• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic Resource Pricing and Allocation in Multilayer Satellite Network

    2021-12-15 07:09:10YuanLiJiaxuanXieMuXiaQianqianLiMengLiLeiGuoandZhenZhang
    Computers Materials&Continua 2021年12期

    Yuan Li,Jiaxuan Xie,Mu Xia,Qianqian Li,Meng Li,Lei Guoand Zhen Zhang

    1Tsinghua University,Beijing,100084,China

    2School of Automation,Northwestern Polytechnical University,Xi’an,710129,China

    3University of Science and Technology Beijing,Beijing,100083,China

    4Beijing University of Posts and Telecommunications,Beijing,100876,China

    5Systems Engineering Institute AMS,Beijing,100071,China

    6Audio Analytic,2 Quayside,Cambridge,CB5 8AB,UK

    7Beijing Commsat Technology Development Co.,Ltd.,Beijing,100089,China

    Abstract:The goal of delivering high-quality service has spurred research of 6G satellite communication networks.The limited resource-allocation problem has been addressed by next-generation satellite communication networks,especially multilayer networks with multiple low-Earth-orbit(LEO)and nonlow-Earth-orbit(NLEO)satellites.In this study,the resource-allocation problem of a multilayer satellite network consisting of one NLEO and multiple LEO satellites is solved.The NLEO satellite is the authorized user of spectrum resources and the LEO satellites are unauthorized users.The resource allocation and dynamic pricing problems are combined,and a dynamic gamebased resource pricing and allocation model is proposed to maximize the market advantage of LEO satellites and reduce interference between LEO and NLEO satellites.In the proposed model, the resource price is formulated as the dynamic state of the LEO satellites,using the resource allocation strategy as the control variable.Based on the proposed dynamic game model,an openloop Nash equilibrium is analyzed, and an algorithm is proposed for the resource pricing and allocation problem.Numerical simulations validate the model and algorithm.

    Keywords: Resource pricing; resource allocation; satellite network; LEO;dynamic game; Nash equilibrium

    1 Introduction

    Research of 6G mobile communication has become a major direction for the upgrade of satellite networks for next-generation mobile communication [1].This integrated space-air-ground network includes satellite and ground communication.Satellite networks facilitate global communication services and enhance network accessibility in areas inaccessible to ground communication networks [2–5].

    Many companies have launched low-Earth-orbit (LEO) satellites, the next generation in satellite communication [6], for commercial reasons [7].Telesat launched 28 innovative LEO satellites integrated with a data network.SpaceX and Commsat plan to launch tens of thousands of LEO satellites to build a global satellite Internet.However, the deployment of LEO satellites can affect satellites already in orbit, especially regarding spectrum resource efficiency.Traditional nonlow-Earth-orbit (NLEO) satellites are authorized users with priority to use spectrum resources,and LEO satellites are unauthorized.The use of spectrum resources by LEO satellites interferes with NLEO satellites.Optimum allocation of spectrum resources will help LEO satellites balance user service requirements and address interference problems.The allocation of resources and management of NLEO satellite interference are challenging problems that must be addressed,and research on spectrum resource allocation in satellite communication networks is critically needed [8,9].

    Many studies [10–13] have explored the resource allocation of satellite communication networks.A Stackelberg-game-based resource allocation scheme was proposed to divide satellites into two groups based on their priorities [10].In another study [11], a beam-hopping scheme was used to maximize the network throughput of a cognitive satellite network.Heuristic algorithms were proposed to solve the spectrum distribution problems.Deep reinforcement learning (DRL) was used to dynamically allocate resources in satellite communication networks [12].A joint power and sub-channel allocation problem was solved using a novel optimization model [13] to address the interference between primary and secondary networks.

    To solve resource allocation problems, a dynamic game-based resource allocation scheme in multilayer satellite communication networks, using resource pricing as the main control variable,is proposed.The contributions of this study follow.

    1) A dynamic game-based resource pricing and allocation model for LEO satellites, to control service price and resources for mobile users, is proposed.

    2) The resource price is formulated as the dynamic state of the LEO satellites, the variation of which is affected by the resource allocation strategy.

    3) Each satellite controls the resource allocation based on the Nash equilibrium solution for the proposed model.The optimal strategy is obtained for each satellite.

    The rest of this paper is organized as follows.In Section 2, a system model for the research of a multilayer satellite communication network is provided and the resource pricing and allocation problem formulated.In Section 3, the proposed model is analyzed.Numerical simulations and their results are discussed in Section 4.Section 5 concludes the paper.

