• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Emergency Decision-Making Based on q-Rung Orthopair Fuzzy Rough Aggregation Information

    2021-12-15 07:10:54AhmedKhoshaimSaleemAbdullahShahzaibAshrafandMuhammadNaeem
    Computers Materials&Continua 2021年12期

    Ahmed B.Khoshaim,Saleem Abdullah,Shahzaib Ashrafand Muhammad Naeem

    1Department of Mechanical Engineering,King Abdulaziz University,Jeddah,Saudi Arabia

    2Department of Mathematics,Abdul Wali Khan University Mardan,Mardan,23200,Pakistan

    3Department of Mathematics and Statistics,Bacha Khan University,Charsadda,24420,Pakistan

    4Deanship of Combined First Year,Umm Al-Qura University,Makkah,Saudi Arabia

    Abstract:With the frequent occurrences of emergency events,emergency decision making(EDM)plays an increasingly significant role in coping with such situations and has become an important and challenging research area in recent times.It is essential for decision makers to make reliable and reasonable emergency decisions within a short span of time, since inappropriate decisions may result in enormous economic losses and social disorder.To handle emergency effectively and quickly, this paper proposes a new EDM method based on the novel concept of q-rung orthopair fuzzy rough (q-ROPR) set.A novel list of q-ROFR aggregation information,detailed description of the fundamental characteristics of the developed aggregation operators and the q-ROFR entropy measure that determine the unknown weight information of decision makers as well as the criteria weights are specified.Further an algorithm is given to tackle the uncertain scenario in emergency to give reliable and reasonable emergency decisions.By using proposed list of q-ROFR aggregation information all emergency alternatives are ranked to get the optimal one.Besides this,the q-ROFR entropy measure method is used to determine criteria and experts’weights objectively in the EDM process.Finally,through an illustrative example of COVID-19 analysis is compared with existing EDM methods.The results verify the effectiveness and practicability of the proposed methodology.

    Keywords: q-rung orthopair fuzzy rough set; q-ROFR entropy measure;aggregation information; emergency decision making

    1 Introduction

    Catastrophic events such as earthquakes, hurricanes, flooding, and droughts, among others lead to mass destruction such as a large number of deaths, infrastructure damage, and adverse social instability and public security consequences [1].For example, the 2005 Kashmir earthquake in Pakistan destroyed more than 780,000 buildings and killed 87,350 humans and over a billion animals.In 2019, the Super Typhoon Lekima brought catastrophic damages to mainland China and the direct economic losses amounted to approximately 52 billion yuan.The corona virus disease 2019 (COVID-19) spread to over 200 countries and about 370,000 people have died so far.While emergency response and immediate measures play a key role in addressing such situations, the implementation of emergency decision-making (EDM) with outdated procedures will ultimately lead to possible failures in emergency decisions.Therefore, the EDM process is a vital and essential part of the whole emergency response [2–4].In fact, inappropriate information on decision-making and tight time pressures in the context of the unforeseen environment of decision-making make it hard for decision-makers to make an effective and reasonable choice [5].Therefore, to detect the optimum solution for the EDM procedure in order to reduce the economic losses and casualties, it is very important to develop systematic and scientific EDM techniques [6].Therefore, tackling EDM quickly and effectively has become an important research topic in recent years [7].

    Nowadays, the information management and decision-making have become much more important because of increasing emergency situations.With the increasing complexity of the data, new and more accurate tools are necessary because they handle human inaccuracy or ambiguous knowledge more effectively when compared to the classical tools.Zadeh [8] introduced the concept of fuzzy sets (FSs) to deal with uncertain information in real-life situations.Atanassov [9]proposed in 1986 the notion of intuitionistic FSs (IFSs) by generalizing the well-known theory of FSs.Although IFSs are successful in a wide range of applications, they still have some limitations because of the restriction that the sum of membership grade and that of non-membership grade must not exceed 1.To handle this issue, Yager [10] further extended the theory of IFSs and proposed the notion of Pythagorean FSs (PFSs) for modeling the higher-level imprecise and vague information.After Yager’s pioneering work, several researchers initiated the study in the field of PFS theory to show its applications in various disciplines.Khan et al.[11] introduced the Dombi norm based on PFSs and discussed their applications in decision-making problems (DMPs).Yager et al.[12] presented a link between Pythagorean fuzzy membership grades and complex numbers.Batool et al.[13] extended the PFSs to Pythagorean probabilistic hesitant FSs and elaborated their applications in DMPs.Peng et al.[14] established the division and subtraction operations under the Pythagorean fuzzy environment and studied their properties in detail.Ashraf et al.[15]proposed the novel approach using the sine function under Pythagorean fuzzy settings.Zhang [16]defined a similarity measure for DMPs under the Pythagorean fuzzy environment.

