• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Task Scheduling Optimization in Cloud Computing Based on Genetic Algorithms

    2021-12-15 07:07:58AhmedHamedandMonagiAlkinani
    Computers Materials&Continua 2021年12期

    Ahmed Y.Hamedand Monagi H.Alkinani

    1Faculty of Computers and Information,Department of Computer Science,Sohag University,Sohag,82524,Egypt

    2Department of Computer Science and Artifciial Intelligence,College of Computer Science and Engineering,University of Jeddah,Jeddah,21959,Saudi Arabia

    Abstract:Task scheduling is the main problem in cloud computing that reduces system performance;it is an important way to arrange user needs and perform multiple goals.Cloud computing is the most popular technology nowadays and has many research potential in various areas like resource allocation,task scheduling,security,privacy,etc.To improve system performance,an efficient task-scheduling algorithm is required.Existing task-scheduling algorithms focus on task-resource requirements,CPU memory,execution time,and execution cost.In this paper, a task scheduling algorithm based on a Genetic Algorithm (GA) has been presented for assigning and executing different tasks.The proposed algorithm aims to minimize both the completion time and execution cost of tasks and maximize resource utilization.We evaluate our algorithm’s performance by applying it to two examples with a different number of tasks and processors.The first example contains ten tasks and four processors; the computation costs are generated randomly.The last example has eight processors,and the number of tasks ranges from twenty to seventy;the computation cost of each task on different processors is generated randomly.The achieved results show that the proposed approach significantly succeeded in finding the optimal solutions for the three objectives;completion time,execution cost,and resource utilization.

    Keywords: Cloud computing; task scheduling; genetic algorithm;optimization algorithm

    1 Introduction

    Recently, cloud computing is the most popular technology; resource allocation, task scheduling, security, and privacy have been widely used in various fields.Scheduling plays an important role in improving the efficiency of all cloud-based services.In cloud computing, task scheduling is used to assign the task to the optimal resource for execution.Task scheduling algorithms have different types of algorithms and different issues as completion time, execution cost,complexity, etc.

    Cloud computing has emerged as a new computing platform according to the development of virtualization and Internet technologies [1].It can be viewed as a distributed system containing interconnected and virtualized computers that are dynamically provisioned.It maintains the service-level agreements (SLA) between the users and the host applications [2].

    Cloud computing is interested in resource management, security, performance, reliability,etc., [3].Resource management is one of the important issues in task scheduling.The task scheduling problem in cloud computing is how to distribute the tasks of users on the available hardware to improve the overall performance of the cloud computing environment [4].

    In [5], the authors presented an implementation to the task scheduling using .NET and a GAbased scheduling algorithm to achieve the task and its priority.They grouped the available jobs and executed them using different proposed algorithms.In addition, in [6], a GA was proposed to solve the task scheduling in cloud computing under considering total task completion time,average task completion time, and cost constraint.

    The objective of task scheduling in the multiprocessor system is to assign a dependent task to the processors, and the processing time will be reduced.To minimize the processing time,the GA has applied to the processors to obtain various solutions and faster processing time.Task scheduling considers two aspects:the earliest start time (EST) and some task dependencies(NTD).This comparison made by using Java simulation and the result obtained that the proposed algorithm solves minimum EST attains faster processing time than the maximum EST [7].

    The task scheduling algorithms using Efficient State Space Search GA (ESSSGA) use the benefits of heuristic-based algorithms to minimize space search and time to obtain effective solutions [8].The task to processor mapping has been made using a heuristic-based earliest finish time approach that reduces the time regarding task execution time.

    A new GA for task scheduling in the multiprocessor systems has indicated that task execution priority depends on the height of task graphs to perform scheduling.This method is simulated and used to compare with the basic genetic algorithm [9].The GA efficiency could be attained by the optimization of different parameters like mutation, crossover, selection function, and crossover probability.These GA parameters on the reduction of bi-criteria fitness functions and parameter setting will be accomplished by a central composite design approach with design experiments.The experiments use these parameters and analysis of variance, which reduce the total completion time and makespan [10].

    A new GA is used for solving the problems in scheduling task graphs.The algorithm is entirely dependent on the new approach to reduce the communication cost of processors and the length of critical time.In order to solve the scheduling of the task graph, effective GA has been applied.GA proposed for scheduling the task graph that can be acquired is effective in scheduling with low time.The results obtained from the study stated that the algorithm related to graphs without communication cost could act quickly when compared to other MCP algorithms [11].

