| 成人永久免费在线观看视频| 啦啦啦观看免费观看视频高清| 欧美高清性xxxxhd video| 精品99又大又爽又粗少妇毛片| 成人美女网站在线观看视频| 可以在线观看毛片的网站| 午夜免费男女啪啪视频观看 | 国产熟女欧美一区二区| 三级男女做爰猛烈吃奶摸视频| 变态另类成人亚洲欧美熟女| 不卡视频在线观看欧美| 不卡视频在线观看欧美| 成人亚洲欧美一区二区av| 国产激情偷乱视频一区二区| 超碰av人人做人人爽久久| 亚洲精品国产成人久久av| 亚洲精品色激情综合| 男人舔女人下体高潮全视频| 搡老岳熟女国产| 蜜臀久久99精品久久宅男| 成人av一区二区三区在线看| 国产高清视频在线播放一区| 熟女电影av网| 国产视频一区二区在线看| 成人永久免费在线观看视频| 淫妇啪啪啪对白视频| 极品教师在线视频| 精品人妻熟女av久视频| 久久九九热精品免费| 噜噜噜噜噜久久久久久91| 变态另类丝袜制服| 日韩欧美三级三区| 国产蜜桃级精品一区二区三区| 深夜a级毛片| 男人舔奶头视频| 国产精品久久久久久亚洲av鲁大| 日本成人三级电影网站| 熟妇人妻久久中文字幕3abv| 午夜精品一区二区三区免费看| 晚上一个人看的免费电影| 午夜激情欧美在线| 毛片女人毛片| 亚洲国产精品成人综合色| 久久久久久大精品| 久久精品国产清高在天天线| 国产精品无大码| 大型黄色视频在线免费观看| 欧美日韩综合久久久久久| 欧美人与善性xxx| 亚洲三级黄色毛片| 在线播放国产精品三级| 啦啦啦啦在线视频资源| 精品人妻熟女av久视频| 美女cb高潮喷水在线观看| а√天堂www在线а√下载| 成年女人永久免费观看视频| 99久久中文字幕三级久久日本| av在线观看视频网站免费| ponron亚洲| 亚洲国产高清在线一区二区三| 国产精品国产高清国产av| 中国美白少妇内射xxxbb| 亚洲在线自拍视频| 亚洲国产精品国产精品| 国产单亲对白刺激| 国产中年淑女户外野战色| 久久午夜亚洲精品久久| 亚洲五月天丁香| 欧美zozozo另类| 少妇裸体淫交视频免费看高清| 男女边吃奶边做爰视频| 亚洲自偷自拍三级| 久久久成人免费电影| 色在线成人网| 此物有八面人人有两片| 两个人的视频大全免费| 国产熟女欧美一区二区| 黄色日韩在线| 亚洲国产精品合色在线| 欧美激情国产日韩精品一区| 欧美高清成人免费视频www| 美女被艹到高潮喷水动态| 成人美女网站在线观看视频| 久久久久久久久久久丰满| 国产伦在线观看视频一区| 又粗又爽又猛毛片免费看| 日韩三级伦理在线观看| 久久精品国产亚洲av香蕉五月| 日韩欧美精品v在线| 99国产极品粉嫩在线观看| 在现免费观看毛片| 欧美在线一区亚洲| 免费观看人在逋| 偷拍熟女少妇极品色| 97在线视频观看| 亚洲av免费在线观看| 国产精品一及| 久久久久久久久大av| 亚洲综合色惰| 一进一出好大好爽视频| 久久精品国产亚洲av香蕉五月| 国内揄拍国产精品人妻在线| 久久精品国产自在天天线| 亚洲自拍偷在线| 99国产极品粉嫩在线观看| 天天躁夜夜躁狠狠久久av| 日本黄大片高清| 亚洲自偷自拍三级| 久久人人爽人人爽人人片va| 亚洲av.av天堂| 一区福利在线观看| 在线观看一区二区三区| 最新中文字幕久久久久| 欧美一区二区亚洲| 嫩草影院新地址| 一夜夜www| videossex国产| 成年免费大片在线观看| 中文字幕久久专区| av福利片在线观看| 99视频精品全部免费 在线| 亚洲精品一卡2卡三卡4卡5卡| 精品少妇黑人巨大在线播放 | 午夜a级毛片| 日韩制服骚丝袜av| 久久亚洲精品不卡| 精品一区二区免费观看| 久久精品国产亚洲av香蕉五月| 欧美日韩精品成人综合77777| 婷婷精品国产亚洲av在线| 久久久午夜欧美精品| 久久热精品热| 午夜福利高清视频| av天堂在线播放| 亚洲真实伦在线观看| 2021天堂中文幕一二区在线观| 少妇人妻一区二区三区视频| 免费看a级黄色片| 国产真实伦视频高清在线观看| 精品人妻视频免费看| 