• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Physics-based Circuit-level Analysis of MCU Characteristics in Bulk CMOS SRAM

    2021-12-15 14:35:28WANGTanDINGLiliLUOYinhongZHAOWenZHANGFengqi
    原子能科學(xué)技術(shù) 2021年12期

    WANG Tan, DING Lili, LUO Yinhong, ZHAO Wen, ZHANG Fengqi

    (State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi’an 710024, China)

    Abstract: A circuit-level engineering approach to estimate single-event induced multiple-cell upset (MCU) characteristics in bulk CMOS SRAM was mainly presented in this paper. The proposed multi-nodes charge collection model could evaluate the bit-upset cross sections in the layout-design process considering parasitic-bipolar effects. The impact of different LETs and tilting angles of ion incidence on MCUs were studied and compared to experimental data for the devices manufactured by 65 nm technology.

    Key words:single event effect; multiple-cell upset; circuit-level simulation; bit-upset cross section; tilt incidence

    1 Introduction

    For electronic device working in space radiation environment, energetic particle like heavy ion may collide with semiconductor material and cause damages. This transient charge collection phenomenon, known as single event effect (SEE), is main threat to integrated circuit (IC) reliability for space applications, especially with technology scaling to deep submicron dimensions[1-2]. With the scaling of feature size, multiple nodes can be affected by single heavy ion strike due to charge sharing effect, which causes the multiple-cell upset (MCU) in memory block[3], and it is a major reliability concern in space electronics. To estimate the characteristics of MCU, accurately analytical circuit simulation models are required to convert collected charge into representative current injection process as to the time consuming limitation of TCAD simulation. Various physics-based SEE prediction models have been developed which however mainly focus on the basic charge collection mechanisms of single p-n junction under fixed bias regardless of the circuit response[4-5]. Kauppila et al.[6-7]solved this problem by presenting a compact bias-dependent model in circuit-level which decouples the peripheral circuit response from the independent charge deposition process in sensitive nodes, but the injected current parameter has no actual physical meaning which is not easily implemented for different LETs, strike locations and tilting angles of incident ions.

    In this work we propose a physics-based engineering approach to calculate multi-node junction photocurrent which uses ambipolar diffusion mechanism to calculate the SET waveforms instead of classic double exponential current source. Combined with the bias-dependent model, the circuit-level simulation tool using SPICE is integrated into the layout design process. Layout geometry is parsed to obtain the sensitive nodes distribution for arbitrary strike locations. The parasitic-bipolar effect is well modeled by constructing resistive network and dependent current source between well contacts[8]. With our proposed approach, the designer can obtain the cross section curve and multiplicity distribution map at the same time. The impact of different LETs and tilting angles of ion incidence on MCU are studied and compared to experimental data for the devices manufactured by 65 nm technology.

    2 Circuit model overview

    Based on device physics and the diffusion equation, the excess carrier transport process was derived as:

    (1)

    Dαis the ambipolar diffusivity which can be related to carrier mobility by the Einstein relation[9].

    (2)

    As a fact the carrier mobility is a function of background doping concentration. On low injection condition the corresponding diffusivity is aboutDn=12 cm2/s for electrons andDp=3 cm2/s for holes. When the charge cloud is under high injection conditionDαrefers to the ambipolar diffusivity given by:

    (3)

    At circuit-level, a specific current pulse is added to particular circuit node to describe the charge collection process. In Ref. [4], the single-event model uses the empirical functions derived from TCAD calibration data utilizing distance from the strike and simulated LET. As the traditional double exponential waveform introduced, the pulse start time, rise and fall times, and the total collected charge of the injected current should be parameterized. The empirical function derivation is not easily done considering the impact of LET, strike location and tilting angles at the same time. In this paper we use the three-dimensional spherical diffusion model[10-11]to calculate the temporal profiles of deposited charges in sensitive nodes. The total numbers of carriers arriving at the p-n junction at timetare obtained by multiple integral as shown in Fig.1.