    The GA chromosomes like task list (TL), processor list (PL), and integration of both(TLPLC).The experiments on real-world application graphs like Gaussian elimination, Gauss Jordan and Laplace equation, and LU decompositions.TLPLCGA is related to GA and heuristic algorithms regarding the processor’s time and efficiency conducted.The result experienced was that the hybrid approach performs better than the other algorithms [12].

    The effectiveness of Node Duplication GA (NGA) based approach against the existing deterministic scheduling techniques for reducing the interprocessor traffic communication.The results obtained from the simulations indicate that the GA can use the scheduled task to meet deadlines and acquire high processor utilization.Performance analysis of NGA is compared with GA,FCFS, and List Scheduler [13].

    An effective method based on GA is created to solve the problem of multiprocessor scheduling.This paper used GA for scheduling precedence task graphs with inter-task communication onto multiprocessors without considering the communication channel.Experimental results show that hard problems have been taken from the internet, illustrates GA with optimization of parameters [14].

    The task scheduling problem has been formulated as a multi-objective optimization problem [15,16].In [15], the authors proposed a GA-DE algorithm based on GA and Differential Evolution (DE) to solve the problem under three constraints; total time, cost, and virtual machine load balancing.While [16] developed an EDA-GA hybrid scheduling algorithm based on EDA(estimation of distribution algorithm) and GA to solve the scheduling problem.

    The optimal solution to the task scheduling problem cannot be obtained in a limited time and can be found by performing a comprehensive search.So, it is one of the NP-Complete problems [17–20].Therefore, this paper develops a GA-based algorithm to solve the task scheduling problem in the cloud environment.The proposed algorithm’s objective is to allocate and execute dependent tasks in an optimal manner to minimize both the completion time and execution cost and maximize resource utilization.

    The rest of this paper is presented as follows:Section 2 discusses problem definition.In Section 3, the operations of the proposed algorithm are illustrated.Our GA approach to finding the optimal task scheduling for a cloud computing system is described in Section 4.Section 5 discusses the results, and in Section 6, conclusions are given.

    2 Notations

    G A task graph

    DAG A Directed Acyclic Graph

    tkTask k

    Pi Processor i

    M

    Number of tasks

    N Number of processors

    ni Node i

    ST (ni, p) Start time of node i on a processor p

    FT (ni, p) Finish time of node i on a processor p

    RT (pi) Ready time of the processor i

    Wij Computation cost of task i on the processor j

    Cost (Pj) The cost of processor j per second.

    BjBusy time of Pj

    LT Tasks’List based on DAG order.

    DAT (ti, pj) The Data Arrival Time of task i at processor j

    CP A critical Path of G

    Pc Crossover ratio

    Pm Mutation ratio

    Pop_size Population size

    GN Number of Generations

    Maxgn Maximum generation

    3 Problem Definition

    We denote the task scheduling in the cloud computing as a Graph G (M, E) with M nodes(n1, n2, n3,...,nM).Each node represents a task of G and E directed edges, denoting a partial request of the tasks.The partial request leads to a precedence-constrained (ni→nj), i.e.,niprecedesnjin the execution process.Each node represents an instruction that could be executed along with other instructions sequentially on the same processor; it has one or more inputs.Based on the availability of the inputs, the node (an entry or exit node) is triggered to execute [21].

    The execution time of a nodeniis denoted by (ni) weight.If the processor’s processing speed is Psj, then the processing time for tasktion the processor j (Wij) can be calculated by the following equation.We call the processing time the computation cost.

    The computation cost of node i on the processor j (Wij) is estimated randomly in the proposed algorithm.

    Let C(ni, nj) be the communication cost of an edge (weight of an edge), and it will be equal to zero ifniandnjare processed on the same processor.All the computation and communication costs for a problem are generated randomly in the proposed algorithm.Fig.1 is a form of task scheduling in cloud computing.

    Figure 1:The computation and communication costs of DAG

    In this paper, the processors in cloud computing are heterogeneous.Therefore, the task’s computation cost varies according to the processor.The start and finish time ofniis denoted byST(ni;pj) andFT(ni;pj), respectively.

    The Data Arrival Time (DAT) of tiat processor pjis given by, [21]:

    whereN_parentis the number of ti’s parents andC(ti.tk)=0; iftiandtkare scheduled on the same processor.

    The task scheduling problem in cloud computing can be defined as; Find the best assignment of the start times of the given tasks on processors such that the schedule length (the completion time) and execution cost are minimized with the condition that precedence-constrained is preserved.

