• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Compact Size 5G Hairpin Bandpass Filter with Multilayer Coupled Line

    2021-12-15 07:10:42QazwanAbdullahmerAydoduAdeebSalhNabilFarahMdHairulNizamTalibTahaSadeqMohammedAlMekhalfiandAbduSaif
    Computers Materials&Continua 2021年12期

    Qazwan Abdullah,?mer Aydodu,Adeeb Salh,Nabil Farah,Md Hairul Nizam Talib,Taha Sadeq,Mohammed A.A.Al-Mekhalfi and Abdu Saif

    1Faculty of Electrical and Electronic Engineering,Sel?uk University,Konya,Turkey

    2Faculty of Engineering and Natural Sciences,Konya Technical University,Konya,Turkey

    3Faculty of Engineering Technology,Universiti Tun Hussein Onn Malaysia,Pagoh,Muar,Johor,Malaysia

    4Faculty of Electrical Engineering,Universiti Teknikal Malaysia Melaka,Melaka,Malaysia

    5Faculty of Engineering and Science,Universiti Tunku Abdul Rahman,Sungai Long Campus,Selangor,43000,Malaysia

    6Faculty of Electrical Engineering Department,University of Malaya,Kuala Lumpur,Malaysia

    Abstract:The multilayer structure is a promising technique used to minimize the size of planar microstrip filters.In the flexible design and incorporation of other microwave components,multilayer band-pass filter results in better and enhanced dimensions.This paper introduces a microstrip fifth-generation(5G)low-frequency band of 2.52–2.65 GHz using a parallel-coupled line (PCL)Bandpass filter and multilayer (ML) hairpin Bandpass filter.The targeted four-pole resonator has a center frequency of 2.585 GHz with a bandwidth of 130 MHz.The filters are designed with a 0.1 dB passband ripple with a Chebyshev response.The hairpin-line offers compact filter design structures.Theoretically,they can be obtained by bending half-wavelength resonator resonators with parallel couplings into a“U”shape.The proposed configuration of the parallel-coupled line resonator is used to design the ML band-pass filter.The FR4 substrate with a dielectric constant(?r)of 4.3 and 1.6 mm thickness was used.A comparative analysis between the simulated insertion loss and the reflection coefficient of substrates RO3003 and FR4 was performed to validate the efficiency of the proposed filter design.Simulation of PCL filter is accomplished using computer simulation technology(CST)and an advanced design system(ADS)software.The PCL Bandpass filter was experimentally validated and a total tally between simulation results and measured results were achieved demonstrating a well-measured reflection coefficient.The simulated results obtained by the hairpin ML bandpass filter show that the circuit performs well in terms of Scattering(S)parameters and the filter size is significantly reduced.

    Keywords: Band-pass filter; 5G; hairpin multi-layer; size reduction; parallelcoupled line

    1 Introduction

    There are growing future demands to further boost the performance of microwave technology.Various applications implement microwave communication including satellite broadcasting radar signals, phones, and navigational applications, millimeter-wave applications, and so on [1–3].Microwave communication is the transmission of signals or powers from one point to another through microwaves.It allows the transmission of a vast amount of data among remote communication points at the same frequencies [4].The electromagnetic spectrum’s microwave range is limited and needs to be shared.One of the main components of a microwave communication system is filters which are two-port networks applied to control radio frequency (RF)response systems by allowing passband frequency transmissions and attenuating signals beyond their bandwidth [5].A microstrip filter is then used to choose or enclose radio frequency (RF)or microwave signals within the spectrum limit allocated.Various types of filters can be used in a microwave communication system including low-pass, band-pass, band-stop, and high-pass filters.Among these types of filters, the band-pass filter is preferred in microwave systems due to its small size which makes it convenient for different applications, signal to noise ratio (SNR),and receiver sensitivity is also improved with the aid of the bandpass filtering method and gives stability and reliability [6].There are two types of filters which they are active and passive.In this research, a passive filter serves as an attenuator, thereby supplying an output signal with a lower amplitude compared to the input signal.However, certain amplification steps must be considered when designing the circuitry to provide a distortionless signal at the output.The ongoing advancements in wireless communication systems require effective and high-performance band-pass filters.Parallel-coupled line (PCL) microstrip filters are a type of band-pass filter that is most commonly used in various wireless communication and microwave systems [7,8].PCL microstrip filters have the features of a planar structure, less fabrication complexity, low cost, and relatively wide bandwidth [9].Various parallel-coupled filter structures have been reported in the literature [10,11].However, developing a high-performance PCL band-pass filter with a compact size has been attracting a wide concern of researchers.The S-parameter performance like return loss (S11) and insertion loss (S21) considered a critical issue of PCL band-pass filters [12,13].To realize the significance of compact size, less reflection, and insertion losses of PCL band-pass filter, the digital broadcasting application is considered.