    ns(t)=

    (4)

    Wheredis the distance between the discrete ion track and sensitive surface,τis the carrier lifetime to describe the recombination processes. For the generation of an electron-hole pair in silicon, an average energy of 3.6 eV is required so as LET(l) representing the number of excess carriers per unit length dlalong the track[12]. Considering that the charge collection efficiency below depletion area is submitting to exponential law,dsis the fitting parameter which is 0.15 μm for 65 nm technology[13]. Assuming thatVis the average speed for the diffused charges in the junction space charge area, the collected transient current is rebuilt by:

    Gs(t)=ns(t)qV

    (5)

    This model is technology dependent through two input parameters including the diffusion constant and the carrier velocity at the junction, which are obtained using TCAD simulation.

    Fig.1 Spherical diffusion charge collection model for sensitive nodes under fixed bias

    As introduced before, the charge collection process dynamically interacts with the circuit response. The transient pulse is shaped by the potential collapse of the p-n junction and the surrounding circuitry’s driving ability. The rebuilt SET waveformGs(t) is used as the kernel function in the bias-dependent model as shown in Fig.2. The circuit response effect is reflected by the bias-dependent calculator.Csis the inner capacitance of sensitive node.Gr(t) is the recombination current due to the circuit response. Output currentGSEE(t) is connected with the transistor internal junction nodes (p-type and n-type). The calculation of dependent current sourceGr(t) andGSEE(t) uses the Verilog-AMS behavioral modeling language as a system of equations[14]:

    Gr(t)=f(V(Cs),Cs,RcombParameter)

    GSEE(t)=f(V(Cs),Cs)×Fermi(V(p,n))

    (6)

    The Fermi-style function is used to clamp theGSEEwhen the junction is forward:

    (7)

    TheFparameter determines the junction bias range and is set to 0.01 in this paper.

    Fig.2 Equivalent bias-dependent current calculator inserted into transistor BSIM model[6]

    Fig.3 shows the schematic representation of radiation sub-circuit for single spot strike. The well potential modulation effect of the SE-related currents for the hit nodes is calculated by the current sourceIwellflowing through the resistance network between N well and P well. The transistor body potential change controls the turn-on of parasitic bipolar transistor. The current gain was set 1.5 for PMOS in 65 nm technology. In previous work we have shown the measurement method of well spreading resistance and well contact resistance[15].

    Fig.3 Schematic representation of SE sub-circuit with resistance network for single spot strike

    Rcontrepresents the well contact resistance, andRwellandRbsrepresent the well spreading resistance.

    Fig.4 Single-event characterization flow integrated into custom EDA design flow

    The SEE simulation process is shown as Fig.4. Our tool is integrated into the standard EDA design flow by inserting the radiation sub-circuit into the netlist. Our approach can obtain SEU cross section using SPICE simulations with some TCAD calibrations and layout information analysis. The required data are the calibrated parameters and PDK information. This tool could help designers to estimate quickly the fault tolerance parameters of the designed cell.

    3 Test chip and simulation result

    The test chip M328C is non-radiation hardened 6T cell SRAM. The test block involves 16 cells with one cell area 1.05 μm×0.5 μm as shown in Fig.5. Bit interleaving is used in all SRAM blocks, and the successive bits in the same logical word are physically separated by inserting bits of other 15 logical words. The chip was written with 55H pattern the same with experiment. The sensitive nodes are identified in Fig.4. Vertical and tilting 60° incidences along the well were performed during both simulation and experiment. In our model there are some basic assumptions for single spot strike.

    Fig.5 Layout schematic of 16 cells SRAM block

    1) The layout was meshed into 0.1 μm×0.1 μm boxes. The single spot strike location is in the center of the box. The bit cross section is the sum of flipped box area.

    2) According to Ref. [16], charge sharing between N well and P well is insignificant. When ions strike P well region only the NMOS transistors are affected, and respectively for PMOS.