    2 System Model and Problem Formulation

    2.1 System Model

    Fig.1 shows a multilayer satellite system, multiple mobile users, multiple LEO satellites, and one NLEO satellite.The NLEO satellite is the authorized user, with the right to use the spectrum resources.The LEO satellites are unauthorized users that cannot use the spectrum resources.They only have access to the spectrum resources if the NLEO satellite is not using them.The satellites are running in orbits, and when an LEO satellite moves into the NLEO satellite coverage area,it shuts down communication to allocate spectrum resources to the NLEO satellite.When not in the NLEO satellite coverage area, LEO satellites can use the spectrum resources.In the proposed multilayer satellite system, the movement of the LEO satellites and periodic usage of spectrum resources cause interference in the NLEO satellite network.Thus, controlling the LEO satellite equipment is crucial to managing their service time.This is an effective solution to the interference problem when LEO satellites are in the NLEO satellite coverage area.

    However, the shutdown of LEO satellites will interrupt connected mobile users and increase the waiting time for service.This reduces the quality of service (QoS) and decreases revenue from mobile users.Users whose services are interrupted must be placed in a waiting queue for service recovery, and time in the queue is controlled by LEO satellite service strategies, which are critical to balance QoS and stop interference due to a NLEO satellite.

    The multilayer satellite system is formulated herein as a dynamic game system using a dynamic variable state and control variables to optimally allocate the LEO satellites.Fig.1 shows the multilayer satellite system.LEO satellites should control service prices and times to balance the service and interference due to a NLEO satellite.

    Figure 1:System model

    2.2 Problem Formulation

    It is assumed that N LEO satellites are in the proposed multilayer satellite system.After paying for spectrum resources, the LEO satellites provide mobile services.The communication load of mobile users on LEO satellite i at time t is denotedmi(t), and the resource allocated by the satellite isri(t).The service latency time isuiis the unit cost of service time, and the cost brought by latency is

    The service price provided by LEO satellite i is denotedpi(t), with i = 1, 2,..., N.LEO satellites charge users a constant pricec, which is their minimum operation cost, wherepi(t)≥c.Given the service price, LEO satellites earn a profit of

    LEO satellites control their pricing strategies, which are considered state variables of the proposed satellite system.The resource allocation strategies are the main criteria used to define resource-pricing strategies because the allocation strategies can affect latency performance [14].If LEO satellites allocate more resources, then communication service requirements are better satisfied, improving latency performance and lowering the resource price.If the allocated resources for mobile users decrease, then latency performance will be worse, which raises the resource price.When service resources increase, LEO satellites should increase the service price.The relationship between the service price and allocated resources is expressed as

    whereδi,αi, andβiare weighted parameters.

    Spectrum resources are unavailable when LEO satellites are in a NLEO satellite coverage area, and mobile users are placed in a queue.Assuming the arrival rate of a NLEO satellite isλ, following a Poisson distribution, then the probability that the LEO satellites are in a NLEO satellite coverage area is

    The objective of each LEO satellite is to maximize the revenue earned from mobile users,

    subject to

    The resource pricing and allocation problem in the multilayer satellite system is formulated as a dynamic game, as follows:

    ? The LEO satellites are the players.

    ? The system state is the resource price.

    ? The strategy of each LEO satellite consists of the allocated resources for mobile users.

    3 Game Analysis

    The optimal strategies for the proposed problem are now discussed.Based on the system model and problem formulation, a dynamic resource pricing and allocation model is provided, as shown in Fig.2.

    Figure 2:Pricing and allocation model

    The Bellman dynamic programming technique is used to solve the proposed dynamic game model.As the resource-pricing strategy is formulated as the system state and the resource allocation strategy is the control variable, the optimal pricing strategy is achieved once the optimal resource allocation strategy for each LEO satellite is obtained.The following definitions must be developed before obtaining the optimal strategies.

    Definition 1The resource allocation strategyri*(t)is the optimal strategy for each LEO satellite, which, for all strategiesri(t)ri*(t), satisfies

    To obtain the resource allocation strategy for each LEO satellite, a Hamiltonian function is constructed for the proposed dynamic game model.This is a key component of the Bellman dynamic programming technique [15], and is defined as follows.