    The completion time is defined as the schedule length or finish time and is computed by:

    where,

    The following pseudo-code shows how to find the schedule length (denoted byS_Length)using SGA, [21]:

    The total cost (Executin Cost) of all tasks on the available processors is calculated by:

    The utilization of resources is given by dividing the total value ofBjover the completion time of an application.As follows, [22]:

    That is, the objective is to minimize Eqs.(3), (5) and (6).

    4 The Proposed GA

    The following subsections investigate the different components of the proposed GA, encoding,initialization, objective function, crossover, and mutation operations.The GA is terminated when the best solution found, or the number of generations exceeds the Maxgn.

    4.1 Encoding Method

    In the proposed GA, if we have M tasks and N processors, the chromosome is divided into two parts; distributing and scheduling parts.The distributing part represents the processor’s indices, and the scheduling part shows the tasks to be processed, as shown in Fig.2.According to Fig.2, the processor P1processes the tasks t1, t3, while t4and t6will be processed by P2,...etc.The length of the chromosome is linearly proportional to the number of tasks.

    Figure 2:Tasks representation on processors

    4.2 Initial Population

    The initial population is generated randomly and according to the following steps:

    (1) A chromosome X is generated, as shown in Fig.2.

    (2) The first part of X is generated randomly from 1 to N.

    (3) The second part is generated randomly from 1 to M taking into account the precedenceconstrained.

    (4) Repeat from 1 to 3 to generate the number of chromosomes (population size).

    4.3 The Fitness Function

    This paper’s main objective is to map all the tasks to all the processors, minimize the completion time, execution cost, and maximize resource utilization.Therefore, the fitness function (Fit) of the candidate solution is the minimum value of the completion time.i.e.,Fit=Min(Completion Time).

    4.4 The Genetic Operations

    4.4.1 The Crossover Operation

    In the crossover, we use a 1-point crossover to produce one child from two selected parents based on the Pc value.The distributing part of the child is taken from the distributing part of the first parent, and the scheduling part of it is taken from the second parent.Fig.3 explains the crossover operation:

    Figure 3:The crossover operation

    4.4.2 The Mutation Operation

    The mutation operation is performed on the distributing part of the selected parent based on the Pm value.The position to be mutated is selected randomly to change its value as shown in Fig.4.

    Figure 4:The mutation operation

    5 The Whole Algorithm

    The following algorithm explains how to use the different components of the proposed GA as described in Section 3 to solve the task scheduling problem.

    ?

    ?

    6 Case Study

    In this section, the proposed GA has been applied to two examples.The values of pop_size,Pc, and Pmare 20, 0.95, and 0.02, respectively.

    6.1 Example1

    In this example, the number of M is 10 tasks, and N is 4 processors.The communication cost between the tasks and the computation cost of each task on different processors are generated randomly from 1 to 20, and 1 to 5, respectively.The communication cost and the computation cost are shown in Tabs.1 and 2, respectively.

    Table 1:The communication cost between the tasks

    Table 2:The computation cost of each task on different processors

    The cost of different processors per second is generated randomly from 1 to 10 and is shown in Tab.3.

    Table 3:The cost of different processors per second

    The best solution obtained by the proposed genetic algorithm is shown in Fig.5.

    Figure 5:The best solution

    The task scheduling on the different processors is shown in Tab.4 and Fig.6.

    Table 4:The task scheduling on the different processors

    Figure 6:The task scheduling on the different processors

    The busy time of the processors is shown in Tab.5 and Fig.7.

    Table 5:The busy time for each processor

    Figure 7:The busy time for each processor

    The available time of the processors is shown in Tab.6 and Fig.8.

    Table 6:The available time of the processors

    Figure 8:The available time of the processors

    The completion time, execution cost, utilization, speedup, and efficiency are shown in the following table, Tab.7.

    Table 7:The completion time, execution cost, utilization, speedup, and efficiency

    6.2 Example2

    In this example, consider four cases with N = 8 processors.The number of tasks is:20, 30,40, 50, and 70 tasks in the first, second, third, and fourth case (M = 20, 30, 40, 50, and 50).The communication cost between the tasks and the computation cost of each task on different processors are generated randomly from 1 to 20, and 1 to 5, respectively.

    The completion time, execution cost, utilization, speedup, and efficiency are shown in the following table, Tab.8 and Figs.9–11.