    This research concentrates on developing a band-pass filter with four poles hairpin using the ML configuration to reduce the size of microstrip filters.The arranging of multiple layers of microstrip lines on the same substrates and overlapping these lines can achieve a strong coupling filter [29].The adjacent hairpin resonator lines are placed at different levels to change coupling strength by varying the overlapping gap between two resonators vertically, this is beneficial for reducing the filter length and obtaining asymmetrical response [30].Besides, with a multilayer configuration, any shape of the resonator for each layer can be selected, then these layers are combined to produce the ML filter structure [31].Besides, the hairpin resonator was combined in the ML configuration with half-wavelength coupled line resonators.The resonator design is mounted on two same substrates with the same dielectric constants, placing the hairpin resonators on the bottom layer and the top layer.The hairpin structure was chosen due to its advantages in reducing the size and minimizing the cost of the filter design [29–31].The study also provides a comprehensive discussion of the calculation of filter parameters and PCL design based on different materials.To validate the effectiveness and show the reduced size of the hairpin ML band-pass filter, the designs are carried out using CST software, and the S is conducted with FR4 material.This study will be a part of our fifth-generation (5G) ultra-wideband multiple input multiple outputs (UWB-MIMO) antennas in the dissipative media project.The paper is organized as follows:Section II material and methods, PCL Bandpass Filter Design, Agilent ADS simulation, CST-MW studio simulation and measurement, ML bandpass filter topology, and the physical layout of ML hairpin bandpass filter:Section III, FR4 based design, Rogers RO3003 based design and parametric studies and Section IV summarizes the study and highlights the findings and outcomes of the study.

    2 System Design

    The procedure begins with the filter specification and the type of ripple level expected.A microstrip bandpass filter has been designed with fractional bandwidth (FBW) = 0.05038 at a mid-band frequency of f0= 2.585 (GHz).The design starts with a filter order calculation referring to Eqs.(1)–(5).Four poles (n = 4) are the filter order and Chebyshev low-pass prototype with a 0.01dB passband ripple has been selected.The design begins with the low-pass filter consisting of series and parallel sub-inverter used to convert low-pass to band-pass filter prototype using the shunt branch.The parameters of the low-pass prototype for normalized low-pass cut-off frequency is Ωc= 1, where g0= 1, g1= 0.7129, g2= 1.2004, g3= 1.3213, g4= 0.6476 and g5=1.1007.

    The next step in the filter design is to find the dimensions of coupling microstrip lines that display the desired even and odd mode impedances.The important procedure is to find the physical dimension that can be divided into the coupling section, the admission inverter, z0eis even z0oimpedance, space, width, and length.Fig.1 illustrates the flow of the research where the bold lines reflect the system or configuration chosen to achieve the goals and the dotted lines reflect certain devices or configurations not addressed.

    Figure 1:Summary of research flow

    For ripple 0.01

    where the ripple height,

    where attenuation height,

    Low-frequency transformation to band-pass, where ω0is the center frequency and ωxl is the normalized frequency, where ω1is lower frequency range, ω2is the upper-frequency range and ωxis the attenuation response.

    Then the other servants of the King, who at no time looked favourably33 on Trusty John, cried out: What a sin to kill the beautiful beast that was to bear the King to his palace! But the King spake: Silence! let him alone; he is ever my most trusty John

    Filter order

    For the first coupling section

    For the intermediate coupling section

    For the final coupling section

    where g0,g1..........gnare the elements of a ladder-type low-pass prototype with normalized cut-offΩc = 1, and FBW is the fractional bandwidth of the band-pass filter.J, j + 1 is the characteristic admittances of J-inverters and Y0is the characteristic admittance of the lines [11].Eqs.(6)–(8) are used to calculate the J-inverters.The even and odd line pair impedance was calculated using Eqs.(9) and (10) using the J admittance.

    where z0eis even characteristic impedance and z0ois odd characteristic impedance.is the input and output line characteristic.Tab.1 is the summary of calculations for inverter admittances, even, and odd mode impedances.The line dimension in the microstrip filter is determined from the knowledge of even and odd mode coupling line admittance given in terms of the inverter impedance.

    Table 1:Design parameters

    2.1 PCL Bandpass Filter Design

    A PCL microstrip band-pass filter is also known as an edge-coupled band-pass filter.A typical PCL band-pass filter is made up of a bunch of parallel line resonators along their length with appropriate spacing between them.Hence, this creates a good microwave signal coupling between the neighboring resonators.In this study, a fourth-order band-pass filter, which is based on the Chebyshev filter response was carried out.A Chebyshev filter response was chosen because of its selectivity compared to Butterworth’s response.The general structure of the PCL microstrip band-pass filter has been illustrated in Fig.2 which the parallel-coupled line width (W), length(I), gap (S), and impedance (Y0) has been labeled accordingly.

    Figure 2:The general structure of parallel (edge)-coupled microstrip band-pass filter

    2.1.1 Agilent ADS Simulation

    The calculation of resonator dimensions can be done with the help of the ADS (Advanced Design System) using the special “Line Calc,”.The odd and even mode values in Tab.1 are required to perform the calculation as shown in Figs.3 and 4 for both materials FR4 and RO3003.The calculated dimensions from ADS have been summarized in Tabs.2 and 3.