    Let us assume that the value of membership grade (MG) is set to 0.8 and that of nonmembership grade (NMG) is set to 0.9.From the available information, it is clear that MG+NMG>1 and MG2+NMG2>1, which does not satisfy the fundamental condition of IFSs as well as PFSs.To resolve this issue, Yager [17] proposed a more general concept, calledq-rung orthopair FS (q-ROFS).The prominent feature of theq-ROFS is that the sum ofqth power of the DM and DNM should be less than or equal to 1, which gives more flexibility to the decisionmakers for providing MG and NMG more comprehensively.Note that the space of acceptable orthopair of membership grades increases as the value ofqincreases.Aq-ROFS is reduced into the IFS and the PFS, respectively, when we takeq=1 andq=2.Yager et al.[18] presented the approximate reasoning withq-ROFSs by defining the concepts of possibility and certainty.Khan et al.[19] proposed theq-ROFS-based knowledge measures and discussed their applications in decision-making.Hussain et al.[20] presented the aggregation operators underq-ROF soft sets and elaborated their applications to tackle the real-life DMPs.Liu et al.[21] defined someq-ROF weighted arithmetic/geometric aggregation operators and used them for real-world DMPs.Khan et al.[22] presented the novel ranking methodology underq-ROF environments.Joshi et al.[23]established some novel aggregation methods forq-ROF information by considering the confidence levels of the experts.Verma [24] introduced the order-q-ROF divergence and entropy measures with their application in multi-attribute group decision-making (MAGDM).

    Pawlak [25] initiated the important notion of rough set theory in 1982, which handles imprecise and ambiguous data more effectively.Investigation into the rough set, both theoretically and practically, in the recent era has made tremendous progress.The notion of rough sets has been enhanced in various ways by several scholars.Dubois et al.[26] established the structure of fuzzy rough sets (FRSs).Zhang et al.[27] established the decision-making methodology using FRSs to tackle the uncertain information in DMPs.Khan et al.[28] established the novel notion of probabilistic hesitant FRSs and discussed their applications in DMPs.Chinram et al.[29] proposed the evaluation based on distance from average solution methodology under intuitionistic FRSs to tackle the multi-attribute group decision-making.Zhou et al.[30] established the generalized approximation operators under intuitionistic FRSs.

    In some real-life circumstances, decision-makers (DMs) have a strong point of view about the ranking or rating of plans, projects, or political statements of a government.For example, the construction of a cricket ground by a university to render its accomplishment and performance.The members of the university administration may rate their project highly by assigning a DM(μ=0.9), whereas others may rate the same project as a wastage of money and try to defame it by providing strong opposite points of view.So, they assign a DNM(v=0.7).In this situation,μ+ν >1 andμ2+ν2>1, butμq+νq <1 forq >3 so that(μ,ν)is neither IFN nor PFN but it isq-ROFN.Thus, Yager’sq-ROFNs are more efficient to deal with uncertainty in the data.q-rung orthopair fuzzy rough sets (q-ROFRSs), a hybrid intelligent structure of rough sets, andq-ROFS are advanced classification strategies that address ambiguous and incomplete data.We conclude from the analysis that in decision-making, aggregation operators have a significant role to play in aggregating the collective data from different sources to a single value.In accordance with the best available knowledge to date, the development of aggregation operators with the hybridization ofq-ROFS with a rough set is not observed in theq-ROPF setting.Therefore, this motivates the current work ofq-ROF rough study.Furthermore, we will investigate aggregation operators based on rough information that areq-rung orthopair fuzzy rough weighted averaging, order weighted averaging, hybrid weighted averaging, weighted geometric, and order weighted geometric and hybrid weighted geometric aggregation operators undert-norm andt-conorm.

    This paper is organized as follows:In Section 2, we review some concepts related toq-ROFSs and rough sets.In Section 3, we proposed the novel notion ofq-ROFRS and discussed its basic operations.In Section 4, we proposed the list of averaging/geometric aggregation operators forq-ROPFR information.In Section 5, we present the entropy measure and decision-making methodology.In Section 6, we demonstrate the numerical example of the public health emergency problem to show the applicability and effectiveness of the proposed methodology.Finally, Section 8 concludes the paper, illustrating achievements and setting future directions.

    2 Preliminaries

    In this section, we resolve the essential knowledge aboutq-ROFS and rough sets.

    Definition 1([17]).LetMbe a non-empty set.Aq-ROFSZof a setMis a set having the form

    Z={(δ,μz(δ),νz(δ)):δ∈M},

    where the valuesμz(δ)∈[0,1] andνz(δ)∈[0,1] are called the positive and negative membership grades of the elementδ, subject to(μz(δ))q+(νz(δ))q≤1 withq >2?δ∈M.

    For simplicity,Z={(δ,μz(δ),νz(δ)):δ∈M} is represented byZ=(μz,νz), if there is no confusion and is calledq-rung orthopair number (q-ROFN).The collections of allq-ROFNs inMwill be represented byq-ROPFN(N).

    3 q-Rung Orthopair Fuzzy Rough Aggregation Information

    The aggregation information plays an important role in combining data into one format and addressing the DMP.In this section, we propose a list of novel aggregation information.