少妇人妻一区二区三区视频| 搡老岳熟女国产| avwww免费| 免费av毛片视频| 丰满人妻一区二区三区视频av| 亚州av有码| 久久精品影院6| 欧美一区二区国产精品久久精品| 丰满乱子伦码专区| 欧美一区二区国产精品久久精品| 狂野欧美激情性xxxx在线观看| 久久久精品欧美日韩精品| 午夜亚洲福利在线播放| 两个人视频免费观看高清| 国产精品久久视频播放| 日本一二三区视频观看| 美女cb高潮喷水在线观看| 精品一区二区三区视频在线| 国产美女午夜福利| 日本黄色片子视频| 国产91av在线免费观看| 中文在线观看免费www的网站| 淫妇啪啪啪对白视频| 免费一级毛片在线播放高清视频| 精品久久久久久久久久免费视频| 精品无人区乱码1区二区| 亚洲最大成人手机在线| 欧美zozozo另类| 成人无遮挡网站| 午夜精品在线福利| 久久精品夜色国产| 中出人妻视频一区二区| 别揉我奶头 嗯啊视频| 国产aⅴ精品一区二区三区波| 国产色婷婷99| 免费av观看视频| 日韩,欧美,国产一区二区三区 | 变态另类丝袜制服| 九九热线精品视视频播放| 最近中文字幕高清免费大全6| av卡一久久| 午夜福利视频1000在线观看| 国产美女午夜福利| 国产精品久久久久久久久免| 欧美高清性xxxxhd video| 亚洲在线自拍视频| 午夜日韩欧美国产| 国产伦一二天堂av在线观看| 亚洲色图av天堂| 全区人妻精品视频| 国产精品久久久久久亚洲av鲁大| www日本黄色视频网| 色综合亚洲欧美另类图片| 国产黄a三级三级三级人| 晚上一个人看的免费电影| 国产91av在线免费观看| 黄色欧美视频在线观看| 久久久久免费精品人妻一区二区| 老熟妇乱子伦视频在线观看| 午夜福利在线观看免费完整高清在 | 亚洲人与动物交配视频| 晚上一个人看的免费电影| 国产在线精品亚洲第一网站| 午夜日韩欧美国产| 免费无遮挡裸体视频| 亚洲第一区二区三区不卡| 两个人的视频大全免费| 色在线成人网| 日韩制服骚丝袜av| 亚洲国产欧美人成| 女人十人毛片免费观看3o分钟| 免费观看的影片在线观看| 99热全是精品| 欧洲精品卡2卡3卡4卡5卡区| 可以在线观看毛片的网站| 亚洲欧美日韩东京热| 国产一级毛片七仙女欲春2| 人人妻,人人澡人人爽秒播| 少妇被粗大猛烈的视频| 免费高清视频大片| 校园人妻丝袜中文字幕| 亚洲精品国产av成人精品 | 亚洲国产高清在线一区二区三| 亚洲激情五月婷婷啪啪| 一区福利在线观看| 久久精品综合一区二区三区| 亚洲欧美日韩卡通动漫| 亚洲欧美日韩高清专用| 久久精品国产99精品国产亚洲性色| 国产 一区 欧美 日韩| 国产伦一二天堂av在线观看| 在线观看免费视频日本深夜| av中文乱码字幕在线| 丰满人妻一区二区三区视频av| 国产一区二区三区在线臀色熟女| 午夜老司机福利剧场| aaaaa片日本免费| 99久久成人亚洲精品观看| 亚洲欧美成人精品一区二区| 亚洲专区国产一区二区| 蜜臀久久99精品久久宅男| 国产精品国产三级国产av玫瑰| 我要看日韩黄色一级片| 一级毛片我不卡| 夜夜夜夜夜久久久久| 精品久久久久久久久久免费视频| 久久精品国产亚洲av涩爱 | 两性午夜刺激爽爽歪歪视频在线观看| 国产毛片a区久久久久| 91久久精品电影网| 草草在线视频免费看| or卡值多少钱| 亚洲va在线va天堂va国产| 99热全是精品| av在线老鸭窝| 色综合色国产| 国产男靠女视频免费网站| 男女下面进入的视频免费午夜| 久久久久久久午夜电影| 日韩高清综合在线| 国产精品久久久久久久久免| 赤兔流量卡办理| 小说图片视频综合网站| 国产 一区精品| 国产一区二区激情短视频| 一区二区三区免费毛片| 亚洲精品456在线播放app| 一级毛片aaaaaa免费看小| 亚洲av二区三区四区| 亚洲成人精品中文字幕电影| 久久精品影院6| 日韩欧美精品免费久久| 精品午夜福利视频在线观看一区| 一级毛片aaaaaa免费看小| 国产精品亚洲一级av第二区| 精华霜和精华液先用哪个| 