    Figure 3:Parallel coupled line band-pass filter model (FR4)

    Figure 4:Parallel coupled line band-pass filter model (RO3003)

    Table 2:Parameters of PCL filter using FR4

    Table 3:Parameters of PCL filter using (RO3003)

    2.1.2 CST-MW Studio Simulation and Measurement

    The PCL filter has been designed and simulated with the aid of dimensions of Tabs.2 and 3.The filter dimensions have been optimized to achieve the required response, which meets the design specifications.Figs.5 and 6 display the filter’s physical structure after optimization using R03003 and FR4 respectively.The total filter size is 128.26 mm × 21.57 mm and 73.765 mm × 27.506 mm respectively.Fig.7 demonstrates the rendered PCL filter.The filter’s scattering parameters are measured via a Vector Network Analyser (VNA).

    Figure 5:Parallel-coupled line layout using R03003

    Figure 6:Parallel-coupled line layout using FR4

    Figure 7:The fabricated PCL band-pass filter

    2.2 Multilayer Bandpass Filter Topology

    The physical dimension of the filter starts with the determination of a multilayer stacking-up model that is used to construct the design.Three layers of the Printed Circuit Board (PCB) have been used to develop the design.Core material FR4 and epoxy material consists primarily of layers.The epoxy occupies the gap between core material and ground.Fig.8 depicts the physical structure of the multilayer construction.Copper foil is laid down as PCB layer 3 followed by layer 2 (epoxy).The core material containing the top and bottom resonators is applied as upper layer 1.The circuit can be exposed itself to the air in a practical measurement.However, the part of air has been considered a vacuum in the simulation procedures, since the circuit has been simulated on the assumption that the circuit has been measured at a close boundary.

    Figure 8:Construction of multilayer hairpin band-pass filter

    The filter design is derived simply from the design of the microstrip resonator.The adjacent resonator has been overlapped on a different layer, and strong couplings can be achieved between resonators.Fig.8 shows the multilayer hairpin band-pass filter structure where resonator 1, 4 is placed on top of the core material, while resonators 2 and 3 have been placed on the bottom of the core material.A two-layer structure has been used to implement the resonators.Therefore,adjacent resonator lines are placed on different overlapping variations to the filter requirements obtained.The vacuum on the upper layer of a multilayer construction is considered to prevent or minimize the fringing effect as the signal propagates through the filter due to the boundary condition applied to each side of the filter dimension in CST.The multilayer structure has been combined with a thin epoxy layer, which acts as an adhesive material.

    2.3 The Physical Layout of Multilayer Hairpin Bandpass Filter

    Several optimizations have been performed on the overall filter dimension to obtain the desired response, which meets the design specification.Figs.9–12 show the filter’s physical layout on the upper layer and bottom layer respectively after optimization.The overall filter size 38.66 mm × 31.41 using FR4 and the oversize using RO3003 is 47.13 mm × 37.42 mm.

    Figure 9:Physical layout on the top layer (FR4)

    Figure 10:Physical layout on the inner layer (FR4)

    Figure 11:Physical layout on the top layer (RO3003)

    Figure 12:Physical layout on the inner layer (RO3003)

    3 Results and Discussions

    3.1 FR4 Based Design

    The proposed PCL filter has been designed and simulated using (ADS) software.The Sparameters (S11and S21) simulation result of the PCL filter on frequencies from 2 to 3 GHz is shown in Fig.13 using FR4.It can be observed from Fig.13 that (S21) is less than -1.8 dB for the entire design frequency, while (S11) is more than -30 dB.

    Figure 13:Simulated S-parameter (FR4)

    In addition to this, the filter has been designed and simulated using commercially available(CST) software.It is required to optimize the filter physical dimensions to achieve the optimal required response.Fig.14 demonstrates a low insertion loss of -4 dB and a reflection coefficient of better than -30 dB.The achieved BW of the proposed PCL filter is 210 MHz.The designed PCL filter has been fabricated on the FR4 substrate which has a permittivity of?r= 4.3 and a physical thickness of 1.58 mm.

    Figure 14:Simulated S-parameter

    Fig.15 demonstrates the rendered PCL filter.The filter’s scattering parameters have been measured via a Vector Network Analyser (VNA).The measured S11is compared with the EM simulation results, as depicted in Fig.15a.The measured (S11) is -39.24 dB at the center frequency(Fc) (2.64 GHz) and the measured (S21) is -5.7 dB as shown in Fig.15b.The simulated and measured S-parameter results agree well.However, there is some discrepancy in the measured and simulated results.These could be due to fabrication or experimental tolerances.