    The model parameters should be calibrated to 3D TCAD simulation results for different LET values. We built the 3D TCAD structure for 65 nm technology. The drain contact is under fixed bias during simulation. Table 1 shows the technology dependent model parameters which are extracted for cases of shared charge being collected by multiple devices. Ions strike with higher LET will deposit larger number of excess carriers in well which changes the doping level under the junction node instantaneously. As the LET value increases, the diffusion constantDαincreases as well which broadens the pulse width of the calculated waveforms.

    Table 1 65 nm technology model parameter calibrated by 3D TCAD

    Fig.6 shows the comparison of the bit-upset cross section simulation results with the experiments for 6T SRAM block. The LET values of ions in experiment are recalculated considering the multiple metallization. Test data in experiment at normal incidence are fit with Weibull function. SEU saturation cross section is 1.85 μm2at normal incidence. The cross section value is over three times more than one cell size, indicating very serious MCU effects[17]The simulation results for normal and tilt incidence are also shown in this figure with red dot. The effective LET value is 10 MeV·cm2/mg and 30 MeV·cm2/mg for normal strike. The cross section curve and multiplicity distribution map are shown in Fig.6 and Fig.7. It is important to note that we consider only the diffusion mechanism when calculating the collected charges. The drift current induced by the potential collapse in the drain and well junction is short and burst and is neglected in our model. In low LET case, the field driven charge collection also takes contributions to the total error cross section, which explains the lower simulation results. At high LET the carriers concentrations exceed the well and substrate doping levels several tens of picoseconds after the strike. The carrier lifetimeτin well region during the whole collection process should decrease due to the enhanced recombination process. Otherwise, the ambipolar diffusionDαvaries versus time during the whole collection process.Dαis related to the carrier mobility and the degradation of mobility is due to the carrier-carrier scattering. Assuming thatτandDαare constant introduces systematic error and overestimates the amount of charge injected at high LETs.

    Fig.6 Comparison of simulation result with experiment for 6T SRAM block

    a—LET=30 MeV·cm2/mg, normal strike;b—Effective LET=60 MeV·cm2/mg, following the 1/cos lawFig.7 Contribution of SCU and MCU in total cross section (red square indicating cell under test)

    4 Conclusion

    We present a circuit-level modeling tool integrated into the standard EDA flow. Two dominating processes of charge sharing (diffusion and bipolar effect) are considered and well modeled by an engineering approach. Most of the parameters are physics-based. Instead of traditional 1/cos law, we use the three-dimensional spherical diffusion model to rebuild the current waveform for angular strike. The proposed tool is useful for designers to estimate the vulnerability of unit circuit.