    3.1 q-Rung Orthopair Fuzzy Rough Averaging Aggregation operators

    In algebraic-strict Archimedeant-norm andt-conorm, if we assign values to generatorstands, then we obtain two algebraic operations forq-ROFRVs:

    In algebraic-strict Archimedeant-norm andt-conorm, if we assign values to generatorstands, then we have algebraic operations forq-ROFRVs:

    Proof:The proof is straightforward by using mathematical induction.

    In algebraic-strict Archimedeant-norm andt-conorm, if we assign values to generatorstands, then we have two algebraic operations forq-ROFRVs:

    Proof:The proof is straightforward by using mathematical induction.

    4 Development of q-ROFR Entropy Measure

    To calculate the differences between twoq-ROFRVs, this segment developed the generalized and weighted generalized distance measures ofq-ROFR information.To measure the fuzziness ofq-ROFRVs, we propose entropy measures forq-ROFRS based on the developed distance operators.

    5 Algorithm for DMPs

    Step 2(a).The expert ideal matrix (EIM) is calculated using aq-ROFRWA aggregation operator, which is closer to each expert information.EIM=where

    Step 2(b).Compute the expert right ideal matrix (ERIM) and expert left ideal matrix (ELIM)as follows:

    Step 2(c).The distance ofwith EIM, ERIM, and ELIM is evaluated as DEIM, DERIM,and DELIM, respectively, as follows:

    fori=1,2,...,mandk=1,2,...,?j.

    Step 2(d).Evaluate closeness indices (CIs) as follows:

    Step 2(e).Expert weight information is evaluated as

    Step 3(a).Evaluate revised expert ideal matrix (RvEIM) based on the developed entropy measure as

    Step 3(b).The entropy measure corresponding to each attribute is computed as

    Step 3(c).The attribute weight information is calculated as follows:

    Step 4.Aggregate the revised expert ideal matrix based on the proposed aggregation operators to construct the aggregated matrix using attribute weightsβI.

    Step 5.Compute the score (according to Definition 7) of overall values Ft (t=1,2,...,g)for the alternativesλk.

    Step 6.According to Definition 8, the alternativesλk (k=1,2,...,g)are ranked and the optimal one that has the higher value is chosen.

    6 Numerical Application of the Proposed Algorithm

    In this section, a practical EDM problem concerning a public health emergency is considered to validate the applicability and practicality of the developed methodology.

    6.1 Real-Life Case Study

    Wuhan Province of China has reported many unexplained cases in December 2019.The cause of pneumonia was identified as the new coronavirus, later labeled corona virus disease 2019 (COVID-19).Since 1–14 days of the incubation period is required, infected persons without symptoms can quickly pass on the virus through drops and intimate contact with others.A total of 81,000 people had been diagnosed in China by 22 March 2020, of whom more than 3000 died.Wuhan was the center of the epidemic with approximately 50,000 people, representing 81.31% of all patients, and the mortality rate stood at approximately 5.02%.This acute, rapidly spreading disease has led to enormous economic disorders for the catering, entertainment, retail, and tourism industries.Controlling virus sources and virus transmission are generally the essential solutions for the prevention and control of such infectious diseases.Quarantine measures must, therefore,be taken on time and the movements of the population must be monitored.Four alternative emergency responses are recommended to Wuhan citizens on the basis of the above-mentioned analysis:

    (1) The infected individuals are quarantined and closely monitored(λ1).

    (2) Suspected individuals with infections and those who have recently been in close contact with infected individuals are also quarantined.Moreover, uninfected people are advised to work for themselves, for example, wearing masks(λ2).

    (3) Participation in public meetings is strictly prohibited.If people go out, they must take protective measures such as wearing masks, measuring temperature if they enter public places, and so on(λ3).

    (4) All classes and work are suspended, all people must stay at home, and their travel freedom is restricted(λ4).

    In addition, four emergency response alternatives are assessed using four criteria:(1) life satisfaction(τ1); (2) the rate of epidemic transmission(τ2); (3) economic losses(τ3); (4) the consumption of medical supplies(τ4).

    The invited DMs are divided into three expert panels:Expert Information=where each expert panel is required to provide unified evaluation results in the form ofq-rung orthopair fuzzy rough values with unknown expert and criteria weight information.

    Step 1(a).Tabs.1a–1c presents the expert evaluation information in the form ofq-rung orthopair fuzzy rough.

    Step 2(a).The EIM is calculated in Tab.2.

    Step 2(b).The ERIM and ELIM are calculated in Tabs.3 and 4.

    Table 1:(a) Expert information (E)1 (b) Expert information (E)2 (c) Expert information (E)3

    Table 2:Expert ideal matrix

    Table 3:Expert right ideal matrix

    Step 2(c).The distance ofwith EIM, ERIM, and ELIM is calculated using Definition 6 and the information is given in Tab.5 (DEIM), Tab.6 (DERIM), and Tab.7 (DELIM),respectively.