    Definition 2The Hamiltonian function of LEO satelliteiis

    whereΛi(t)is the co-state function, which satisfies

    From the Hamiltonian function above, the first derivative is calculated to find the optimal resource allocation strategy for each LEO satellite, as explained by the following theorem.

    Theorem 1The optimal resource allocation strategyri*(t)is obtained based on the open-loop Nash equilibrium of the proposed dynamic game in (5) and (6), wherepi*(t)is the corresponding optimal resource pricing strategy if there is a constant functionΛi(t)for LEO satellite i that satisfies

    Considering the optimal resource allocation and pricing problem given by (3) and (4), based on Pontryagin’s maximum principle, the Nash equilibrium solution is achieved for each LEO satellite, as given in the following theorem.

    Theorem 2There is a unique open-loop Nash equilibrium for each LEO satellite in the resource pricing and allocation problem, with optimal resource allocation strategy

    where [pi(t),Λi(t)] are the solutions to the following equations:

    Proof:The partial derivative of the Hamiltonian function given in (8) is calculated, giving

    Setting the partial derivative to zero,

    whereri*(t)is the optimal resource allocation strategy for LEO satellite i.Λi(t)is the co-state function, which satisfies

    Taking the optimal resource allocation strategy of LEO satellite i into the various functions of the service price,

    The algorithm to obtain the optimal resource allocation strategy for a LEO satellite is expressed as Algorithm 1.

    Algorithm 1:Optimal resource allocation of LEO satellite Input:Arrival rate of NLEO satellite Output:Optimal resource allocation strategies for LEO satellites 1.Initialize service price;2.for each LEO satellite do 3.Set objective function according to formula (5);4.end for 5.do 6.Set Hamiltonian function of each LEO satellite;

    ?

    Based on the proposed algorithm and the Nash equilibrium solutions of the proposed dynamic game, each satellite controls the resource allocation strategy and optimizes the objective function.An optimal pricing strategy is obtained for each satellite.As the differential gamebased model is non-cooperative, satellites do not require cooperation.To optimize their objective functions, the satellites non-cooperatively control their resource allocation strategies.

    4 Numerical Simulations

    Numerical simulations of the optimal pricing strategies and resource allocation strategies of LEO satellites were conducted using one NLEO satellite, which is the authorized user of spectrum resources, and three LEO satellites.When the LEO satellites are in the coverage area of the NLEO satellite, their spectrum resources are retrieved.Tab.1 provides parameters for the simulations.

    Table 1:Simulation Parameters

    Fig.3 provides the optimal resource allocation strategies for LEO satellites when the arrival rate of the NLEO satellite is 0.15.The LEO satellites allocate more resources at the beginning of the game to attract mobile users and provide satisfactory service.After approximately five iterations, each LEO satellite decreases the allocated resources to reduce the interference caused by the NLEO satellite.When the resource allocation strategies of the LEO satellites converge,LEO-2 has the most allocated resources and LEO-1 has the least; however, LEO-1 has the fastest convergence rate.Before the resource allocation strategies converge, LEO-3 has the largest value of allocated resources.

    Figure 3:Resource allocation strategies when λ= 0.5

    The LEO satellite’s optimal resource allocation strategies when the arrival rate of the NLEO satellite is changed were also simulated, as shown in Figs.4a and 4b.The arrival rates of the NLEO satellite in Figs.4a and 4b are 0.5 and 0.85, respectively.It is shown that the LEO satellites increase the allocated resources at the beginning of the game.After five iterations, the LEO satellites decrease their allocated resources.Comparing the resource allocation strategies in Figs.4a and 4b with that in Fig.3, it is observed that the allocated resources decrease with the increase of the NLEO satellite’s arrival rate.

    Figure 4:Resource allocation strategies (a) λ=0.5 (b) λ=0.85

    Fig.5 shows the optimal resource-pricing strategies for LEO satellites when the arrival rate of the NLEO satellite is 0.15.The resource-pricing strategy converges to a stable value after five iterations, which is fast.Based on the resource allocation strategies, LEO-2 and LEO-3 will increase their resource price and LEO-1 will decrease its price.LEO-3 has the highest resource price and LEO-1 has the lowest.