    91在线精品国自产拍蜜月| 日韩欧美精品免费久久| 精品一区二区三区视频在线| 国产在视频线在精品| 一个人看视频在线观看www免费| 永久网站在线| 天堂√8在线中文| 亚洲精品影视一区二区三区av| 亚洲一区高清亚洲精品| 精品少妇黑人巨大在线播放 | 国产亚洲5aaaaa淫片| 亚洲精品色激情综合| 午夜福利在线观看吧| 午夜福利成人在线免费观看| 黄色配什么色好看| 男女做爰动态图高潮gif福利片| 在线观看美女被高潮喷水网站| 美女 人体艺术 gogo| 青春草视频在线免费观看| 精品熟女少妇av免费看| 国内揄拍国产精品人妻在线| 欧美xxxx黑人xx丫x性爽| 99久国产av精品| 看片在线看免费视频| 国产高潮美女av| av又黄又爽大尺度在线免费看 | 国产黄色视频一区二区在线观看 | 国产高潮美女av| 国产高清视频在线观看网站| 人妻少妇偷人精品九色| 日韩在线高清观看一区二区三区| 欧美又色又爽又黄视频| 免费观看人在逋| 亚洲成a人片在线一区二区| 少妇的逼水好多| 中文亚洲av片在线观看爽| 精品一区二区免费观看| 亚洲av免费高清在线观看| 日韩欧美国产在线观看| 精品一区二区三区人妻视频| 久久精品综合一区二区三区| 少妇熟女欧美另类| 国产精品99久久久久久久久| 在线观看一区二区三区| 国产黄片视频在线免费观看| 禁无遮挡网站| 99热6这里只有精品| 国产久久久一区二区三区| 亚洲,欧美,日韩| 村上凉子中文字幕在线| 69av精品久久久久久| 精品日产1卡2卡| 久久久久久久久中文| 91狼人影院| 国产女主播在线喷水免费视频网站 | 日本免费一区二区三区高清不卡| 成年女人看的毛片在线观看| 麻豆久久精品国产亚洲av| 又粗又爽又猛毛片免费看| 91aial.com中文字幕在线观看| 男女下面进入的视频免费午夜| 久久精品综合一区二区三区| 卡戴珊不雅视频在线播放| 九九热线精品视视频播放| 舔av片在线| 午夜亚洲福利在线播放| 高清毛片免费观看视频网站| 99热这里只有是精品在线观看| 九九爱精品视频在线观看| 99精品在免费线老司机午夜| 少妇熟女aⅴ在线视频| 亚洲欧美精品自产自拍| 成人三级黄色视频| 我的女老师完整版在线观看| 国产一区二区三区在线臀色熟女| 久久6这里有精品| 久久久国产成人免费| 国产精品一二三区在线看| 在线播放国产精品三级| 麻豆一二三区av精品| 久久热精品热| 偷拍熟女少妇极品色| 啦啦啦啦在线视频资源| 欧美最新免费一区二区三区| 久久精品影院6| 狂野欧美白嫩少妇大欣赏| kizo精华| 男女下面进入的视频免费午夜| av卡一久久| 亚洲图色成人| 全区人妻精品视频| or卡值多少钱| a级毛色黄片| 一级毛片aaaaaa免费看小| 一区二区三区免费毛片| av在线播放精品| 给我免费播放毛片高清在线观看| 国产精品美女特级片免费视频播放器| 久久草成人影院| 免费观看精品视频网站| 一个人看视频在线观看www免费| 身体一侧抽搐| 欧美bdsm另类| 长腿黑丝高跟| 中出人妻视频一区二区| 成人欧美大片| 变态另类成人亚洲欧美熟女| 麻豆国产97在线/欧美| 久久精品夜色国产| 免费无遮挡裸体视频| 亚洲综合色惰| 狂野欧美白嫩少妇大欣赏| 久久久久免费精品人妻一区二区| 久久精品国产亚洲av香蕉五月| 日本一二三区视频观看| 尾随美女入室| 久久久久久伊人网av| 国产成人影院久久av| 精品国内亚洲2022精品成人| 亚洲国产精品sss在线观看| 欧美激情在线99| 色尼玛亚洲综合影院| 