    Table 4:Expert left ideal matrix

    Table 5: DEIM

    Table 6: DERIM

    Table 7: DELIM

    Step 2(d).The CIs are calculated as follows:

    CI(1)CI(2)CI(3)

    0.761748868 0.719333678 0.73234948

    Step 2(e).Expert weight information is calculated as follows:

    ?(1)?(2)?(3)

    0.344148 0.324985 0.330866

    Step 3(a).The revised expert ideal matrix is given in Tab.8.

    Table 8:Revised expert ideal matrix (RvEIM)

    Step 3(b).The entropy measure corresponding to each attribute is computed as follows:

    Step 3(c).The attribute weight information is given as

    β1β2β3β4

    0.254008 0.220283 0.264043 0.261666

    Step 4.The collective preference values of each alternative in the revised expert ideal matrix are calculated using the proposed list of aggregation operators as follows:

    Case 1.Using WA(A) Aggregation Operator.The collective preference values of each alternative using the WA(A)aggregation operator are given in Tab.9.

    Table 9:Overall preference value (WA(A))

    Case 2.Using OWA(A) Aggregation Operator.The collective preference values of each alternative using the OWA(A)aggregation operator are given in Tab.10.

    Table 10:Overall preference value OWA(A)

    Case 3.Using HWA(A) Aggregation Operator.The collective preference values of each alternative using the HWA(A)aggregation operator are given in Tab.11.

    Case 4.Using WG(A) Aggregation Operator.The collective preference values of each alternative using the WG(A)aggregation operator are given in Tab.12.

    Table 11:Overall preference value HWA(A)

    Table 12:Overall preference value (WG(A))

    Case 5.Using OWG(A) Aggregation Operator.The collective preference values of each alternative using the OWG(A)aggregation operator are given in Tab.13.

    Case 6.Using HWG(A) Aggregation Operator.The collective preference values of each alternative using the HWG(A)aggregation operator are given in Tab.14.

    Table 13:Overall preference value (OWG(A))

    Table 14:Overall preference value (HWG(A))

    Step 5.The score of collective overall preference values of each alternative is given in Tab.15.

    Step 6.The ranking of the alternativesλk (k=1,2,...,4)is given in Tab.15.

    Table 15:Score values and ranking of the alternatives

    From the above computational process, we concluded that alternativeλ2is the best among others, and, therefore, it is highly recommended.

    7 Conclusion

    In this study, we proposed a novel method to deal with EDM problems based on the novel notion ofq-ROFRS and the list of aggregation operators.First, theq-ROFRSs provide a flexible and natural way for DMs with different backgrounds to express uncertain assessment information on emergency alternatives.Then, the novel methodology based on the aggregation operators is modified to rank emergency alternatives to help DMs to determine the best one.The expert and the criteria weights are calculated by the entropy measure method, which are derived from initial evaluation information directly avoiding human intervention and secondary information collection.Eventually, to demonstrate the effectiveness and practicability of our proposed method,it is applied to a real EDM example of COVID-19 and compared against those of the existing EDM method.

    Our established methodology can be extended to cover heterogeneous information because different types of information are closer to the actual situation and suitable for various criteria.We can use Hamacher, Yager, and Dombi norms to develop generalized aggregation operators to address the uncertain information more accurately in EDM problems.These will be used in future research directions.