    Table 8:The completion time, execution cost, utilization, speedup, and efficiency

    Figure 9:The completion time of the problems

    Figure 11:The resource utilization of the problems

    7 Conclusion

    The proposed GA has successfully solved task scheduling problem in Cloud computing in this paper.The proposed algorithm targets to minimize completion time, execution cost and maximize resource utilization.The completeness and correctness of the proposed algorithm have been tested.This has proven that our proposed technique enabled us to obtain results faster, leading to saving time and effort.In other words, the use of the proposed genetic algorithm has played a major role in reducing the search space generated by the problem.

    In summary, our experimental results indicate that the algorithm is more efficient than other heuristics.To the best of our knowledge, our method’s structure and design are designed for the task scheduling problem in the cloud computing environment.This has made it very hard to find common features with other previous methods for comparison reasons.

    Acknowledgement:The authors thank the anonymous referees for their careful readings and provisions of helpful suggestions to improve the presentation.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    国产一级毛片在线| 青春草亚洲视频在线观看| 天天添夜夜摸| 巨乳人妻的诱惑在线观看| 国产精品一二三区在线看| 精品第一国产精品| 国产国语露脸激情在线看| 亚洲精品日韩在线中文字幕| 美女脱内裤让男人舔精品视频| 在线观看免费视频网站a站| 日韩一区二区三区影片| 高清不卡的av网站| 夫妻午夜视频| 亚洲色图 男人天堂 中文字幕| 久久中文字幕一级| www.999成人在线观看| 国产成人av教育| 男的添女的下面高潮视频| 国产淫语在线视频| 在线亚洲精品国产二区图片欧美| 性高湖久久久久久久久免费观看| 久久亚洲国产成人精品v| 99久久人妻综合| 欧美成人精品欧美一级黄| 亚洲专区国产一区二区| 2021少妇久久久久久久久久久| 国产1区2区3区精品| 日本av手机在线免费观看| 91老司机精品| 欧美中文综合在线视频| 亚洲精品乱久久久久久| 国产麻豆69| 久久精品久久久久久噜噜老黄| 男女边摸边吃奶| 久久久亚洲精品成人影院| 在线看a的网站| 亚洲七黄色美女视频| 精品免费久久久久久久清纯 | 久久久久国产精品人妻一区二区| 