• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pseudo Zernike Moment and Deep Stacked Sparse Autoencoder for COVID-19 Diagnosis

    2021-12-15 07:07:28YuDongZhangMuhammadAttiqueKhanZiquanZhuandShuiHuaWang
    Computers Materials&Continua 2021年12期

    Yu-Dong Zhang,Muhammad Attique Khan,Ziquan Zhu and Shui-Hua Wang

    1School of Informatics,University of Leicester,Leicester,LE1 7RH,UK

    2Department of Computer Science,HITEC University Taxila,Taxila,Pakistan

    3Science in Civil Engineering,University of Florida,Gainesville,Florida,FL 32608,Gainesville,USA

    4School of Mathematics and Actuarial Science,University of Leicester,LE1 7RH,UK

    Abstract:(Aim)COVID-19 is an ongoing infectious disease.It has caused more than 107.45 m confirmed cases and 2.35 m deaths till 11/Feb/2021.Traditional computer vision methods have achieved promising results on the automatic smart diagnosis.(Method) This study aims to propose a novel deep learning method that can obtain better performance.We use the pseudo-Zernike moment(PZM),derived from Zernike moment,as the extracted features.Two settings are introducing:(i)image plane over unit circle;and(ii)image plane inside the unit circle.Afterward, we use a deep-stacked sparse autoencoder(DSSAE)as the classifier.Besides,multiple-way data augmentation is chosen to overcome overfitting.The multiple-way data augmentation is based on Gaussian noise, salt-and-pepper noise, speckle noise, horizontal and vertical shear,rotation,Gamma correction,random translation and scaling.(Results)10 runs of 10-fold cross validation shows that our PZM-DSSAE method achieves a sensitivity of 92.06% ± 1.54%, a specificity of 92.56% ± 1.06%,a precision of 92.53%±1.03%,and an accuracy of 92.31%±1.08%.Its F1 score,MCC,and FMI arrive at 92.29%±1.10%,84.64%±2.15%,and 92.29%± 1.10%, respectively.The AUC of our model is 0.9576.(Conclusion) We demonstrate“image plane over unit circle”can get better results than“image plane inside a unit circle.”Besides,this proposed PZM-DSSAE model is better than eight state-of-the-art approaches.

    Keywords: Pseudo Zernike moment; stacked sparse autoencoder; deep learning; COVID-19; multiple-way data augmentation; medical image analysis

    1 Introduction

    COVID-19 has caused more than 107.45 m confirmed cases and 2.35 m deaths till 11/Feb/2021 in about 192 countries/regions and 26 cruise/naval ships [1].Fig.1 shows the top 10 countries of cumulative confirmed cases and deaths, respectively.The main symptoms of COVID-19 are low fever, a new and ongoing cough, a loss or change to taste and smell [2].In the UK,three vaccines are formally approved as Pfizer/BioNTech, Oxford/AstraZeneca, and Moderna.Two COVID-19 diagnosis methods are available.The former is viral testing to test the existence of viral RNA fragments [3].The swab test shortcomings are two folds:(i) the swab samples may be contaminated, and (ii) it needs to wait from several hours to several days to get the test results.The latter is chest imaging.There are two main chest imaging available:chest computed tomography (CCT) [4] and chest X-ray (CXR) [5].

    Figure 1:Data till 11/Feb/2021 (a) Cumulative confirmed cases (b) Cumulative deaths

    CCT is one of the best chest imaging [6] techniques since it provides the finest resolution and can recognize extremely small nodules in the chest region.CCT employs computer-processed combinations of multiple X-ray observations taken from different angles [7] to produce highquality 3D tomographic images (virtual slices).In contrast, CXR only provides one 2D image,which performs poorly on soft tissue contrast.This study focuses on the CCT images [8].

    Currently, numerous studies are working on using machine learning (ML) and deep learning (DL) technologies [9,10].For example, Guo et al.[11] employed ResNet-18 for classifying thyroid images.Lu [12] utilized an extreme learning machine (ELM) trained by bat algorithm(BA).Those two approaches were not developing for COVID-19, but they can be transferred to the COVID-19 dataset easily and used as comparison basis approaches in our experiments.For COVID-19 researches, Yao [13] proposed a wavelet entropy biogeography-based optimization(WEBBO) method for COVID-19 diagnosis.Wu [14] presented three-segment biogeography-based optimization (3SBBO) for recognizing COVID-19 patients.Wang et al.[15] presented a DeCovNet.Their accuracy achieved 90.1%.El-kenawy et al.[16] presented a novel feature selection voting classifier (FSVC) method for COVID-19 classification.Yu et al.[17] presented a GoogleNet-COD method to detect COVID-19.Chen [18] designed a gray-level co-occurrence matrix and support vector machine (GLCMSVM) method to classify COVID-19 images [19].

    To further improve the performance of automatic COVID-19 diagnosis, this paper proposes a novel method that combines the traditional ML approach with the recent DL approach.We use the pseudo-Zernike moment (PZM) as the extracted features, and we use a deep-stacked sparse autoencoder (i.e., one of the deep neural networks) as the classifier.The combination achieves excellent results that overperform eight state-of-the-art approaches.The novelties of our paper lie in the following aspects

    ? We are the first to apply a pseudo-Zernike moment to COVID-19 image analysis.

    ? Deep stacked sparse autoencoder (DSSAE) works better than traditional classifiers.

    ? Our proposed “PZM-DSSAE” model is better than eight state-of-the-art approaches.