    Figure 15:Comparison of measured and simulated S-parameters of the PCL filter (a) S11, (b)S21 using FR4

    Fig.16 shows the simulated response for a multilayer hairpin band-pass filter using the FR4 substrate of return loss (S11) and insertion loss (S21).Tab.4 shows the performance of the filter for all parameters obtained from the simulated response.The ML filter has been designed and simulated with the aid of CST.The filter scattering parameters(S) have been calculated to achieve the target specification as tabled in Tab.4.The simulated bandpass filter with a multilayer hairpin has a small insertion loss of -2.18 dB and a reflection coefficient of greater than -22.4203 dB as shown in Fig.16.More optimization of the dimensions is required to accomplish a better reflection coefficient and the same bandwidth.Other factors that may contribute to simulation errors are due to material loss, tangent loss of substrates and the adhesive epoxy used to join the filter layers.Nonetheless, the S-parameter results obtained are still reasonable concerning the design requirements and the ML filter structure discrepancies.Comparing with the PCL size which is 73.7615 mm × 27.50662 mm, the oversize has been reduced to 38.66 mm × 31.41 mm.

    Figure 16:Simulated response of S-parameters (FR4)

    Table 4:Simulation results compared with filter design specifications

    3.2 Rogers RO3003 Based Design

    The PCL filter has been simulated using ADS and CST.Figs.17 and 18 show the simulated responses.The response in Fig.17 using ADS shows that S11is -24.625 dB and S12is -1.982 dB.The result using CST in Fig.18 shows that the S11has a low value equal to approximately -18.5 dB at the 2.58 GHz center frequency and S21is 1.79 dB.ML filter is simulated using CST and the simulated result in Fig.19 shows a slight difference at the cut-off frequency that causes a reduction in the bandwidth.The response of S11is -18.993 dB and S12is -1.009 dB.

    Figure 17:Simulated S-parameters of PCL filter using ADS (RO3003)

    Figure 18:Simulated S-parameters of PCL filter using CST(RO3003)

    Figure 19:Simulated S-parameters of ML filter using CST(RO3003)

    3.3 Parametric Studies

    Figs.20 and 21 show the PCLfilter and ML Filter comparison of simulated S-parameters between FR4 and RO3003 substrate respectively.Because of the high dielectric constant of FR4,the size using FR4 is smaller than the design using Rogers RO3003.The wavelength is inversely proportional to the value of a dielectric constant.More compact size can be achieved, as the dielectric constant is small.Nonetheless, the overall parameters obtained from the simulation are well in line with the target specification set at the start of the design.The bandwidth using FR4 is larger, compared to RO3003 as shown in Figs.20 and 21.However, some optimization is required to obtain a wider bandwidth as in the design specification.Nevertheless, the 2.58 GHz operating frequency can still be accomplished.Tab.5 shows a comparison of simulation (FR4-RO3003) for PCL filter and Tab.6 shows a comparison of simulation (FR4-RO3003) for ML filter.