欧美日韩av久久| 亚洲一区中文字幕在线| 美女国产高潮福利片在线看| 国产免费一区二区三区四区乱码| 国精品久久久久久国模美| 国产亚洲午夜精品一区二区久久| 女人精品久久久久毛片| 国产成人91sexporn| 婷婷色综合大香蕉| 国产一区二区三区av在线| 日韩大码丰满熟妇| 国产色视频综合| 男女边摸边吃奶| 亚洲一区二区三区欧美精品| 在线观看免费日韩欧美大片| 高清黄色对白视频在线免费看| 亚洲人成77777在线视频| 大陆偷拍与自拍| 人体艺术视频欧美日本| 欧美日韩一级在线毛片| 黄色视频不卡| 日本黄色日本黄色录像| 久久精品国产亚洲av涩爱| 亚洲av日韩精品久久久久久密 | 美女主播在线视频| 七月丁香在线播放| av又黄又爽大尺度在线免费看| 国产亚洲欧美精品永久| 国产精品三级大全| 国产日韩一区二区三区精品不卡| 人人妻人人添人人爽欧美一区卜| 中文字幕av电影在线播放| 热re99久久国产66热| 一级毛片我不卡| www日本在线高清视频| 一级黄片播放器| 国产精品一二三区在线看| 飞空精品影院首页| 久久精品国产a三级三级三级| 男女午夜视频在线观看| 亚洲国产看品久久| 国产一区二区激情短视频 | 午夜精品国产一区二区电影| 黄网站色视频无遮挡免费观看| 亚洲专区中文字幕在线| 日本91视频免费播放| 免费黄频网站在线观看国产| 一区福利在线观看| 99re6热这里在线精品视频| 深夜精品福利| 久久女婷五月综合色啪小说| 国产免费福利视频在线观看| 欧美日韩成人在线一区二区| 69精品国产乱码久久久| 99热网站在线观看| 午夜久久久在线观看| 青青草视频在线视频观看| 亚洲国产最新在线播放| a 毛片基地| 国产精品久久久久久精品古装| 另类精品久久| 18禁观看日本| 久久精品熟女亚洲av麻豆精品| 久久久欧美国产精品| 欧美日本中文国产一区发布| 精品国产一区二区三区久久久樱花| 黄频高清免费视频| 国产成人精品在线电影| 国产成人免费无遮挡视频| 午夜91福利影院| 免费一级毛片在线播放高清视频 | 欧美日韩亚洲高清精品| 一本综合久久免费| 精品国产国语对白av| 好男人视频免费观看在线| 99九九在线精品视频| 欧美人与性动交α欧美软件| 咕卡用的链子| 亚洲欧美一区二区三区久久| 女性被躁到高潮视频| 亚洲成人免费电影在线观看 | 久久99一区二区三区| 亚洲国产精品一区二区三区在线| 国产精品.久久久| 国产有黄有色有爽视频| 你懂的网址亚洲精品在线观看| 国产福利在线免费观看视频| 老鸭窝网址在线观看| 亚洲av国产av综合av卡| 国产精品一国产av| 国产精品一国产av| 国产一区二区三区av在线| 99热网站在线观看| 中文字幕最新亚洲高清| 久久久久久久久免费视频了| 丝袜美足系列| 在线 av 中文字幕| 久久人人爽人人片av| 超碰97精品在线观看| 热re99久久精品国产66热6| 久久人人爽人人片av| 老熟女久久久| 国产一区有黄有色的免费视频| 亚洲第一青青草原| 黑丝袜美女国产一区| 男女边摸边吃奶| 亚洲欧洲国产日韩| 各种免费的搞黄视频| 熟女少妇亚洲综合色aaa.| 在线观看国产h片| 亚洲成人手机| 在线观看www视频免费| 极品少妇高潮喷水抽搐| 人妻 亚洲 视频| 女性生殖器流出的白浆| 亚洲色图 男人天堂 中文字幕| 欧美精品一区二区大全| 99热国产这里只有精品6| 欧美日韩亚洲国产一区二区在线观看 | 一二三四在线观看免费中文在| 久久久精品区二区三区| 嫩草影视91久久| 国产又色又爽无遮挡免| 人体艺术视频欧美日本| 亚洲国产欧美一区二区综合| 99香蕉大伊视频| 美女扒开内裤让男人捅视频| 中文字幕av电影在线播放| 欧美日韩精品网址| 午夜精品国产一区二区电影| 国产又爽黄色视频| 99国产精品免费福利视频| 亚洲欧美一区二区三区黑人| 香蕉国产在线看| 91麻豆av在线| 亚洲中文日韩欧美视频| 欧美国产精品va在线观看不卡| 悠悠久久av| 午夜影院在线不卡| 考比视频在线观看| 51午夜福利影视在线观看| 男女边摸边吃奶| 午夜老司机福利片| 久久国产精品人妻蜜桃| 咕卡用的链子| 麻豆乱淫一区二区| videos熟女内射| 