    Figure 5:Resource pricing strategies when λ= 0.15

    5 Conclusions

    The resource allocation problem of a multilayer satellite system was investigated and a dynamic game-based resource pricing and allocation model, using differential equations to formulate the resource-pricing strategy of each LEO satellite, proposed.Utility maximization based on an objective function was proposed for each LEO satellite, with the resource allocation strategy as the control variable.Bellman dynamic programming was used to maximize the objective function,and the Nash equilibrium solution of resource allocation of each LEO satellite was obtained.An algorithm was developed for the resource pricing and allocation model, and numerical simulations demonstrated its accuracy.

    Funding Statement:This work is supported by the National Natural Science Foundation of China(Grant No.61971032) and Fundamental Research Funds for the Central Universities (Grant No.FRF-TP-18-008A3).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    首页视频小说图片口味搜索| 天天影视国产精品| 99在线人妻在线中文字幕 | av网站免费在线观看视频| 老司机午夜十八禁免费视频| 真人做人爱边吃奶动态| 中文亚洲av片在线观看爽 | 中文字幕另类日韩欧美亚洲嫩草| 99热网站在线观看| 在线观看免费高清a一片| 久久久精品区二区三区| 在线观看人妻少妇| 欧美日韩中文字幕国产精品一区二区三区 | 欧美在线一区亚洲| 两人在一起打扑克的视频| 国产成人免费无遮挡视频| 丰满饥渴人妻一区二区三| 一区二区日韩欧美中文字幕| 久久亚洲真实| 成人18禁在线播放| 亚洲自偷自拍图片 自拍| 午夜精品国产一区二区电影| 老汉色av国产亚洲站长工具| av福利片在线| 免费一级毛片在线播放高清视频 | 亚洲精品乱久久久久久| 亚洲av片天天在线观看| 国产欧美日韩一区二区三区在线| 99国产精品一区二区三区| 男女午夜视频在线观看| 午夜福利在线免费观看网站| 亚洲天堂av无毛| 成人18禁高潮啪啪吃奶动态图| 午夜激情av网站| 巨乳人妻的诱惑在线观看| 国产精品自产拍在线观看55亚洲 | 久久久精品94久久精品| 精品福利观看| 国产精品久久久人人做人人爽| 69av精品久久久久久 | 国产伦理片在线播放av一区| 国产色视频综合| 伦理电影免费视频| 欧美日韩精品网址| 啦啦啦免费观看视频1| 91成年电影在线观看| 人人妻人人澡人人看| 亚洲色图综合在线观看| 欧美 日韩 精品 国产| 99精品欧美一区二区三区四区| 最新的欧美精品一区二区| 国产欧美日韩综合在线一区二区| 在线播放国产精品三级| 色视频在线一区二区三区| 正在播放国产对白刺激| 亚洲第一欧美日韩一区二区三区 | 中亚洲国语对白在线视频| 汤姆久久久久久久影院中文字幕| 日本wwww免费看| 