你懂的网址亚洲精品在线观看 | 两个人视频免费观看高清| 欧美成人精品欧美一级黄| 国产精品人妻久久久久久| 日本与韩国留学比较| 亚洲欧美日韩卡通动漫| 黄色欧美视频在线观看| 村上凉子中文字幕在线| 男插女下体视频免费在线播放| 国产精品电影一区二区三区| 成人三级黄色视频| 在现免费观看毛片| 日韩国内少妇激情av| 搡女人真爽免费视频火全软件| 日韩高清综合在线| 亚洲精华国产精华液的使用体验 | 真实男女啪啪啪动态图| 99国产极品粉嫩在线观看| 两个人视频免费观看高清| 国产av一区在线观看免费| 成人毛片60女人毛片免费| 亚洲最大成人av| 中文字幕制服av| 欧美区成人在线视频| 精品久久久久久久久av| 国产91av在线免费观看| 一区二区三区高清视频在线| 最近中文字幕高清免费大全6| 尤物成人国产欧美一区二区三区| 男女啪啪激烈高潮av片| 美女内射精品一级片tv| 久久久欧美国产精品| 日韩中字成人| 禁无遮挡网站| 97超碰精品成人国产| 欧美日韩精品成人综合77777| 亚洲精品影视一区二区三区av| 国内精品久久久久精免费| 亚洲真实伦在线观看| 亚洲国产精品成人综合色| 老女人水多毛片| 日韩人妻高清精品专区| 好男人视频免费观看在线| 成人综合一区亚洲| 日韩精品有码人妻一区| 国产精品99久久99久久久不卡 | 色婷婷久久久亚洲欧美| 久久鲁丝午夜福利片| 女人精品久久久久毛片| 国产无遮挡羞羞视频在线观看| 免费av不卡在线播放| 日本猛色少妇xxxxx猛交久久| 国产无遮挡羞羞视频在线观看| 色94色欧美一区二区| 日韩中文字幕视频在线看片| 插阴视频在线观看视频| 欧美精品一区二区免费开放| 日本vs欧美在线观看视频| 777米奇影视久久| 亚洲色图综合在线观看| av卡一久久| 亚洲av不卡在线观看| 男女无遮挡免费网站观看| 久久这里有精品视频免费| 日韩熟女老妇一区二区性免费视频| 人成视频在线观看免费观看| 制服诱惑二区| av一本久久久久| 人妻少妇偷人精品九色| 日韩电影二区| 人成视频在线观看免费观看| 色婷婷av一区二区三区视频| 啦啦啦视频在线资源免费观看| 丰满饥渴人妻一区二区三| 免费人成在线观看视频色| 中文字幕人妻丝袜制服| 亚洲怡红院男人天堂| 少妇猛男粗大的猛烈进出视频| 91精品国产九色| 肉色欧美久久久久久久蜜桃| 久久99热这里只频精品6学生| 久久久久久久亚洲中文字幕| 又大又黄又爽视频免费| 国产视频内射| 人成视频在线观看免费观看| 99九九在线精品视频| 秋霞伦理黄片| 精品一区二区免费观看| 免费看av在线观看网站| 亚洲激情五月婷婷啪啪| 免费日韩欧美在线观看| 五月开心婷婷网| 少妇的逼好多水| 久久久久久久国产电影| 亚洲激情五月婷婷啪啪| 日韩亚洲欧美综合| 人人妻人人澡人人爽人人夜夜| √禁漫天堂资源中文www| 中文字幕制服av| 美女大奶头黄色视频| 啦啦啦视频在线资源免费观看| 午夜影院在线不卡| 天天躁夜夜躁狠狠久久av| 国产片内射在线| 亚洲高清免费不卡视频| 久久精品夜色国产| 国产成人精品一,二区| 国产精品一区二区在线观看99| av福利片在线| 国产成人av激情在线播放 | 飞空精品影院首页| 免费大片黄手机在线观看| 成人免费观看视频高清| 考比视频在线观看| 男的添女的下面高潮视频| 一边亲一边摸免费视频| 久久久久精品性色| 两个人免费观看高清视频| 成人影院久久| 久久精品夜色国产| 国产毛片在线视频| 观看av在线不卡| 在线观看免费高清a一片| 亚洲av综合色区一区| 