    Figure 20:Comparison of simulated S-parameters PCL filter

    Figure 21:Comparison of simulated S-parameters ML filter

    Table 5:Comparison of PCL filter simulation performance

    Table 6:Comparisons of ML filter performance

    4 Conclusion and Future Development

    In this research, using microwave studio software (CST), PCL and ML bandpass filters have been proposed and analyzed.ML configuration has shown significant size reduction and compactness compared to PCL.The ML hairpin filters introduced a compact size because of their advantages compared to the PCL filter.The simulation results showed a good match with the required specifications.The analysis using FR4 which has different properties compared with RO3003 has proven the size of the filter can be smaller using a high dielectric constant substrate.For the filter to work well, high return loss and lower insertion loss are very critical factors to be taken into consideration.In terms of the performance of S11and S21, the filter design using RO3003 is better compared to the filter design using FR4 substrate because of the low loss tangent of the substrate.It is due to the higher tangent loss of FR4, which results in a strong dissipation effect on the filter.In the future, this design can be improved by changing the core material with a smaller dielectric constant or smaller loss tangent.This change in core material can improve the response at the passband and extend the range of the filter.ML filter can be fabricated in the future and introduce transmission zeros at the stopband to improve the frequency selectivity of the filter.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    老鸭窝网址在线观看| 亚洲人成伊人成综合网2020| 成熟少妇高潮喷水视频| 一区二区三区国产精品乱码| 亚洲人成网站在线播放欧美日韩| 两个人免费观看高清视频| 91成年电影在线观看| 免费搜索国产男女视频| 国产精品 欧美亚洲| 久久久久免费精品人妻一区二区| 欧美+亚洲+日韩+国产| 国内揄拍国产精品人妻在线| 免费观看人在逋| 热99re8久久精品国产| 欧美另类亚洲清纯唯美| 好看av亚洲va欧美ⅴa在| 亚洲中文字幕一区二区三区有码在线看 | 日韩精品中文字幕看吧| 国产亚洲精品第一综合不卡| a级毛片a级免费在线| 成人av在线播放网站| www.熟女人妻精品国产| 亚洲人成网站在线播放欧美日韩| 欧美黄色片欧美黄色片| 桃红色精品国产亚洲av| 国产久久久一区二区三区| 成人高潮视频无遮挡免费网站| 亚洲精品一区av在线观看| 日韩三级视频一区二区三区| 久久天躁狠狠躁夜夜2o2o| 在线看三级毛片| 日日夜夜操网爽| 亚洲人成网站在线播放欧美日韩| www.999成人在线观看| 一个人观看的视频www高清免费观看 | av福利片在线| 男男h啪啪无遮挡| 每晚都被弄得嗷嗷叫到高潮| 天堂√8在线中文| 国产精品久久视频播放| 精品久久久久久久久久久久久| 国产精品一区二区精品视频观看| 久久中文看片网| 亚洲黑人精品在线| 99热这里只有精品一区 | 在线观看免费视频日本深夜| 亚洲精品久久成人aⅴ小说| 岛国在线免费视频观看| 亚洲第一电影网av| 精品国产超薄肉色丝袜足j| 91麻豆精品激情在线观看国产| 