嫩草影院精品99| 最近在线观看免费完整版| 色尼玛亚洲综合影院| 国产免费男女视频| 午夜福利高清视频| 国产高清视频在线观看网站| 久久午夜福利片| 亚洲av不卡在线观看| 看片在线看免费视频| 永久网站在线| 香蕉av资源在线| 色播亚洲综合网| 老司机午夜福利在线观看视频| 午夜免费男女啪啪视频观看 | 欧美激情在线99| 亚洲最大成人手机在线| 亚洲国产精品国产精品| 欧美激情久久久久久爽电影| 日本五十路高清| 免费不卡的大黄色大毛片视频在线观看 | 久久精品人妻少妇| 欧美精品国产亚洲| 久久久久九九精品影院| 亚洲不卡免费看| 国产毛片a区久久久久| 国产真实伦视频高清在线观看| 久久久久久大精品| 国产精品一区www在线观看| 国产 一区 欧美 日韩| av福利片在线观看| avwww免费| 我要搜黄色片| 精品无人区乱码1区二区| 日日摸夜夜添夜夜添小说| 欧美日韩一区二区视频在线观看视频在线 | 国产午夜福利久久久久久| 国产私拍福利视频在线观看| 国产黄色小视频在线观看| 99热这里只有是精品在线观看| 99精品在免费线老司机午夜| 亚洲电影在线观看av| 丰满的人妻完整版| 欧美日本亚洲视频在线播放| 一级毛片电影观看 | 老师上课跳d突然被开到最大视频| 少妇高潮的动态图| 日本色播在线视频| 欧美日韩乱码在线| 成人二区视频| 色5月婷婷丁香| 日韩精品青青久久久久久| 久久精品综合一区二区三区| 乱系列少妇在线播放| 国产激情偷乱视频一区二区| 我的老师免费观看完整版| 深夜精品福利| 日韩高清综合在线| 国产久久久一区二区三区| 国产探花极品一区二区| 亚洲精品日韩av片在线观看| 美女xxoo啪啪120秒动态图| 韩国av在线不卡| 在线国产一区二区在线| 又粗又爽又猛毛片免费看| 免费高清视频大片| 午夜精品在线福利| 老司机福利观看| 国内精品一区二区在线观看| 91av网一区二区| 最近中文字幕高清免费大全6| 99热这里只有是精品在线观看| 少妇的逼水好多| 国产乱人视频| or卡值多少钱| 夜夜夜夜夜久久久久| 久久久久免费精品人妻一区二区| 蜜臀久久99精品久久宅男| 国产一区二区三区在线臀色熟女| av女优亚洲男人天堂| 美女被艹到高潮喷水动态| 国产精品综合久久久久久久免费| 成年女人永久免费观看视频| 欧美xxxx性猛交bbbb| 中文字幕av在线有码专区| 国产三级中文精品| 日韩强制内射视频| 别揉我奶头~嗯~啊~动态视频| 成人欧美大片| 久久热精品热| a级毛片免费高清观看在线播放| 51国产日韩欧美| 赤兔流量卡办理| 国产男靠女视频免费网站| 校园人妻丝袜中文字幕| 老司机福利观看| 一级黄色大片毛片| 99热网站在线观看| 毛片一级片免费看久久久久| 免费黄网站久久成人精品| 欧美最新免费一区二区三区| 国产高清激情床上av| 男人的好看免费观看在线视频| 乱码一卡2卡4卡精品| 寂寞人妻少妇视频99o| 天堂动漫精品| 美女 人体艺术 gogo| 国产免费男女视频| 久久精品久久久久久噜噜老黄 | 美女被艹到高潮喷水动态| 国产三级中文精品| 久久久精品欧美日韩精品| 成人二区视频| 国产白丝娇喘喷水9色精品| 亚洲av.av天堂| 亚洲成人久久爱视频| 日韩成人伦理影院| 少妇被粗大猛烈的视频| 美女内射精品一级片tv| 国内精品久久久久精免费| 一区二区三区高清视频在线| 国产精品女同一区二区软件| 成熟少妇高潮喷水视频| 变态另类成人亚洲欧美熟女| 国产一区二区在线av高清观看| 国产午夜福利久久久久久| 亚洲av熟女| 国产伦在线观看视频一区| 中国国产av一级| 波多野结衣巨乳人妻| 搡老熟女国产l中国老女人| 精品国内亚洲2022精品成人| 国产乱人视频| 99国产极品粉嫩在线观看| 成年女人永久免费观看视频| 欧美3d第一页| 在线国产一区二区在线| 婷婷精品国产亚洲av在线| 亚洲18禁久久av| 日本一二三区视频观看| 午夜日韩欧美国产| 九九久久精品国产亚洲av麻豆| 两个人视频免费观看高清| 