精品人妻熟女毛片av久久网站| 久久久久精品久久久久真实原创| 国产成人av激情在线播放 | videos熟女内射| 亚洲av日韩在线播放| 男女高潮啪啪啪动态图| 国产亚洲一区二区精品| 成年人免费黄色播放视频| 最新中文字幕久久久久| 午夜91福利影院| 久久久a久久爽久久v久久| 两个人的视频大全免费| 男女国产视频网站| 欧美亚洲日本最大视频资源| 久久久久久久久久久免费av| 一区二区av电影网| 女性被躁到高潮视频| 少妇被粗大的猛进出69影院 | 国产av码专区亚洲av| 一级毛片 在线播放| 国产精品嫩草影院av在线观看| 精品视频人人做人人爽| 2022亚洲国产成人精品| 免费观看性生交大片5| 国产爽快片一区二区三区| 成年人免费黄色播放视频| 精品久久久久久电影网| 婷婷色综合www| av专区在线播放| 欧美人与性动交α欧美精品济南到 | 少妇人妻精品综合一区二区| 久久久久久久久久成人| 久久精品国产自在天天线| 国模一区二区三区四区视频| 内地一区二区视频在线| 99视频精品全部免费 在线| 亚洲伊人久久精品综合| 老司机亚洲免费影院| 久久婷婷青草| 爱豆传媒免费全集在线观看| 国产亚洲精品第一综合不卡 | 在线观看免费高清a一片| 日韩在线高清观看一区二区三区| 激情五月婷婷亚洲| 午夜免费观看性视频| 十分钟在线观看高清视频www| 蜜桃国产av成人99| 日韩一本色道免费dvd| 国产亚洲精品久久久com| 国产欧美亚洲国产| 啦啦啦中文免费视频观看日本| 国产不卡av网站在线观看| 2018国产大陆天天弄谢| 免费人成在线观看视频色| 色婷婷av一区二区三区视频| 黑人巨大精品欧美一区二区蜜桃 | 亚洲色图综合在线观看| 国产不卡av网站在线观看| 啦啦啦在线观看免费高清www| av黄色大香蕉| 美女国产视频在线观看| 亚洲精品一区蜜桃| 国产精品秋霞免费鲁丝片| 国产日韩欧美视频二区| 久久99一区二区三区| 丰满少妇做爰视频| 伦理电影大哥的女人| 久久综合国产亚洲精品| 97超碰精品成人国产| 色哟哟·www| 国产成人精品一,二区| 亚洲怡红院男人天堂| 国产一级毛片在线| 国产黄频视频在线观看| 亚洲高清免费不卡视频| 99久久精品一区二区三区| 亚洲精品久久久久久婷婷小说| 亚洲,一卡二卡三卡| 国产亚洲精品第一综合不卡 | 日本与韩国留学比较| 亚洲成人手机| 日韩电影二区| 一区在线观看完整版| 免费观看无遮挡的男女| 日日啪夜夜爽| 人妻夜夜爽99麻豆av| 人人澡人人妻人| 亚洲国产精品国产精品| 亚洲激情五月婷婷啪啪| 久久97久久精品| 精品久久久噜噜| 亚洲精品,欧美精品| 能在线免费看毛片的网站| 少妇被粗大的猛进出69影院 | 日韩人妻高清精品专区| 亚洲欧美日韩卡通动漫| 大又大粗又爽又黄少妇毛片口| 免费播放大片免费观看视频在线观看| 精品99又大又爽又粗少妇毛片| 哪个播放器可以免费观看大片| 建设人人有责人人尽责人人享有的| 亚洲精品视频女| 丝袜脚勾引网站| 国产成人精品无人区| av不卡在线播放| 日本免费在线观看一区| 国产老妇伦熟女老妇高清| 国产精品一区二区在线观看99| 日韩强制内射视频| 丝袜在线中文字幕| 国产熟女欧美一区二区| 中文字幕最新亚洲高清| 久久精品国产a三级三级三级| 91久久精品电影网| 一区二区三区四区激情视频| 天天影视国产精品| 国产精品成人在线| 王馨瑶露胸无遮挡在线观看| h视频一区二区三区| 最新中文字幕久久久久| 亚洲国产精品成人久久小说| 国产探花极品一区二区| 久久久久视频综合| 