久久人妻av系列| 99国产精品一区二区三区| 午夜精品国产一区二区电影| 他把我摸到了高潮在线观看 | 91老司机精品| 在线观看www视频免费| 久久狼人影院| 久久人妻熟女aⅴ| 亚洲伊人久久精品综合| 精品国产乱子伦一区二区三区| 97人妻天天添夜夜摸| 在线亚洲精品国产二区图片欧美| 黄片小视频在线播放| 中亚洲国语对白在线视频| 久久这里只有精品19| 黑人猛操日本美女一级片| 成人精品一区二区免费| 成年人午夜在线观看视频| 在线观看免费高清a一片| 老熟妇乱子伦视频在线观看| 亚洲精品国产区一区二| 亚洲美女黄片视频| 1024香蕉在线观看| 99精国产麻豆久久婷婷| a在线观看视频网站| aaaaa片日本免费| 久久久久精品国产欧美久久久| 亚洲av成人一区二区三| 亚洲五月色婷婷综合| 国产日韩欧美亚洲二区| 一本一本久久a久久精品综合妖精| 国产免费av片在线观看野外av| 天堂俺去俺来也www色官网| 成人国产一区最新在线观看| 欧美黑人欧美精品刺激| 一级,二级,三级黄色视频| 亚洲国产欧美在线一区| 精品少妇久久久久久888优播| 国产精品99久久99久久久不卡| 国产野战对白在线观看| 国产一区二区激情短视频| 精品熟女少妇八av免费久了| 9色porny在线观看| 我要看黄色一级片免费的| 国产深夜福利视频在线观看| 国产精品国产av在线观看| 精品国产一区二区三区久久久樱花| 天天操日日干夜夜撸| 最近最新中文字幕大全免费视频| 成人影院久久| 狠狠精品人妻久久久久久综合| 日韩熟女老妇一区二区性免费视频| 热99re8久久精品国产| 午夜日韩欧美国产| 人人妻,人人澡人人爽秒播| 老司机影院毛片| 久久精品国产99精品国产亚洲性色 | 亚洲成人手机| 精品视频人人做人人爽| 亚洲人成电影观看| 青青草视频在线视频观看| 每晚都被弄得嗷嗷叫到高潮| 免费女性裸体啪啪无遮挡网站| 高清av免费在线| 变态另类成人亚洲欧美熟女 | 搡老熟女国产l中国老女人| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲一区二区三区欧美精品| 啦啦啦中文免费视频观看日本| www.自偷自拍.com| 人人妻人人澡人人爽人人夜夜| 国产区一区二久久| 午夜激情av网站| 人人妻人人爽人人添夜夜欢视频| 免费不卡黄色视频| 在线 av 中文字幕| 国产91精品成人一区二区三区 | 精品亚洲成a人片在线观看| 天堂中文最新版在线下载| 狂野欧美激情性xxxx| 精品福利观看| 国产亚洲欧美在线一区二区| 日本撒尿小便嘘嘘汇集6| 国产精品国产高清国产av | a在线观看视频网站| 精品国内亚洲2022精品成人 | 后天国语完整版免费观看| 一级毛片精品| 欧美在线黄色| 久久性视频一级片| 99久久99久久久精品蜜桃| 免费少妇av软件| 99riav亚洲国产免费| 亚洲 欧美一区二区三区| 好男人电影高清在线观看| 极品教师在线免费播放| 国产成人啪精品午夜网站| 精品一区二区三区视频在线观看免费 | 精品高清国产在线一区| 欧美在线黄色| 99香蕉大伊视频| 久久精品亚洲精品国产色婷小说| 一进一出好大好爽视频| 三级毛片av免费| 老司机深夜福利视频在线观看| 欧美+亚洲+日韩+国产| 另类亚洲欧美激情| 99国产精品一区二区三区| 97在线人人人人妻| 成人亚洲精品一区在线观看| 免费观看a级毛片全部| 亚洲av成人一区二区三| 亚洲成人免费av在线播放| 免费高清在线观看日韩| 精品国产乱码久久久久久小说| 精品国产乱子伦一区二区三区| 久久婷婷成人综合色麻豆| 久久中文看片网| 在线观看免费日韩欧美大片| 国产人伦9x9x在线观看| 女人爽到高潮嗷嗷叫在线视频| 狠狠精品人妻久久久久久综合| 视频区欧美日本亚洲| 精品熟女少妇八av免费久了| 国产精品一区二区免费欧美| 99国产精品一区二区三区| 亚洲 国产 在线| 国产精品免费一区二区三区在线 | 免费看a级黄色片| 99国产精品免费福利视频| 日韩人妻精品一区2区三区| 女警被强在线播放| 黄色a级毛片大全视频| 亚洲精品成人av观看孕妇| h视频一区二区三区| 一夜夜www| 99热网站在线观看| 色播在线永久视频| 成人国产一区最新在线观看| 亚洲精品美女久久av网站| 又大又爽又粗| 亚洲欧洲日产国产| 五月天丁香电影| 欧美av亚洲av综合av国产av| 一夜夜www| 欧美精品高潮呻吟av久久| 精品国产一区二区三区久久久樱花| 在线观看66精品国产| 国产成人免费无遮挡视频| 熟女少妇亚洲综合色aaa.