久久天堂一区二区三区四区| 免费观看人在逋| 一区二区三区精品91| 一本色道久久久久久精品综合| 高潮久久久久久久久久久不卡| 国产片特级美女逼逼视频| 亚洲av在线观看美女高潮| 国产一卡二卡三卡精品| 精品免费久久久久久久清纯 | 国产97色在线日韩免费| 黑人欧美特级aaaaaa片| 中文字幕高清在线视频| 日韩一区二区三区影片| 国产精品久久久av美女十八| 久久国产精品大桥未久av| 亚洲色图 男人天堂 中文字幕| 国产精品免费大片| 亚洲欧美清纯卡通| 中文字幕亚洲精品专区| 人人妻人人爽人人添夜夜欢视频| 男女下面插进去视频免费观看| 操出白浆在线播放| 久久ye,这里只有精品| 亚洲精品日本国产第一区| 91成人精品电影| 国产精品.久久久| 欧美精品一区二区免费开放| √禁漫天堂资源中文www| 脱女人内裤的视频| 97精品久久久久久久久久精品| 国产日韩欧美亚洲二区| 亚洲精品美女久久av网站| 婷婷色麻豆天堂久久| 欧美日韩亚洲国产一区二区在线观看 | 国产午夜精品一二区理论片| 成在线人永久免费视频| 丝袜人妻中文字幕| 亚洲综合色网址| 咕卡用的链子| 悠悠久久av| 午夜福利视频在线观看免费| 国产精品.久久久| 如日韩欧美国产精品一区二区三区| 伦理电影免费视频| 一级毛片我不卡| 成年av动漫网址| 亚洲第一青青草原| 1024视频免费在线观看| 免费久久久久久久精品成人欧美视频| 中文字幕高清在线视频| 老司机靠b影院| 久久亚洲国产成人精品v| 国产成人精品久久二区二区91| 国产成人免费观看mmmm| 亚洲色图综合在线观看| 国产日韩欧美视频二区| 久久久精品免费免费高清| 一级毛片黄色毛片免费观看视频| 日本av免费视频播放| 欧美国产精品一级二级三级| 美国免费a级毛片| 老汉色∧v一级毛片| 久久av网站| 免费看十八禁软件| 丰满人妻熟妇乱又伦精品不卡| 人妻人人澡人人爽人人| 99久久人妻综合| 色网站视频免费| 99热网站在线观看| 精品卡一卡二卡四卡免费| 亚洲精品国产区一区二| 精品人妻在线不人妻| 少妇裸体淫交视频免费看高清 | 亚洲一码二码三码区别大吗| 午夜av观看不卡| videos熟女内射| 熟女av电影| 国产免费福利视频在线观看| 一级毛片 在线播放| 男男h啪啪无遮挡| 日韩 亚洲 欧美在线| 精品亚洲成a人片在线观看| 尾随美女入室| 美女大奶头黄色视频| 午夜老司机福利片| 50天的宝宝边吃奶边哭怎么回事| 老司机在亚洲福利影院| 久久久国产欧美日韩av| 亚洲成色77777| 亚洲人成电影免费在线| 精品一区二区三区av网在线观看 | 国产黄色视频一区二区在线观看| 纯流量卡能插随身wifi吗| a级片在线免费高清观看视频| 中国美女看黄片| 美女扒开内裤让男人捅视频| 亚洲精品国产av成人精品| 亚洲专区中文字幕在线| 捣出白浆h1v1| 亚洲色图 男人天堂 中文字幕| 国产精品人妻久久久影院| 久久青草综合色| 午夜两性在线视频| 1024香蕉在线观看| 国产成人精品久久二区二区91| av片东京热男人的天堂| 亚洲国产最新在线播放| 亚洲精品一区蜜桃| 成人亚洲精品一区在线观看| 午夜老司机福利片| 中文字幕高清在线视频| 亚洲图色成人| 精品久久久久久久毛片微露脸 | 在线观看免费视频网站a站| 黄色一级大片看看| 日韩伦理黄色片| 国产人伦9x9x在线观看| 亚洲精品成人av观看孕妇| 久久久欧美国产精品| 久久久亚洲精品成人影院| 国产精品免费大片| 国产黄色视频一区二区在线观看| 日韩视频在线欧美| 母亲3免费完整高清在线观看| 中文精品一卡2卡3卡4更新| 亚洲精品日本国产第一区| 一区福利在线观看| 天天躁夜夜躁狠狠久久av| 国产精品免费大片| 国产日韩欧美视频二区| 99国产精品免费福利视频| 电影成人av| 国产片内射在线| 超碰97精品在线观看| 日韩熟女老妇一区二区性免费视频| 黄色片一级片一级黄色片| 国产成人a∨麻豆精品| 黑人巨大精品欧美一区二区蜜桃| 色94色欧美一区二区| 在线av久久热| 欧美性长视频在线观看| 巨乳人妻的诱惑在线观看| 成年美女黄网站色视频大全免费| 午夜久久久在线观看| 又紧又爽又黄一区二区| 