淫妇啪啪啪对白视频| 99国产极品粉嫩在线观看| 欧美xxxx黑人xx丫x性爽| 国产av麻豆久久久久久久| 少妇被粗大猛烈的视频| 乱系列少妇在线播放| 欧美+日韩+精品| 日韩欧美一区二区三区在线观看| 国内精品宾馆在线| 一个人看视频在线观看www免费| 我的女老师完整版在线观看| 成人二区视频| 嫩草影视91久久| 一区二区三区免费毛片| 熟妇人妻久久中文字幕3abv| 夜夜爽天天搞| 两个人的视频大全免费| 美女高潮的动态| 婷婷六月久久综合丁香| 亚洲欧美日韩高清在线视频| 乱人视频在线观看| 99久久九九国产精品国产免费| 亚洲精品久久国产高清桃花| 日韩一本色道免费dvd| 性欧美人与动物交配| 草草在线视频免费看| 久久久精品大字幕| 黄色视频,在线免费观看| 国产精品一区二区三区四区免费观看 | 日日干狠狠操夜夜爽| 中文亚洲av片在线观看爽| 熟女人妻精品中文字幕| 日本色播在线视频| av在线老鸭窝| 99九九线精品视频在线观看视频| 亚洲精品一卡2卡三卡4卡5卡| 国产片特级美女逼逼视频| 色在线成人网| 精品人妻一区二区三区麻豆 | 久久久久精品国产欧美久久久| 床上黄色一级片| 欧美人与善性xxx| 日韩高清综合在线| 亚洲av中文av极速乱| 国产91av在线免费观看| 免费不卡的大黄色大毛片视频在线观看 | 国产伦精品一区二区三区视频9| 国产 一区 欧美 日韩| 欧美性猛交黑人性爽| 欧美激情久久久久久爽电影| 亚洲欧美日韩高清专用| 少妇人妻一区二区三区视频| 国产 一区 欧美 日韩| av在线天堂中文字幕| 日本成人三级电影网站| 亚洲人与动物交配视频| 日本 av在线| 一级毛片aaaaaa免费看小| 一夜夜www| 午夜福利在线观看免费完整高清在 | 亚洲av不卡在线观看| 亚洲av免费在线观看| 91狼人影院| 一本久久中文字幕| 人人妻人人澡欧美一区二区| 中文在线观看免费www的网站| a级毛片a级免费在线| 国产黄片美女视频| 熟女人妻精品中文字幕| 热99在线观看视频| 国产在线男女| 18禁在线无遮挡免费观看视频 | 成人二区视频| 国产亚洲91精品色在线| 国产探花极品一区二区| 99久国产av精品国产电影| 国产一区二区三区av在线 | 国产女主播在线喷水免费视频网站 | 亚洲中文字幕一区二区三区有码在线看| 久久久久性生活片| 香蕉av资源在线| 久久亚洲国产成人精品v| 18禁裸乳无遮挡免费网站照片| 欧美日本亚洲视频在线播放| 国产综合懂色| 18禁在线播放成人免费| 你懂的网址亚洲精品在线观看 | 国产美女午夜福利| 男女做爰动态图高潮gif福利片| 免费一级毛片在线播放高清视频| 日日摸夜夜添夜夜爱| 久久热精品热| 别揉我奶头 嗯啊视频| 淫秽高清视频在线观看| 欧美区成人在线视频| 干丝袜人妻中文字幕| 亚洲自偷自拍三级| 看免费成人av毛片| 久久久国产成人免费| 久久精品久久久久久噜噜老黄 | 国内久久婷婷六月综合欲色啪| 欧美性猛交黑人性爽| 熟女电影av网| 麻豆精品久久久久久蜜桃| 18+在线观看网站| 欧美成人一区二区免费高清观看| 国产av在哪里看| 又黄又爽又刺激的免费视频.| 在线观看美女被高潮喷水网站| 亚洲中文字幕一区二区三区有码在线看| 精品午夜福利视频在线观看一区| 少妇的逼好多水| 国产毛片a区久久久久| 一进一出抽搐动态| av免费在线看不卡| 日韩成人伦理影院| 1024手机看黄色片| 男女下面进入的视频免费午夜| 波多野结衣巨乳人妻| 一本久久中文字幕| 日本与韩国留学比较| 国产成人a区在线观看| 亚洲七黄色美女视频| 亚洲激情五月婷婷啪啪| 中文在线观看免费www的网站| 国产黄色小视频在线观看| 12—13女人毛片做爰片一| 九九爱精品视频在线观看| 深爱激情五月婷婷| 身体一侧抽搐| 欧洲精品卡2卡3卡4卡5卡区| 嫩草影院精品99| 国产午夜福利久久久久久| 99热这里只有精品一区| 综合色av麻豆| 亚洲一区二区三区色噜噜| 蜜桃久久精品国产亚洲av| 亚洲性夜色夜夜综合|