麻豆av在线久日| 成人18禁在线播放| 久热爱精品视频在线9| 欧美黑人精品巨大| 俺也久久电影网| 中文字幕最新亚洲高清| 999精品在线视频| 国产av不卡久久| 在线观看免费日韩欧美大片| 黑人欧美特级aaaaaa片| 欧美一区二区精品小视频在线| 老汉色av国产亚洲站长工具| 欧美人与性动交α欧美精品济南到| 国产探花在线观看一区二区| 亚洲全国av大片| 亚洲熟妇中文字幕五十中出| 国产成人一区二区三区免费视频网站| 一区二区三区国产精品乱码| 国产男靠女视频免费网站| 国产亚洲欧美在线一区二区| 久久久久性生活片| 色老头精品视频在线观看| 在线视频色国产色| 性色av乱码一区二区三区2| 免费在线观看亚洲国产| 特级一级黄色大片| 久久精品aⅴ一区二区三区四区| 人成视频在线观看免费观看| 九色国产91popny在线| 在线观看www视频免费| 亚洲精品色激情综合| 一本一本综合久久| 久久精品国产综合久久久| 色在线成人网| 最近视频中文字幕2019在线8| 免费在线观看亚洲国产| 欧美日韩瑟瑟在线播放| 国产精品av视频在线免费观看| 老鸭窝网址在线观看| 级片在线观看| 18禁观看日本| 18禁美女被吸乳视频| 成人国语在线视频| 国产精品亚洲一级av第二区| 一二三四社区在线视频社区8| 在线观看免费日韩欧美大片| 91在线观看av| 国产精品影院久久| 日韩欧美免费精品| 亚洲avbb在线观看| 亚洲电影在线观看av| 亚洲18禁久久av| 国产熟女午夜一区二区三区| 熟妇人妻久久中文字幕3abv| 91麻豆精品激情在线观看国产| 欧美乱妇无乱码| 淫妇啪啪啪对白视频| 国产一级毛片七仙女欲春2| 天堂动漫精品| 久久久久性生活片| 三级男女做爰猛烈吃奶摸视频| 丰满人妻一区二区三区视频av | 国产一区二区激情短视频| 亚洲欧美日韩高清专用| 欧美绝顶高潮抽搐喷水| 18禁国产床啪视频网站| 香蕉国产在线看| 天堂av国产一区二区熟女人妻 | 午夜免费激情av| 亚洲一区高清亚洲精品| 99久久99久久久精品蜜桃| 嫩草影视91久久| 久久婷婷人人爽人人干人人爱| 日韩高清综合在线| 99国产精品99久久久久| 精华霜和精华液先用哪个| 午夜福利在线观看吧| 国产激情久久老熟女| 精品少妇一区二区三区视频日本电影| 美女高潮喷水抽搐中文字幕| 18禁裸乳无遮挡免费网站照片| 精品第一国产精品| 国产爱豆传媒在线观看 | 国产黄片美女视频| 黄色视频不卡| 色av中文字幕| 久久精品91蜜桃| 亚洲中文av在线| 狂野欧美激情性xxxx| av福利片在线观看| 88av欧美| 精品久久蜜臀av无| 麻豆成人av在线观看| 免费电影在线观看免费观看| 午夜精品久久久久久毛片777| 丁香六月欧美| av国产免费在线观看| 1024视频免费在线观看| 男男h啪啪无遮挡| 美女免费视频网站| 久久香蕉激情| 超碰成人久久| 黄色视频不卡| 少妇的丰满在线观看| 亚洲专区国产一区二区| 亚洲精品国产精品久久久不卡| 美女 人体艺术 gogo| 欧美乱码精品一区二区三区| 色综合亚洲欧美另类图片| 午夜福利视频1000在线观看| 在线十欧美十亚洲十日本专区| 日韩精品免费视频一区二区三区| 18禁黄网站禁片午夜丰满| 9191精品国产免费久久| 日韩欧美三级三区| 欧美3d第一页| 亚洲精品中文字幕在线视频| 国产成人精品久久二区二区91| 欧美国产日韩亚洲一区| 国产三级在线视频| 亚洲五月天丁香| 91大片在线观看| 欧美一区二区精品小视频在线| 51午夜福利影视在线观看| 伦理电影免费视频| 精品电影一区二区在线| 亚洲九九香蕉| 中文字幕最新亚洲高清| 搡老岳熟女国产| 午夜福利视频1000在线观看| 亚洲一区中文字幕在线| 一个人免费在线观看的高清视频| √禁漫天堂资源中文www| 三级国产精品欧美在线观看 | 又爽又黄无遮挡网站| 久热爱精品视频在线9| av有码第一页| 午夜久久久久精精品| 波多野结衣高清无吗| 欧美在线一区亚洲| 中文字幕av在线有码专区| 久久这里只有精品中国| 欧美3d第一页| 国产爱豆传媒在线观看 | 人妻夜夜爽99麻豆av| 丝袜美腿诱惑在线| 日日爽夜夜爽网站| 国产蜜桃级精品一区二区三区| 亚洲人与动物交配视频| 动漫黄色视频在线观看| 黄色视频,在线免费观看| 蜜桃久久精品国产亚洲av| 亚洲成人久久性| 性色av乱码一区二区三区2| 国产人伦9x9x在线观看| 日韩成人在线观看一区二区三区| 成年人黄色毛片网站| 国产熟女xx| 国产欧美日韩一区二区三| 久99久视频精品免费| 99国产精品一区二区三区| 国产欧美日韩一区二区三| 国产精品美女特级片免费视频播放器 | 欧美成人午夜精品| 一夜夜www| 国产人伦9x9x在线观看| 99re在线观看精品视频| av福利片在线| 成人特级黄色片久久久久久久| a级毛片a级免费在线| 亚洲第一电影网av| 成人三级黄色视频| 国产成人av教育| 在线十欧美十亚洲十日本专区| 欧美黄色片欧美黄色片| 国产成人啪精品午夜网站| www.