| 一区二区三区精品91| 精品国产一区二区三区久久久樱花| 捣出白浆h1v1| 亚洲av美国av| 超碰97精品在线观看| 757午夜福利合集在线观看| 天堂8中文在线网| 日本一区二区免费在线视频| 国产成人影院久久av| 亚洲国产精品一区二区三区在线| 亚洲中文av在线| 午夜福利,免费看| a级片在线免费高清观看视频| 亚洲成人免费av在线播放| 超碰97精品在线观看| 国产视频一区二区在线看| 亚洲自偷自拍图片 自拍| 一区二区三区乱码不卡18| 久久精品国产综合久久久| 伦理电影免费视频| 伦理电影免费视频| 一级毛片电影观看| 国产激情久久老熟女| 一本色道久久久久久精品综合| av片东京热男人的天堂| 18禁黄网站禁片午夜丰满| 男人操女人黄网站| 制服诱惑二区| 一级,二级,三级黄色视频| 精品国产乱码久久久久久男人| 亚洲久久久国产精品| 国产不卡av网站在线观看| 欧美精品高潮呻吟av久久| 欧美在线黄色| 国产一区有黄有色的免费视频| 欧美+亚洲+日韩+国产| 自线自在国产av| 亚洲成人免费av在线播放| 欧美变态另类bdsm刘玥| 国产男女超爽视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| www.999成人在线观看| 男女床上黄色一级片免费看| 人人妻人人爽人人添夜夜欢视频| 老熟女久久久| 黑人巨大精品欧美一区二区蜜桃| av线在线观看网站| 婷婷成人精品国产| 999精品在线视频| 嫩草影视91久久| 十八禁高潮呻吟视频| 免费黄频网站在线观看国产| 成人av一区二区三区在线看| 嫩草影视91久久| 亚洲精品在线观看二区| 亚洲少妇的诱惑av| 午夜免费成人在线视频| 午夜精品国产一区二区电影| 国产欧美日韩一区二区三区在线| 国产成人欧美| 另类精品久久| 建设人人有责人人尽责人人享有的| 一边摸一边做爽爽视频免费| 在线观看www视频免费| 999久久久精品免费观看国产| 国产视频一区二区在线看| 动漫黄色视频在线观看| 12—13女人毛片做爰片一| 999精品在线视频| 亚洲精品在线观看二区| 国产精品麻豆人妻色哟哟久久| 啦啦啦免费观看视频1| av欧美777| 十八禁网站网址无遮挡| 一二三四社区在线视频社区8| 国产午夜精品久久久久久| 91成年电影在线观看| 国产免费现黄频在线看| 国产伦人伦偷精品视频| 国产伦人伦偷精品视频| 亚洲黑人精品在线| 这个男人来自地球电影免费观看| 国产av又大| 中文字幕人妻熟女乱码| aaaaa片日本免费| 亚洲第一欧美日韩一区二区三区 | 美女国产高潮福利片在线看| 777久久人妻少妇嫩草av网站| 桃红色精品国产亚洲av| 99久久国产精品久久久| 国产一区二区在线观看av| 操美女的视频在线观看| 亚洲avbb在线观看| 久久人妻av系列| 国产av国产精品国产| av不卡在线播放| 在线观看免费视频日本深夜| 免费黄频网站在线观看国产| 欧美老熟妇乱子伦牲交| videosex国产| 久久99一区二区三区| 男女边摸边吃奶| 最黄视频免费看| 日韩中文字幕视频在线看片| www.熟女人妻精品国产| 正在播放国产对白刺激| 午夜日韩欧美国产| 久久久久网色| 18禁观看日本| 午夜福利视频在线观看免费| 日韩欧美一区视频在线观看| 亚洲av美国av| 成年人免费黄色播放视频| 男女下面插进去视频免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 99香蕉大伊视频| 国产精品欧美亚洲77777| 亚洲成人手机| 国产精品一区二区精品视频观看| 亚洲全国av大片| 欧美黑人精品巨大| 国产精品一区二区在线观看99| 如日韩欧美国产精品一区二区三区| 欧美成人免费av一区二区三区 | 成人特级黄色片久久久久久久 | 男女午夜视频在线观看| av欧美777| 欧美激情高清一区二区三区| 老鸭窝网址在线观看| 人成视频在线观看免费观看| 嫁个100分男人电影在线观看| 国产精品免费大片| 精品久久久精品久久久| 色综合婷婷激情| 欧美日韩av久久| 久久久久久久国产电影| av欧美777| 久久久国产精品麻豆| 欧美日韩亚洲综合一区二区三区_| 青草久久国产| 国产高清videossex| 在线 av 中文字幕| 亚洲精品美女久久av网站| 91成人精品电影| 极品教师在线免费播放| 菩萨蛮人人尽说江南好唐韦庄| 最新美女视频免费是黄的| 在线观看66精品国产| 日本欧美视频一区| 美女高潮到喷水免费观看| 日本av免费视频播放| 亚洲精品国产一区二区精华液| 王馨瑶露胸无遮挡在线观看| 无遮挡黄片免费观看| 久久久久国内视频| 色综合婷婷激情| 宅男免费午夜| 三级毛片av免费| 久久国产精品影院| 99国产综合亚洲精品| 国产亚洲午夜精品一区二区久久| 又大又爽又粗| 久久精品国产99精品国产亚洲性色 | 国产精品自产拍在线观看55亚洲 | 成人精品一区二区免费| 成人特级黄色片久久久久久久 | 免费少妇av软件| 欧美变态另类bdsm刘玥| 中文字幕人妻丝袜制服| 久久午夜亚洲精品久久| √禁漫天堂资源中文www| www日本在线高清视频| 精品国产亚洲在线| 久久国产精品男人的天堂亚洲| 人人妻人人爽人人添夜夜欢视频| 久久中文字幕一级| 久久九九热精品免费| 免费在线观看黄色视频的| 大码成人一级视频| 人人妻人人添人人爽欧美一区卜| 在线十欧美十亚洲十日本专区| 伊人久久大香线蕉亚洲五| h视频一区二区三区| 国产精品二区激情视频| 中亚洲国语对白在线视频| 一本—道久久a久久精品蜜桃钙片| 50天的宝宝边吃奶边哭怎么回事| 午夜福利影视在线免费观看| 动漫黄色视频在线观看| 精品亚洲乱码少妇综合久久| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品国产精品久久久不卡| 久久免费观看电影| 欧美国产精品va在线观看不卡| 午夜精品国产一区二区电影| 午夜福利一区二区在线看| 国产亚洲精品久久久久5区| 成人黄色视频免费在线看| 国产成人欧美在线观看 | 俄罗斯特黄特色一大片| 在线观看免费日韩欧美大片| 欧美成人免费av一区二区三区 | 国产日韩欧美视频二区| 免费黄频网站在线观看国产| 99re在线观看精品视频| 老汉色av国产亚洲站长工具| 91av网站免费观看| a在线观看视频网站| 桃红色精品国产亚洲av| 精品国产乱码久久久久久小说| 最黄视频免费看| 丰满人妻熟妇乱又伦精品不卡| 精品少妇内射三级| 欧美亚洲日本最大视频资源| 国产不卡av网站在线观看| 男人操女人黄网站| 亚洲精品av麻豆狂野| 十八禁高潮呻吟视频| a在线观看视频网站| 99久久99久久久精品蜜桃| 亚洲自偷自拍图片 自拍| 9191精品国产免费久久| 在线观看免费高清a一片| 成人特级黄色片久久久久久久 | 亚洲全国av大片| 国产精品自产拍在线观看55亚洲 | 另类亚洲欧美激情| 久久精品亚洲av国产电影网| 国产成人精品久久二区二区免费| 国产在线观看jvid| 一区福利在线观看| 午夜福利在线观看吧| 欧美大码av| 蜜桃国产av成人99| 99国产综合亚洲精品| 国产精品 欧美亚洲| 伊人久久大香线蕉亚洲五| 国产福利在线免费观看视频| 亚洲精品国产色婷婷电影| 999精品在线视频| 亚洲一码二码三码区别大吗| 夜夜骑夜夜射夜夜干| 免费不卡黄色视频| 一边摸一边做爽爽视频免费| 欧美日韩视频精品一区| 999久久久国产精品视频| 亚洲国产av新网站| 亚洲国产看品久久| 最新美女视频免费是黄的| 捣出白浆h1v1| 一本大道久久a久久精品| 欧美精品一区二区大全| 激情视频va一区二区三区| 18禁黄网站禁片午夜丰满| 97在线人人人人妻| 多毛熟女@视频| 精品乱码久久久久久99久播| 亚洲国产欧美网| 亚洲一码二码三码区别大吗| 亚洲欧美激情在线| 一区二区av电影网| 精品一区二区三卡| 国产一区二区 视频在线| 日韩熟女老妇一区二区性免费视频| 我要看黄色一级片免费的| 