    Funding Statement:This Project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under the Grant No.(G:578-135-1441).The authors, therefore,acknowledge with thanks DSR for technical and financial support.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    亚洲国产精品999在线| 一a级毛片在线观看| 国产精品乱码一区二三区的特点| 国产男靠女视频免费网站| 人妻丰满熟妇av一区二区三区| 国产精品嫩草影院av在线观看 | 国产精品99久久久久久久久| 琪琪午夜伦伦电影理论片6080| 精品久久久久久久久久免费视频| 桃色一区二区三区在线观看| 高清毛片免费观看视频网站| 69人妻影院| 久久久久久久久大av| 99久久精品热视频| 亚洲欧美日韩无卡精品| 麻豆久久精品国产亚洲av| 亚洲va日本ⅴa欧美va伊人久久| 看片在线看免费视频| 国产久久久一区二区三区| 国产中年淑女户外野战色| 男人和女人高潮做爰伦理| 熟女人妻精品中文字幕| 成人性生交大片免费视频hd| 在线观看美女被高潮喷水网站 | 91狼人影院| 国产aⅴ精品一区二区三区波| 日韩欧美国产在线观看| 一进一出抽搐动态| 日本一二三区视频观看| 麻豆成人午夜福利视频| 亚洲七黄色美女视频| 国产伦人伦偷精品视频| 国产国拍精品亚洲av在线观看| 国产精品99久久久久久久久| 99久久99久久久精品蜜桃| 国产伦一二天堂av在线观看| 色av中文字幕| 特大巨黑吊av在线直播| 国内精品久久久久久久电影| 国产精品av视频在线免费观看| 日本黄色视频三级网站网址| 亚洲专区国产一区二区| 熟妇人妻久久中文字幕3abv| 免费在线观看日本一区| 天堂影院成人在线观看| 国产单亲对白刺激| 熟女人妻精品中文字幕| 熟女人妻精品中文字幕| 久久久国产成人免费| 亚洲av免费高清在线观看| 久久久久国内视频| 97热精品久久久久久| 好男人在线观看高清免费视频| 国产单亲对白刺激| 蜜桃久久精品国产亚洲av| 日韩大尺度精品在线看网址| 亚洲av五月六月丁香网| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产高清在线一区二区三| 成人国产一区最新在线观看| eeuss影院久久| 亚洲国产精品999在线| 国产成人欧美在线观看| 日韩欧美三级三区| 免费无遮挡裸体视频| 久久久久精品国产欧美久久久| 成年免费大片在线观看| 国产成人av教育| 51国产日韩欧美| 熟女人妻精品中文字幕| 国产中年淑女户外野战色| 少妇人妻精品综合一区二区 | 精品欧美国产一区二区三| 18禁黄网站禁片午夜丰满| 亚洲美女搞黄在线观看 | 91久久精品电影网| 久久精品国产清高在天天线| 一区二区三区四区激情视频 | 亚洲av电影在线进入| 亚洲国产欧洲综合997久久,| 午夜福利18| 在线观看66精品国产| 3wmmmm亚洲av在线观看| 床上黄色一级片| 嫁个100分男人电影在线观看| 国产精品伦人一区二区| h日本视频在线播放| 美女大奶头视频| 听说在线观看完整版免费高清| 精品人妻熟女av久视频| 国产伦精品一区二区三区四那| 精品一区二区三区人妻视频| 五月玫瑰六月丁香| 热99re8久久精品国产| a级一级毛片免费在线观看| 日韩欧美 国产精品| 少妇的逼好多水| www.www免费av| 亚洲天堂国产精品一区在线| 1000部很黄的大片| 中文字幕熟女人妻在线| 特大巨黑吊av在线直播| 国产视频一区二区在线看| av欧美777| 一个人观看的视频www高清免费观看| 欧美日韩亚洲国产一区二区在线观看| 日本成人三级电影网站| 一二三四社区在线视频社区8| 男人和女人高潮做爰伦理| 国产色婷婷99| 在线观看av片永久免费下载| 性色av乱码一区二区三区2| 久久久国产成人精品二区| 欧美绝顶高潮抽搐喷水| www.