嘟嘟电影网在线观看| 亚洲第一区二区三区不卡| 欧美另类一区| 最近的中文字幕免费完整| 人妻制服诱惑在线中文字幕| 国产精品国产三级国产av玫瑰| 国语对白做爰xxxⅹ性视频网站| 日韩电影二区| 日韩不卡一区二区三区视频在线| 亚洲精品日本国产第一区| 十八禁网站网址无遮挡| 亚洲内射少妇av| 亚洲欧美日韩另类电影网站| 亚洲成色77777| 成人漫画全彩无遮挡| 久久久a久久爽久久v久久| 久久久久久久久久久久大奶| 99久久综合免费| 亚洲人成网站在线观看播放| 十分钟在线观看高清视频www| 另类精品久久| 午夜福利在线观看免费完整高清在| 黑人欧美特级aaaaaa片| 国产日韩欧美在线精品| 欧美日韩精品成人综合77777| 日韩亚洲欧美综合| av有码第一页| 亚洲精品国产色婷婷电影| 精品人妻一区二区三区麻豆| 在线观看免费日韩欧美大片 | 国产精品国产av在线观看| av在线观看视频网站免费| 免费日韩欧美在线观看| 国产成人精品在线电影| 男女高潮啪啪啪动态图| 乱人伦中国视频| 高清黄色对白视频在线免费看| 成人影院久久| 晚上一个人看的免费电影| 大话2 男鬼变身卡| 啦啦啦视频在线资源免费观看| 极品少妇高潮喷水抽搐| 91午夜精品亚洲一区二区三区| 校园人妻丝袜中文字幕| 亚洲av成人精品一区久久| 街头女战士在线观看网站| av电影中文网址| 国产不卡av网站在线观看| 少妇人妻 视频| 97精品久久久久久久久久精品| 久久久久国产网址| 自拍欧美九色日韩亚洲蝌蚪91| 晚上一个人看的免费电影| av.在线天堂| 日日摸夜夜添夜夜爱| 久久这里有精品视频免费| 国产成人免费观看mmmm| 亚洲人与动物交配视频| 亚洲av二区三区四区| 国产国拍精品亚洲av在线观看| 18禁动态无遮挡网站| 久久久久久久久久久久大奶| 少妇猛男粗大的猛烈进出视频| 中文字幕久久专区| 亚洲av中文av极速乱| 国产成人精品福利久久| 日韩制服骚丝袜av| av不卡在线播放| 国产欧美亚洲国产| 国产男女内射视频| 少妇熟女欧美另类| 国产成人精品久久久久久| 18在线观看网站| av免费在线看不卡| 青春草国产在线视频| 亚洲成人av在线免费| 欧美另类一区| 精品亚洲成a人片在线观看| 欧美精品一区二区免费开放| 在现免费观看毛片| 免费看光身美女| 国产成人免费观看mmmm| 狂野欧美激情性bbbbbb| 久久久久国产网址| 久久人人爽av亚洲精品天堂| 考比视频在线观看| 亚洲一级一片aⅴ在线观看| 国产亚洲一区二区精品| 一个人看视频在线观看www免费| 人人妻人人爽人人添夜夜欢视频| av又黄又爽大尺度在线免费看| 久久久久久久国产电影| 国产精品 国内视频| 成人无遮挡网站| 另类亚洲欧美激情| 国产精品国产三级国产av玫瑰| 国产精品蜜桃在线观看| 一级,二级,三级黄色视频| 最近手机中文字幕大全| 五月开心婷婷网| 黄片播放在线免费| 国产色婷婷99| 日本午夜av视频| 国产乱来视频区| 一级,二级,三级黄色视频| 简卡轻食公司| 两个人的视频大全免费| 一本一本综合久久| 国产男女超爽视频在线观看| 校园人妻丝袜中文字幕| 精品人妻在线不人妻| 亚洲综合色网址| 男女无遮挡免费网站观看| 亚洲色图 男人天堂 中文字幕 | 国产在线免费精品| xxx大片免费视频| 三上悠亚av全集在线观看| 久久99精品国语久久久| 国产 精品1| 欧美精品人与动牲交sv欧美| 夜夜骑夜夜射夜夜干| 插逼视频在线观看| 99九九在线精品视频| 亚洲av二区三区四区| 男男h啪啪无遮挡| 