自偷自拍.com| 久久久国产成人免费| 欧美绝顶高潮抽搐喷水| 久久久国产精品麻豆| 级片在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 全区人妻精品视频| 精品免费久久久久久久清纯| 精品高清国产在线一区| 国产91精品成人一区二区三区| bbb黄色大片| 国语自产精品视频在线第100页| 国产精品日韩av在线免费观看| 国产成人啪精品午夜网站| 国产精品影院久久| 午夜精品在线福利| 亚洲一区中文字幕在线| 香蕉丝袜av| 99热这里只有是精品50| 巨乳人妻的诱惑在线观看| 麻豆国产av国片精品| 日韩国内少妇激情av| 亚洲熟妇中文字幕五十中出| 制服人妻中文乱码| 一级a爱片免费观看的视频| 制服诱惑二区| 女同久久另类99精品国产91| 精品免费久久久久久久清纯| 搡老熟女国产l中国老女人| 色综合亚洲欧美另类图片| 欧美丝袜亚洲另类 | 欧美黑人欧美精品刺激| 欧美国产日韩亚洲一区| 日韩精品免费视频一区二区三区| 可以免费在线观看a视频的电影网站| 精品一区二区三区视频在线观看免费| 亚洲国产欧美一区二区综合| 不卡av一区二区三区| 亚洲中文av在线| 成人18禁高潮啪啪吃奶动态图| 18禁黄网站禁片免费观看直播| 一进一出抽搐动态| 精品国产超薄肉色丝袜足j| 欧美zozozo另类| 中文字幕久久专区| 国产成年人精品一区二区| 老司机福利观看| 悠悠久久av| 在线观看午夜福利视频| 又黄又爽又免费观看的视频| or卡值多少钱| 国产激情偷乱视频一区二区| 九色成人免费人妻av| 日本在线视频免费播放| 午夜福利欧美成人| 亚洲欧美激情综合另类| 成人av一区二区三区在线看| 男插女下体视频免费在线播放| 岛国在线免费视频观看| 久久久久免费精品人妻一区二区| 色综合站精品国产| 国产激情偷乱视频一区二区| 国产黄a三级三级三级人| 亚洲第一电影网av| 久久精品国产亚洲av香蕉五月| 国产单亲对白刺激| 波多野结衣高清无吗| 好男人在线观看高清免费视频| 在线a可以看的网站| 亚洲av熟女| 人人妻人人看人人澡| 精品乱码久久久久久99久播| 久久伊人香网站| 亚洲自拍偷在线| 亚洲人与动物交配视频| 男人舔女人的私密视频| 18禁黄网站禁片午夜丰满| 久久香蕉精品热| 狠狠狠狠99中文字幕| 精品久久久久久久人妻蜜臀av| 亚洲男人天堂网一区| 精品久久久久久成人av| 男女下面进入的视频免费午夜| 女人被狂操c到高潮| 欧美一区二区精品小视频在线| 男插女下体视频免费在线播放| 国产精品99久久99久久久不卡| 俄罗斯特黄特色一大片| 一区二区三区国产精品乱码| 亚洲熟妇熟女久久| 91老司机精品| 亚洲av美国av| 久久久久精品国产欧美久久久| 国产野战对白在线观看| 在线看三级毛片| 91字幕亚洲| 俺也久久电影网| 黄色成人免费大全| 欧美成人性av电影在线观看| 欧美精品啪啪一区二区三区| 久久中文字幕人妻熟女| 成人精品一区二区免费| 国产一区二区在线av高清观看| 两个人看的免费小视频| 亚洲成人国产一区在线观看| www.熟女人妻精品国产| 午夜免费观看网址| svipshipincom国产片| 在线观看一区二区三区| 蜜桃久久精品国产亚洲av| 啦啦啦免费观看视频1| aaaaa片日本免费| 999精品在线视频| 久久性视频一级片| 日本黄色视频三级网站网址| 91国产中文字幕| 在线观看66精品国产| 日本免费a在线| 亚洲国产日韩欧美精品在线观看 | 五月玫瑰六月丁香| 免费在线观看日本一区| 99精品欧美一区二区三区四区| 成人18禁在线播放| 国产精品香港三级国产av潘金莲| 欧美成人免费av一区二区三区| 国产野战对白在线观看| 久久草成人影院| 日韩欧美国产一区二区入口| 久久久精品国产亚洲av高清涩受| 日韩欧美国产一区二区入口| 午夜老司机福利片| 亚洲精品一区av在线观看| 免费在线观看亚洲国产| 人人妻,人人澡人人爽秒播| 亚洲人成电影免费在线| 人妻夜夜爽99麻豆av| 制服诱惑二区| 天天躁夜夜躁狠狠躁躁| 中文字幕精品亚洲无线码一区| 国产三级中文精品| 欧美色欧美亚洲另类二区| 成人国产一区最新在线观看| 国产成人一区二区三区免费视频网站| 久久精品人妻少妇| 在线看三级毛片| 亚洲精品一区av在线观看| 国产视频内射| 少妇人妻一区二区三区视频| 精品午夜福利视频在线观看一区| 日韩欧美精品v在线| 两人在一起打扑克的视频| 好男人电影高清在线观看| 99在线视频只有这里精品首页| 老司机靠b影院| 亚洲欧美日韩高清专用| 成人国产一区最新在线观看| 热99re8久久精品国产| 日本免费一区二区三区高清不卡| 无人区码免费观看不卡| 亚洲专区中文字幕在线| 给我免费播放毛片高清在线观看| 一二三四在线观看免费中文在| 视频区欧美日本亚洲| 两人在一起打扑克的视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲乱码一区二区免费版| 女警被强在线播放| 少妇熟女aⅴ在线视频| 亚洲av日韩精品久久久久久密| www.精华液| 少妇人妻一区二区三区视频| 国产欧美日韩一区二区精品| 欧美绝顶高潮抽搐喷水| 亚洲av成人av| 女人被狂操c到高潮| 国产视频一区二区在线看| or卡值多少钱| 美女扒开内裤让男人捅视频| 人妻夜夜爽99麻豆av| 老鸭窝网址在线观看| 久久精品国产综合久久久| 日本精品一区二区三区蜜桃| 国产精品亚洲av一区麻豆| 国产精品1区2区在线观看.