麻豆av在线久日| 欧美 日韩 精品 国产| 亚洲成a人片在线一区二区| 亚洲第一av免费看| 青青草视频在线视频观看| 久久精品人人爽人人爽视色| 曰老女人黄片| 久久久国产成人免费| 97在线人人人人妻| svipshipincom国产片| 国产欧美日韩精品亚洲av| av电影中文网址| 欧美在线一区亚洲| 女性被躁到高潮视频| 日韩熟女老妇一区二区性免费视频| 2018国产大陆天天弄谢| 久久久久久人人人人人| 一边摸一边抽搐一进一小说 | 男人操女人黄网站| 老司机深夜福利视频在线观看| 宅男免费午夜| 日韩大片免费观看网站| 好男人电影高清在线观看| 91国产中文字幕| 欧美激情久久久久久爽电影 | 啪啪无遮挡十八禁网站| 黑人操中国人逼视频| 亚洲精品美女久久久久99蜜臀| 欧美国产精品一级二级三级| 搡老岳熟女国产| 桃花免费在线播放| 自线自在国产av| 欧美乱妇无乱码| 一级a爱视频在线免费观看| 亚洲国产精品一区二区三区在线| 精品一区二区三区视频在线观看免费 | 免费在线观看影片大全网站| 可以免费在线观看a视频的电影网站| 国产精品国产av在线观看| 99国产精品99久久久久| av网站免费在线观看视频| 女人被躁到高潮嗷嗷叫费观| 日韩中文字幕视频在线看片| 中文字幕人妻丝袜一区二区| 国产1区2区3区精品| 亚洲黑人精品在线| 亚洲全国av大片| 亚洲综合色网址| 精品人妻熟女毛片av久久网站| 女人爽到高潮嗷嗷叫在线视频| 麻豆av在线久日| 久久精品国产a三级三级三级| 多毛熟女@视频| 视频区欧美日本亚洲| 97人妻天天添夜夜摸| 国产伦人伦偷精品视频| 国产无遮挡羞羞视频在线观看| 国产精品亚洲av一区麻豆| 国产精品久久久人人做人人爽| 中文字幕高清在线视频| 亚洲精品自拍成人| 丝瓜视频免费看黄片| 一级毛片电影观看| 国产一区二区三区在线臀色熟女 | 日韩一卡2卡3卡4卡2021年| 妹子高潮喷水视频| 国产主播在线观看一区二区| 国产免费福利视频在线观看| 国产精品久久久久久精品电影小说| 国产黄色免费在线视频| 精品少妇一区二区三区视频日本电影| 亚洲国产欧美一区二区综合| 成年版毛片免费区| 亚洲精品自拍成人| 精品国产亚洲在线| 在线观看免费午夜福利视频| 天天躁夜夜躁狠狠躁躁| aaaaa片日本免费| 免费看a级黄色片| 两人在一起打扑克的视频| 久久久久久免费高清国产稀缺| 最新的欧美精品一区二区| 国产av国产精品国产| 日本精品一区二区三区蜜桃| 久久久国产一区二区| 巨乳人妻的诱惑在线观看| 亚洲国产av新网站| 久久久久久久大尺度免费视频| 久久九九热精品免费| 妹子高潮喷水视频| 波多野结衣一区麻豆| 成人av一区二区三区在线看| 欧美日韩一级在线毛片| 国产欧美日韩一区二区三区在线| 日本一区二区免费在线视频| 999精品在线视频| 制服诱惑二区| 黑人巨大精品欧美一区二区mp4| 一夜夜www| 老司机深夜福利视频在线观看| 免费观看av网站的网址| 亚洲va日本ⅴa欧美va伊人久久| 狠狠狠狠99中文字幕| 99国产精品一区二区三区| 国产福利在线免费观看视频| 动漫黄色视频在线观看| 亚洲成a人片在线一区二区| 久久精品国产亚洲av香蕉五月 | 十八禁人妻一区二区| 亚洲欧美激情在线| 久久亚洲真实| 一二三四在线观看免费中文在| 日韩欧美免费精品| 欧美乱码精品一区二区三区| 精品国产乱码久久久久久男人| 国产精品久久久久成人av| 亚洲国产精品一区二区三区在线| 一边摸一边抽搐一进一出视频| 99国产精品一区二区蜜桃av | 一区二区三区激情视频| 免费观看a级毛片全部| 男人舔女人的私密视频| 国产成人免费观看mmmm| 国产又爽黄色视频| 久久久精品94久久精品| 亚洲,欧美精品.| 窝窝影院91人妻| 大陆偷拍与自拍| 免费日韩欧美在线观看| av超薄肉色丝袜交足视频| 在线观看www视频免费| 国产极品粉嫩免费观看在线| 日本五十路高清| 欧美日韩亚洲国产一区二区在线观看 | 午夜激情久久久久久久| 欧美变态另类bdsm刘玥| 黄色a级毛片大全视频| 天天添夜夜摸| 黄色 视频免费看| 在线播放国产精品三级| 精品免费久久久久久久清纯 |