色视频.com| 免费av毛片视频| 内地一区二区视频在线| 嫩草影视91久久| 亚洲国产精品999在线| 精品午夜福利在线看| 女人十人毛片免费观看3o分钟| 国产高清有码在线观看视频| 亚洲精品粉嫩美女一区| 中文字幕精品亚洲无线码一区| 国产精品人妻久久久久久| 亚洲av成人不卡在线观看播放网| 69人妻影院| 蜜桃久久精品国产亚洲av| h日本视频在线播放| 他把我摸到了高潮在线观看| 成人性生交大片免费视频hd| 国产亚洲精品av在线| 精品久久久久久,| 日本a在线网址| 国产精品久久电影中文字幕| 亚洲一区二区三区色噜噜| 国产国拍精品亚洲av在线观看| 无人区码免费观看不卡| 国产毛片a区久久久久| 草草在线视频免费看| 禁无遮挡网站| 国产高清视频在线观看网站| 亚洲国产色片| 亚洲黑人精品在线| 成人性生交大片免费视频hd| 一个人看视频在线观看www免费| 色噜噜av男人的天堂激情| 最近最新免费中文字幕在线| 脱女人内裤的视频| 美女大奶头视频| 久久天躁狠狠躁夜夜2o2o| av在线老鸭窝| 最好的美女福利视频网| 中亚洲国语对白在线视频| 国产色爽女视频免费观看| 麻豆久久精品国产亚洲av| 色综合站精品国产| 欧美极品一区二区三区四区| 国产精品一区二区性色av| 国产一区二区在线av高清观看| 99热6这里只有精品| 好看av亚洲va欧美ⅴa在| 3wmmmm亚洲av在线观看| 久99久视频精品免费| 欧美日本视频| 国产私拍福利视频在线观看| 亚洲成人久久爱视频| 一个人看视频在线观看www免费| 他把我摸到了高潮在线观看| 久久99热6这里只有精品| 成人高潮视频无遮挡免费网站| 亚洲成人中文字幕在线播放| 亚洲欧美日韩高清专用| 亚洲欧美日韩东京热| 色吧在线观看| 国产亚洲欧美98| 白带黄色成豆腐渣| 国产精品三级大全| 国产精品久久电影中文字幕| 亚洲av成人不卡在线观看播放网| 性色avwww在线观看| 啦啦啦韩国在线观看视频| 搞女人的毛片| 一本综合久久免费| 一边摸一边抽搐一进一小说| 天堂√8在线中文| 免费av毛片视频| 亚洲精品一区av在线观看| 久久国产精品影院| 久久久久久久久中文| 久久午夜亚洲精品久久| 性插视频无遮挡在线免费观看| 欧美性感艳星| 亚洲av电影在线进入| 欧美日韩乱码在线| 午夜福利在线在线| 特大巨黑吊av在线直播| 午夜福利成人在线免费观看| 无人区码免费观看不卡| 国产乱人视频| 在线播放无遮挡| 成年免费大片在线观看| 最新在线观看一区二区三区| 亚洲欧美日韩高清在线视频| 成人国产综合亚洲| 国产午夜精品久久久久久一区二区三区 | 欧美极品一区二区三区四区| 免费av观看视频| 久久热精品热| 成人特级av手机在线观看| 简卡轻食公司| 国产大屁股一区二区在线视频| 国产伦一二天堂av在线观看| 波多野结衣巨乳人妻| 国产av麻豆久久久久久久| 国产黄片美女视频| 国产真实伦视频高清在线观看 | 成人毛片a级毛片在线播放| www.999成人在线观看| 一本一本综合久久| 亚洲三级黄色毛片| 免费在线观看影片大全网站| 亚洲精品粉嫩美女一区| 三级毛片av免费| 又黄又爽又刺激的免费视频.| 免费av观看视频| 波野结衣二区三区在线| 亚洲精品在线美女| 久久国产乱子伦精品免费另类| 国产精品自产拍在线观看55亚洲| a在线观看视频网站| 别揉我奶头 嗯啊视频| 国产毛片a区久久久久| 变态另类丝袜制服| 国产又黄又爽又无遮挡在线| 少妇被粗大猛烈的视频| 国产淫片久久久久久久久 | 久久精品夜夜夜夜夜久久蜜豆| 18禁裸乳无遮挡免费网站照片| 91麻豆av在线| 国产大屁股一区二区在线视频| 日日夜夜操网爽| 色5月婷婷丁香| 97碰自拍视频| 久久久久久久午夜电影| 1024手机看黄色片| 亚洲第一电影网av| 久久国产精品影院| 欧美一区二区亚洲| 精品人妻一区二区三区麻豆 | 国产av在哪里看| 真实男女啪啪啪动态图| 欧美黄色淫秽网站| 99久久99久久久精品蜜桃| 日韩人妻高清精品专区| 欧美日韩中文字幕国产精品一区二区三区| 亚洲av免费高清在线观看| 欧美一级a爱片免费观看看| 日韩欧美 国产精品| 九色成人免费人妻av| 最近最新免费中文字幕在线| 乱人视频在线观看| 日韩亚洲欧美综合| 极品教师在线视频| 国产精品不卡视频一区二区 | 十八禁网站免费在线| 午夜精品久久久久久毛片777| 色5月婷婷丁香| 他把我摸到了高潮在线观看| 1024手机看黄色片| 夜夜躁狠狠躁天天躁| 亚洲色图av天堂| 色哟哟哟哟哟哟| av国产免费在线观看| 日本a在线网址| 成熟少妇高潮喷水视频| 两性午夜刺激爽爽歪歪视频在线观看| 国产男靠女视频免费网站| 非洲黑人性xxxx精品又粗又长| 老女人水多毛片| 亚洲专区国产一区二区| av欧美777| 丝袜美腿在线中文| x7x7x7水蜜桃| 中文字幕人妻熟人妻熟丝袜美| 亚洲色图av天堂| 久久这里只有精品中国| 狠狠狠狠99中文字幕| 一级黄片播放器| 欧美日本视频| 婷婷六月久久综合丁香| 久久久久九九精品影院| 波多野结衣巨乳人妻| 欧美日本亚洲视频在线播放| 