亚洲,欧美,日韩| 亚洲天堂av无毛| 亚洲精品av麻豆狂野| 日本91视频免费播放| 人成视频在线观看免费观看| 搡老乐熟女国产| 老汉色∧v一级毛片| 五月开心婷婷网| 爱豆传媒免费全集在线观看| 女性被躁到高潮视频| kizo精华| 欧美日韩福利视频一区二区| 91九色精品人成在线观看| 亚洲欧美色中文字幕在线| 久久精品国产亚洲av高清一级| av一本久久久久| 飞空精品影院首页| 亚洲av电影在线进入| 十分钟在线观看高清视频www| 热99国产精品久久久久久7| 国产又色又爽无遮挡免| 欧美日韩一级在线毛片| 久久 成人 亚洲| 亚洲伊人色综图| 高清黄色对白视频在线免费看| 国产视频首页在线观看| 狠狠精品人妻久久久久久综合| 亚洲九九香蕉| 国产精品 欧美亚洲| 国产精品99久久99久久久不卡| 熟女av电影| 一区二区av电影网| www日本在线高清视频| 美女午夜性视频免费| 国产精品国产三级专区第一集| 国产av国产精品国产| www.自偷自拍.com| 最近最新中文字幕大全免费视频 | 人妻 亚洲 视频| 香蕉国产在线看| av国产久精品久网站免费入址| 亚洲精品久久成人aⅴ小说| 最黄视频免费看| 老司机亚洲免费影院| 国产欧美日韩一区二区三 | 日本黄色日本黄色录像| 少妇人妻 视频| 亚洲欧美中文字幕日韩二区| 精品少妇黑人巨大在线播放| 亚洲国产av新网站| 水蜜桃什么品种好| 精品人妻熟女毛片av久久网站| 亚洲免费av在线视频| 亚洲精品第二区| 亚洲精品美女久久av网站| 一本色道久久久久久精品综合| 97精品久久久久久久久久精品| 19禁男女啪啪无遮挡网站| 18禁裸乳无遮挡动漫免费视频| 51午夜福利影视在线观看| 精品久久蜜臀av无| 国产亚洲一区二区精品| 亚洲av日韩精品久久久久久密 | 国产成人精品久久二区二区免费| 少妇精品久久久久久久| 亚洲国产欧美一区二区综合| 亚洲av电影在线观看一区二区三区| 久久久久久免费高清国产稀缺| 午夜福利免费观看在线| 2018国产大陆天天弄谢| 久久国产精品影院| www.999成人在线观看| 一级毛片 在线播放| 精品国产超薄肉色丝袜足j| 美女脱内裤让男人舔精品视频| 男女国产视频网站| 久久久久久久国产电影| 国产精品久久久久久人妻精品电影 | 丝袜脚勾引网站| 黄片小视频在线播放| 极品人妻少妇av视频| 亚洲欧美精品综合一区二区三区| 色网站视频免费| 国产高清国产精品国产三级| 免费在线观看影片大全网站 | 亚洲熟女精品中文字幕| 亚洲精品国产av成人精品| 黄色视频不卡| 18禁黄网站禁片午夜丰满| 又紧又爽又黄一区二区| 欧美激情极品国产一区二区三区| 又大又爽又粗| 啦啦啦在线免费观看视频4| 少妇精品久久久久久久| 免费在线观看黄色视频的| 国产精品免费视频内射| 久久鲁丝午夜福利片| av网站在线播放免费| 丰满饥渴人妻一区二区三| 亚洲精品美女久久av网站| 精品欧美一区二区三区在线| 亚洲欧美激情在线| 精品免费久久久久久久清纯 | 亚洲国产精品一区三区| 国产日韩欧美亚洲二区| 久久精品成人免费网站| 大片免费播放器 马上看| 91麻豆精品激情在线观看国产 | 国产日韩欧美亚洲二区| 日本黄色日本黄色录像| 大话2 男鬼变身卡| 脱女人内裤的视频| 久久久国产欧美日韩av| 一区在线观看完整版| 国产精品久久久久久精品电影小说| av有码第一页| 2018国产大陆天天弄谢| 丝袜在线中文字幕| 久久久久久久久久久久大奶| 久久精品久久精品一区二区三区| 亚洲精品久久成人aⅴ小说| 观看av在线不卡| 亚洲欧美清纯卡通| 国产成人一区二区在线| 国产精品亚洲av一区麻豆| 777久久人妻少妇嫩草av网站| 久久久久精品人妻al黑| 啦啦啦在线观看免费高清www| 亚洲国产成人一精品久久久| 男的添女的下面高潮视频| 精品高清国产在线一区| 国产精品二区激情视频| 美女扒开内裤让男人捅视频| 中文字幕制服av| 国产精品国产三级专区第一集| 一本综合久久免费| 看免费成人av毛片| 色综合欧美亚洲国产小说| 婷婷色av中文字幕| 久久天躁狠狠躁夜夜2o2o | 美女中出高潮动态图| 婷婷色综合大香蕉| 久热爱精品视频在线9| 