| av有码第一页| 精品久久久久久久久久久久久| 老汉色∧v一级毛片| 99国产精品一区二区蜜桃av| 99精品在免费线老司机午夜| 国产男靠女视频免费网站| 国产精品久久久久久人妻精品电影| 午夜成年电影在线免费观看| 中文亚洲av片在线观看爽| 精品乱码久久久久久99久播| 国内精品久久久久久久电影| 欧美日韩精品网址| 19禁男女啪啪无遮挡网站| 中出人妻视频一区二区| 精品不卡国产一区二区三区| 天堂√8在线中文| e午夜精品久久久久久久| 亚洲精品一卡2卡三卡4卡5卡| 丰满的人妻完整版| 最近在线观看免费完整版| 欧美 亚洲 国产 日韩一| 深夜精品福利| 又爽又黄无遮挡网站| 色哟哟哟哟哟哟| 国产成人精品久久二区二区91| 九色国产91popny在线| 在线视频色国产色| 俺也久久电影网| 国产伦一二天堂av在线观看| 亚洲av美国av| 免费在线观看亚洲国产| 亚洲精品一卡2卡三卡4卡5卡| 男女床上黄色一级片免费看| 亚洲免费av在线视频| 久久久久久免费高清国产稀缺| 国产成人精品无人区| 看片在线看免费视频| 欧美在线黄色| 日韩有码中文字幕| 亚洲欧美日韩东京热| 哪里可以看免费的av片| 欧美日韩亚洲国产一区二区在线观看| 俄罗斯特黄特色一大片| 久久九九热精品免费| 国产熟女xx| 久久久水蜜桃国产精品网| 美女扒开内裤让男人捅视频| 神马国产精品三级电影在线观看 | 欧美高清成人免费视频www| 国产主播在线观看一区二区| 国产麻豆成人av免费视频| 亚洲中文字幕一区二区三区有码在线看 | 亚洲精品一区av在线观看| 制服诱惑二区| 亚洲专区国产一区二区| 淫秽高清视频在线观看| 精品久久久久久久久久免费视频| 成人三级黄色视频| 黄色片一级片一级黄色片| 国产乱人伦免费视频| 欧美性猛交黑人性爽| 91老司机精品| 久久精品国产亚洲av香蕉五月| 国产69精品久久久久777片 | 三级国产精品欧美在线观看 | 国产成人影院久久av| 在线国产一区二区在线| 国产蜜桃级精品一区二区三区| 性欧美人与动物交配| 精品电影一区二区在线| 中国美女看黄片| 亚洲自偷自拍图片 自拍| 亚洲精品粉嫩美女一区| 国产成人啪精品午夜网站| 亚洲自拍偷在线| bbb黄色大片| 999精品在线视频| 久久久久国内视频| 特级一级黄色大片| 色综合站精品国产| 亚洲在线自拍视频| 午夜福利欧美成人| 很黄的视频免费| 久久精品91蜜桃| 午夜福利在线观看吧| 一本综合久久免费| 亚洲熟妇熟女久久| 高清在线国产一区| 精品久久久久久,| 麻豆av在线久日| 国内精品一区二区在线观看| 久久精品影院6| 最近最新中文字幕大全电影3| 亚洲片人在线观看| av片东京热男人的天堂| 成人特级黄色片久久久久久久| 一级片免费观看大全| 好看av亚洲va欧美ⅴa在| 88av欧美| 国产av一区在线观看免费| 久久婷婷人人爽人人干人人爱| 日本三级黄在线观看| 国产免费av片在线观看野外av| 淫妇啪啪啪对白视频| 精品久久久久久久毛片微露脸| 国内精品一区二区在线观看| 久久午夜亚洲精品久久| 每晚都被弄得嗷嗷叫到高潮| 国产成人影院久久av| 白带黄色成豆腐渣| 51午夜福利影视在线观看| 欧美乱码精品一区二区三区| videosex国产| 丁香六月欧美| 九色成人免费人妻av| 亚洲欧美日韩高清在线视频| 日本 av在线| 色综合欧美亚洲国产小说| 亚洲美女黄片视频| 亚洲一卡2卡3卡4卡5卡精品中文| 久久香蕉精品热| 国产精品久久久久久人妻精品电影| 久久久久免费精品人妻一区二区| or卡值多少钱| 在线国产一区二区在线| 久久精品影院6| 91老司机精品| 欧美黄色片欧美黄色片| 九色国产91popny在线| 丰满人妻一区二区三区视频av | 国产精品久久久久久久电影 | 12—13女人毛片做爰片一| 亚洲精华国产精华精| 欧美性长视频在线观看| 久久久精品欧美日韩精品| 午夜日韩欧美国产| 亚洲人成77777在线视频| 亚洲中文日韩欧美视频| 亚洲精品粉嫩美女一区| 男女那种视频在线观看| 欧美黄色片欧美黄色片| 夜夜躁狠狠躁天天躁| 国产精品免费一区二区三区在线| 亚洲国产精品久久男人天堂| 午夜a级毛片| 国产精品 欧美亚洲| 国产欧美日韩一区二区三| 亚洲男人的天堂狠狠| 日本 av在线| 国产久久久一区二区三区| 免费av毛片视频| 成人18禁高潮啪啪吃奶动态图| 国产精品免费一区二区三区在线| 久久热在线av| АⅤ资源中文在线天堂| 亚洲精品av麻豆狂野| videosex国产| 欧美日本视频| 99国产综合亚洲精品| 搞女人的毛片| av视频在线观看入口| 老司机在亚洲福利影院| 中亚洲国语对白在线视频| 亚洲一区中文字幕在线| 人成视频在线观看免费观看| av免费在线观看网站| 久久亚洲真实| 老司机在亚洲福利影院| 亚洲精品久久国产高清桃花| 亚洲中文字幕日韩| 这个男人来自地球电影免费观看| av福利片在线观看| 久久精品成人免费网站| 国语自产精品视频在线第100页| 亚洲五月天丁香| 国产精品免费视频内射| 久久久久九九精品影院| 麻豆久久精品国产亚洲av| 日韩有码中文字幕| 国内少妇人妻偷人精品xxx网站 | 久久香蕉激情| 午夜福利高清视频| 亚洲人成伊人成综合网2020| 人人妻,人人澡人人爽秒播| 非洲黑人性xxxx精品又粗又长| 男女午夜视频在线观看| 欧美成人免费av一区二区三区| 国产主播在线观看一区二区| 亚洲精品国产一区二区精华液| 丰满的人妻完整版| 欧美大码av| 亚洲,欧美精品.| 亚洲精品国产一区二区精华液| av中文乱码字幕在线| 热99re8久久精品国产| 悠悠久久av| 国产成人影院久久av| 欧美日韩瑟瑟在线播放| 成人午夜高清在线视频| 又紧又爽又黄一区二区| 18禁裸乳无遮挡免费网站照片| 身体一侧抽搐| 最近在线观看免费完整版| 波多野结衣高清无吗|