乱人视频在线观看| 日韩高清综合在线| 国产视频内射| 18+在线观看网站| 男人舔奶头视频| 欧美一区二区亚洲| 成年女人毛片免费观看观看9| 国产乱人伦免费视频| 黄色女人牲交| 亚洲最大成人手机在线| 成人亚洲精品av一区二区| 国产精品人妻久久久久久| 999久久久精品免费观看国产| 成人国产综合亚洲| 成人av一区二区三区在线看| 日韩欧美一区二区三区在线观看| 亚洲精品久久国产高清桃花| 国产 一区 欧美 日韩| 久久香蕉精品热| 十八禁网站免费在线| 亚洲成a人片在线一区二区| 精品一区二区三区视频在线观看免费| 性色avwww在线观看| 免费无遮挡裸体视频| 观看美女的网站| 国产精品不卡视频一区二区 | 免费在线观看日本一区| 国产午夜精品久久久久久一区二区三区 | 婷婷六月久久综合丁香| 淫秽高清视频在线观看| 久99久视频精品免费| 久久久久免费精品人妻一区二区| 2021天堂中文幕一二区在线观| 国产精品爽爽va在线观看网站| 内地一区二区视频在线| 国产精品av视频在线免费观看| 欧美色视频一区免费| 欧美绝顶高潮抽搐喷水| eeuss影院久久| 美女xxoo啪啪120秒动态图 | 天天一区二区日本电影三级| 人人妻,人人澡人人爽秒播| 97超视频在线观看视频| 免费人成视频x8x8入口观看| 十八禁国产超污无遮挡网站| 国产午夜精品久久久久久一区二区三区 | 婷婷六月久久综合丁香| 国产黄色小视频在线观看| 狂野欧美白嫩少妇大欣赏| 国产精品亚洲美女久久久| 免费电影在线观看免费观看| 99精品久久久久人妻精品| 中文字幕高清在线视频| 亚洲综合色惰| 精品午夜福利视频在线观看一区| 不卡一级毛片| 久久久久久大精品| 日本撒尿小便嘘嘘汇集6| 看免费av毛片| 成人特级黄色片久久久久久久| 亚洲国产精品999在线| 高清毛片免费观看视频网站| 亚洲在线自拍视频| 亚洲 国产 在线| 最近中文字幕高清免费大全6 | 国产精品伦人一区二区| 日韩中字成人| 精品99又大又爽又粗少妇毛片 | 久久久久久大精品| 女人被狂操c到高潮| 亚洲专区国产一区二区| 亚洲综合色惰| 97热精品久久久久久| av在线老鸭窝| 国产亚洲精品久久久久久毛片| 综合色av麻豆| 成人鲁丝片一二三区免费| 757午夜福利合集在线观看| 宅男免费午夜| 国产中年淑女户外野战色| 1000部很黄的大片| 俺也久久电影网| 久久精品国产亚洲av涩爱 | 午夜两性在线视频| 日韩成人在线观看一区二区三区| 日本免费a在线| 欧美中文日本在线观看视频| 亚洲av二区三区四区| 亚洲美女视频黄频| 在线免费观看不下载黄p国产 | 色综合亚洲欧美另类图片| 久久精品国产99精品国产亚洲性色| 午夜两性在线视频| 俄罗斯特黄特色一大片| 亚洲第一欧美日韩一区二区三区| 亚洲最大成人中文| 3wmmmm亚洲av在线观看| 狠狠狠狠99中文字幕| 亚洲avbb在线观看| 在线天堂最新版资源| 乱人视频在线观看| 校园春色视频在线观看| 国产爱豆传媒在线观看| 免费搜索国产男女视频| 亚洲欧美日韩东京热| 亚洲国产精品成人综合色| 久久久久久久久久成人| 国产三级黄色录像| 99久久成人亚洲精品观看| 又粗又爽又猛毛片免费看| 欧美黑人欧美精品刺激| 午夜免费激情av| 国产在线男女| 大型黄色视频在线免费观看| 欧美性猛交╳xxx乱大交人| 在线播放国产精品三级| 日韩免费av在线播放| 少妇裸体淫交视频免费看高清| 乱码一卡2卡4卡精品| 亚洲第一区二区三区不卡| 90打野战视频偷拍视频| 精品午夜福利视频在线观看一区| 免费看a级黄色片| 精品无人区乱码1区二区| 国产一级毛片七仙女欲春2| 亚洲五月天丁香| 国产精品不卡视频一区二区 | 欧美成人性av电影在线观看| 久久伊人香网站| 动漫黄色视频在线观看| 国产黄a三级三级三级人| 男人狂女人下面高潮的视频| 在线a可以看的网站| a级毛片a级免费在线| 久久伊人香网站| 国产精品影院久久| 最近在线观看免费完整版| 欧美最新免费一区二区三区 | 天美传媒精品一区二区| 免费黄网站久久成人精品 | 一夜夜www| 高潮久久久久久久久久久不卡| 午夜福利在线在线| 午夜精品在线福利| 亚洲最大成人中文| 日本 欧美在线| 亚洲第一区二区三区不卡| 别揉我奶头~嗯~啊~动态视频| 国产黄片美女视频| 极品教师在线免费播放| 免费在线观看日本一区| 深夜a级毛片| 免费观看人在逋| 精品午夜福利视频在线观看一区| 国产亚洲精品久久久久久毛片| 丰满乱子伦码专区| 蜜桃久久精品国产亚洲av| 97碰自拍视频| 高清毛片免费观看视频网站| 亚洲精华国产精华液的使用体验| 