久久人妻福利社区极品人妻图片 | 91麻豆精品激情在线观看国产 | 成年av动漫网址| 青草久久国产| 国产老妇伦熟女老妇高清| a级片在线免费高清观看视频| 国产一区二区在线观看av| 老司机靠b影院| 免费人妻精品一区二区三区视频| 不卡av一区二区三区| 亚洲人成77777在线视频| 国产一区二区 视频在线| 考比视频在线观看| 啦啦啦在线观看免费高清www| 伊人久久大香线蕉亚洲五| 一区在线观看完整版| 天堂俺去俺来也www色官网| 国产免费福利视频在线观看| 99久久99久久久精品蜜桃| 欧美日本中文国产一区发布| 久久ye,这里只有精品| 国产免费又黄又爽又色| 久久久久久亚洲精品国产蜜桃av| 国产亚洲一区二区精品| 一级片免费观看大全| 在线 av 中文字幕| 国产av精品麻豆| 国产成人免费无遮挡视频| 少妇被粗大的猛进出69影院| 成人三级做爰电影| av在线老鸭窝| 日本vs欧美在线观看视频| 成人国产一区最新在线观看 | 国产精品久久久久久精品古装| 视频在线观看一区二区三区| 97人妻天天添夜夜摸| 国产成人精品无人区| 国产精品久久久久成人av| 99精国产麻豆久久婷婷| 国产成人精品久久二区二区免费| 国产欧美亚洲国产| 高潮久久久久久久久久久不卡| 尾随美女入室| 精品熟女少妇八av免费久了| 日韩 亚洲 欧美在线| 国产精品久久久久久人妻精品电影 | 精品人妻1区二区| 国产成人av教育| www.自偷自拍.com| 久9热在线精品视频| 老汉色∧v一级毛片| 亚洲五月婷婷丁香| 秋霞在线观看毛片| 国产精品久久久久久人妻精品电影 | 亚洲精品久久成人aⅴ小说| 婷婷丁香在线五月| 无遮挡黄片免费观看| 操美女的视频在线观看| 自线自在国产av| 在线观看免费午夜福利视频| 每晚都被弄得嗷嗷叫到高潮| 午夜av观看不卡| 飞空精品影院首页| 国产熟女午夜一区二区三区| 亚洲精品国产区一区二| 午夜av观看不卡| 久久精品久久久久久久性| 一区二区三区精品91| 亚洲五月色婷婷综合| 久久天躁狠狠躁夜夜2o2o | 亚洲黑人精品在线| 人妻人人澡人人爽人人| 欧美激情极品国产一区二区三区| 高清av免费在线| 久久久精品区二区三区| 精品少妇黑人巨大在线播放| 亚洲欧美成人综合另类久久久| 亚洲精品国产区一区二| 99国产精品一区二区蜜桃av | 制服人妻中文乱码| 9热在线视频观看99| 在线观看免费视频网站a站| 亚洲人成电影免费在线| 午夜精品国产一区二区电影| 亚洲色图 男人天堂 中文字幕| 一边摸一边抽搐一进一出视频| 国产成人精品久久久久久| 女人爽到高潮嗷嗷叫在线视频| 夫妻性生交免费视频一级片| 大片免费播放器 马上看| 夫妻性生交免费视频一级片| 99九九在线精品视频| 看十八女毛片水多多多| 一区二区三区四区激情视频| 亚洲av美国av| xxxhd国产人妻xxx| 国产欧美亚洲国产| 亚洲国产欧美网| 国产成人精品在线电影| 亚洲成人手机| 久久人妻福利社区极品人妻图片 | 日韩,欧美,国产一区二区三区| 亚洲色图综合在线观看| 岛国毛片在线播放| 91精品国产国语对白视频| 成人免费观看视频高清| netflix在线观看网站| 天堂中文最新版在线下载| 老司机影院成人| 天天躁夜夜躁狠狠久久av| 欧美成人午夜精品| 国产一区二区三区av在线| 欧美成人精品欧美一级黄| 少妇人妻 视频| 丁香六月天网| 久久久国产一区二区| 亚洲人成网站在线观看播放| 黑人欧美特级aaaaaa片| 亚洲精品美女久久久久99蜜臀 | 国产淫语在线视频| 激情五月婷婷亚洲| 亚洲成av片中文字幕在线观看| 黄片播放在线免费| 老汉色av国产亚洲站长工具| 国产1区2区3区精品| 成人亚洲欧美一区二区av| 免费在线观看视频国产中文字幕亚洲 | 国产爽快片一区二区三区| 欧美黄色淫秽网站| 欧美97在线视频| 国产人伦9x9x在线观看| 国产一区二区三区综合在线观看| 中文字幕高清在线视频| 免费观看人在逋| 亚洲午夜精品一区,二区,三区| 久久久亚洲精品成人影院| 国产精品一二三区在线看| 亚洲一卡2卡3卡4卡5卡精品中文| av线在线观看网站| 大码成人一级视频| a级片在线免费高清观看视频|