亚洲久久久国产精品| 国产精品女同一区二区软件| a级片在线免费高清观看视频| 免费av中文字幕在线| 99久久精品一区二区三区| 国产精品免费大片| 国产淫语在线视频| 九色成人免费人妻av| 亚洲精品久久成人aⅴ小说 | 亚洲欧美一区二区三区国产| 国产精品 国内视频| 九色亚洲精品在线播放| 国产永久视频网站| 亚洲人与动物交配视频| a级毛片在线看网站| 韩国高清视频一区二区三区| 欧美精品一区二区免费开放| 国产无遮挡羞羞视频在线观看| 国产白丝娇喘喷水9色精品| 一区二区日韩欧美中文字幕 | 精品视频人人做人人爽| 日日撸夜夜添| 精品久久久噜噜| 亚洲综合色网址| 国产免费又黄又爽又色| 777米奇影视久久| 欧美成人午夜免费资源| 人人妻人人澡人人看| a级毛色黄片| 亚洲精品,欧美精品| 亚洲精品第二区| 国产精品国产三级专区第一集| 亚洲精品456在线播放app| 视频区图区小说| 老熟女久久久| 丝袜在线中文字幕| 黄片无遮挡物在线观看| 亚洲av综合色区一区| av免费观看日本| 中文字幕免费在线视频6| 男人操女人黄网站| 在线亚洲精品国产二区图片欧美 | 18禁观看日本| 色婷婷av一区二区三区视频| 久久久久久久亚洲中文字幕| 有码 亚洲区| 日韩在线高清观看一区二区三区| 9色porny在线观看| 精品人妻熟女毛片av久久网站| 啦啦啦视频在线资源免费观看| 夫妻性生交免费视频一级片| 一本大道久久a久久精品| 欧美精品一区二区大全| 国产成人aa在线观看| 免费人妻精品一区二区三区视频| 亚洲精品中文字幕在线视频| 久久久久精品久久久久真实原创| 极品少妇高潮喷水抽搐| 国产成人精品婷婷| 午夜免费男女啪啪视频观看| 免费大片18禁| av有码第一页| 能在线免费看毛片的网站| 天堂中文最新版在线下载| 色婷婷久久久亚洲欧美| 18在线观看网站| 国产日韩欧美视频二区| 亚洲怡红院男人天堂| 91精品一卡2卡3卡4卡| 精品久久久精品久久久| 亚洲色图 男人天堂 中文字幕 | 人妻一区二区av| 热99国产精品久久久久久7| 日本色播在线视频| 亚洲丝袜综合中文字幕| 美女内射精品一级片tv| 91国产中文字幕| 国产免费又黄又爽又色| 少妇猛男粗大的猛烈进出视频| 亚洲一区二区三区欧美精品| 日本91视频免费播放| 久久99热这里只频精品6学生| 边亲边吃奶的免费视频| 亚洲av在线观看美女高潮| 一级二级三级毛片免费看| 狠狠婷婷综合久久久久久88av| 亚洲国产欧美日韩在线播放| 国产精品欧美亚洲77777| .国产精品久久| 日本黄色片子视频| 五月玫瑰六月丁香| 大香蕉久久网| 下体分泌物呈黄色| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美成人精品一区二区| 亚洲av免费高清在线观看| 欧美日韩精品成人综合77777| 国产av一区二区精品久久| 99九九在线精品视频| 国产精品一国产av| 午夜免费观看性视频| 日韩欧美精品免费久久| 亚洲天堂av无毛| 一区二区日韩欧美中文字幕 | a级毛色黄片| 久久人人爽人人爽人人片va| 夫妻性生交免费视频一级片| 蜜桃国产av成人99| 欧美少妇被猛烈插入视频| av.在线天堂| 成年av动漫网址| 久久人人爽av亚洲精品天堂| 男的添女的下面高潮视频| 精品亚洲成a人片在线观看| 亚洲色图综合在线观看| 亚洲精品久久久久久婷婷小说| 日本欧美视频一区| 好男人视频免费观看在线| 如日韩欧美国产精品一区二区三区 | 99精国产麻豆久久婷婷| 另类精品久久|