啦啦啦在线观看免费高清www| 国产v大片淫在线免费观看| 成人美女网站在线观看视频| 国内少妇人妻偷人精品xxx网站| 国产精品99久久99久久久不卡 | 老司机影院成人| 在线a可以看的网站| 最近手机中文字幕大全| 成年女人看的毛片在线观看| 亚洲国产色片| 国产午夜精品久久久久久一区二区三区| 啦啦啦啦在线视频资源| 看非洲黑人一级黄片| 亚洲美女搞黄在线观看| 国产精品人妻久久久影院| 小蜜桃在线观看免费完整版高清| 久久99热这里只频精品6学生| av天堂中文字幕网| 久久国内精品自在自线图片| 久久久午夜欧美精品| 特大巨黑吊av在线直播| 免费不卡的大黄色大毛片视频在线观看| 一级毛片aaaaaa免费看小| 久久影院123| 五月开心婷婷网| 春色校园在线视频观看| 国产黄色免费在线视频| 国产爽快片一区二区三区| 各种免费的搞黄视频| a级一级毛片免费在线观看| 少妇裸体淫交视频免费看高清| 看十八女毛片水多多多| 国产片特级美女逼逼视频| 国产黄色免费在线视频| 日本三级黄在线观看| xxx大片免费视频| 欧美老熟妇乱子伦牲交| 六月丁香七月| 久久久久久九九精品二区国产| 少妇熟女欧美另类| 免费播放大片免费观看视频在线观看| 丝袜喷水一区| 久久ye,这里只有精品| 大香蕉久久网| 2021少妇久久久久久久久久久| 久久久午夜欧美精品| 亚洲美女搞黄在线观看| 一边亲一边摸免费视频| 免费看光身美女| 18禁裸乳无遮挡免费网站照片| 天天躁夜夜躁狠狠久久av| 极品教师在线视频| 国产欧美另类精品又又久久亚洲欧美| 国产精品不卡视频一区二区| 亚洲婷婷狠狠爱综合网| 国产乱人视频| 蜜桃久久精品国产亚洲av| 五月玫瑰六月丁香| 人人妻人人爽人人添夜夜欢视频 | 国内揄拍国产精品人妻在线| 免费少妇av软件| 亚洲av电影在线观看一区二区三区 | 亚洲精品一二三| 国产成人a∨麻豆精品| av在线蜜桃| 亚洲成人一二三区av| 我的女老师完整版在线观看| 日韩在线高清观看一区二区三区| 男男h啪啪无遮挡| 成人毛片a级毛片在线播放| 成人二区视频| 亚洲国产欧美在线一区| 欧美激情国产日韩精品一区| 美女cb高潮喷水在线观看| av在线观看视频网站免费| 久久精品国产亚洲av天美| 国产精品三级大全| 国产精品一区二区三区四区免费观看| 国产淫片久久久久久久久| 亚洲熟女精品中文字幕| 精品久久久噜噜| 综合色丁香网| 欧美三级亚洲精品| 国产亚洲一区二区精品| 免费电影在线观看免费观看| 亚洲国产精品999| 一区二区三区乱码不卡18| 亚洲av中文av极速乱| 日日啪夜夜爽| 亚洲最大成人av| 久久女婷五月综合色啪小说 | 你懂的网址亚洲精品在线观看| 久久久久性生活片| 久久久久久伊人网av| kizo精华| 午夜老司机福利剧场| 神马国产精品三级电影在线观看| av线在线观看网站| 亚洲精品国产成人久久av| 色网站视频免费| 青春草国产在线视频| 中国三级夫妇交换| 国产成人一区二区在线| 国产亚洲av嫩草精品影院| 少妇人妻一区二区三区视频| 国产色婷婷99| 国产av国产精品国产| 成人毛片a级毛片在线播放| 九九爱精品视频在线观看| 国国产精品蜜臀av免费| 国产老妇女一区| 韩国av在线不卡| 久久久久久久久大av| 日日摸夜夜添夜夜添av毛片| 国产在视频线精品| 国产黄频视频在线观看| 一级爰片在线观看| 久久精品久久精品一区二区三区| 国产免费一级a男人的天堂| 在线亚洲精品国产二区图片欧美 | 岛国毛片在线播放| 国产人妻一区二区三区在| 少妇人妻 视频| 午夜免费男女啪啪视频观看| 一区二区三区乱码不卡18| 欧美日韩视频精品一区| 国产淫语在线视频| 亚洲国产精品成人综合色| 亚洲精品亚洲一区二区| 观看免费一级毛片| 亚洲av一区综合| 人妻夜夜爽99麻豆av| 午夜精品国产一区二区电影 | 国产一区有黄有色的免费视频| 校园人妻丝袜中文字幕| 国内少妇人妻偷人精品xxx网站| 亚洲国产精品国产精品| 深爱激情五月婷婷| 制服丝袜香蕉在线| 精品99又大又爽又粗少妇毛片| 激情五月婷婷亚洲| 国产有黄有色有爽视频| 嘟嘟电影网在线观看| 精品久久国产蜜桃| 夫妻性生交免费视频一级片| 成年免费大片在线观看| 在线观看三级黄色| 看十八女毛片水多多多| a级毛色黄片| 在线观看三级黄色| 亚洲精品乱码久久久久久按摩| 免费黄网站久久成人精品| 综合色av麻豆| 一级毛片黄色毛片免费观看视频| 亚洲av不卡在线观看| 久久久精品欧美日韩精品| 夜夜看夜夜爽夜夜摸| 晚上一个人看的免费电影| a级毛片免费高清观看在线播放| 欧美区成人在线视频| 一级av片app|