    2 Dataset

    We use the dataset in reference [20], which contains 148 COVID-19 patients and 148 healthy control (HC) subjects.Slice level selection [20] was employed to generateC1=320 COVID-19 images andC2=320 HC images.The raw images are with sizes of 1024×1024×3.A fourstep preprocessing was used on this dataset.First, the images are converted to grayscale to save storage amount.Second, histogram stretch is used to enhance the contrast.Third, border pixels are removed, which contains the text and ruler in the right side, and the check-up bed in the bottom.Finally, downsampling to widthWand heightHis carried out to further reduce the storage of the dataset.Fig.2 display one example of COVID-19 patient and one sample of HC subject.Algorithm 1 itemizes the pseudocode of preprocessing.

    ?

    Figure 2:Example of preprocessed images (a) COVID-19 (b) HC

    3 Methodology

    3.1 Pseudo Zernike Moment

    Tab.1 displays the abbreviation list Image moment was firstly introduced by Hu [21], who used geometric moments to generate a set of invariants.Hu’s moments have been widely used in knee osteoarthritis classification [22], brain tumor classification [23], etc.However, geometric moments are sensitive to noise.Thus, Teague [24] introduced Zernike moments (ZMs) based on orthogonal Zernike polynomials.The orthogonal moments have been proven to be more robust in noisy conditions, and they can achieve a near-zero value of redundancy measure [25].

    Table 1:Abbreviation list

    Later, pseudo Zernike moment (PZM) is derived from Zernike moment.PZMs have been proven to give better performances than other moment functions such as Hu moments, Zernike moments, etc.For example, for an orderp, there are(p+1)2linearly independent pseudo-Zernike polynomials of orders ≤p, while there are onlyZernike polynomials.Hence, PZM is more expressive and offers more feature vectors than ZM.

    The kernel of PZMs is a set of orthogonal pseudo-Zernike polynomials defined over the polar coordinate inside a unit circle (UC).The 2D PZM of orderpwith repetitionqof an imageg(r,θ)is defined as [26]

    where the pseudo-Zernike polynomialsWpq(r,θ)of orderpare defined as

    where 0 ≤|q|≤p.In practice, pseudo Zernike functions (https://www.mathworks.com/matlabcentral/fileexchange/33644-pseudo-zernike-functions) are used for simplicity and fast calculation.Fig.3 displays pseudo Zernike functions of ordersp≤5.

    Note that PZM are defined in terms of polar coordinates(r,θ)with |r|≤1.Therefore,the computation of PZM requires a linear transformation of the image plane (IP) coordinates(w,h),1 ≤w≤W,1 ≤h≤Hto the UC domain(x,y)∈R2.There are two commonly used transformations as shown in Fig.4:(i) IP over UC; and (ii) IP inside UC.In this study, we use the former (IP over UC), because the lesions will not occur within the four corners of the CCT image.

    Figure 3:Pseudo Zernike functions of orders p ≤5

    Figure 4:Two transformation (IP:image plane; UC:unit circle) (a) Raw image plane W×H (b) IP over UC (c) IP inside UC

    3.2 Autoencoder

    Traditionally,p-order PZMs are sent into shallow classifiers, such as multi-layer perceptron [27], adaptive differential evolution wavelet neural network (Ada-DEWNN) [28], linear regression classifier (LRC) [29], kernel support vector machine (KSVM) [30].In this study, we introduced a customized deep-stacked sparse autoencoder (DSSAE).DSSAE is a type of deep neural network technologies, and we expect DSSAE to achieve better performances than shallow models.

    The fundamental element of DSSAE in the autoencoder (AE), which is a typical shallow neural network that learns to map its inputXto outputY.There is an internal code outputINThat represents the inputX.The whole AE can be divided into two parts:An encoder part(AX,BX)that maps the inputXto the codeIN, and a decoder part(AY,BY)that maps the code to a reconstructed dataY.

    The structure of AE is displayed in Fig.5, where the encoder part is with weightAXand biasBX, and the decoder part is with weightsAYand biasBY.We have

    where the outputYis an estimate of inputX, andzLSis the log sigmoid function

    Figure 5:Structure of an AE

    3.3 Sparse Autoencoder

    The sparse autoencoder (SAE) is a variant of AE.SAE encourages sparsity into AE.SAE only allows a small fraction of the hidden neurons to be active at the same time.To minimize the error between the input vectorXand the outputY, the raw loss functionJbof AE is deduced as:

    whereNSmeans the number of training samples.From Eqs.(4) and (5), we find the outputYcan be expressed in the way of

    wherezAEis the abstract of AE function [31].Hence, Eq.(7) can be revised as

    To avoid over-complete mapping or learn a trivial mapping, we define oneL2regularization termΓAof the weights(AX,AY)and one regularization termΓsof the sparsity constraint.Therefore, the loss functionJlof SAE is derived as:

    whereasstands for the sparsity regulation factor, andaAthe weight regulation factor.The sparsity regularization termΓsis defined as:

    wherezKLstands for the Kullback–Leibler divergence [32] function, |IN|is the number of elements of internal code outputIN,is them-th neuron’s average activation value over allNStraining samples, andρis its desired value, viz., sparsity proportion factor.The weight regularization termΓAis defined as

    The training procedure is set to scaled conjugate gradient descent (SCGD) method.

    3.4 Deep Stacked Sparse Autoencoder

    We use SAE as the building block and establish the final deep-stacked sparse autoencoder(DSSAE) classifier by following three operations:(i) We include input layer, preprocessing layer,PZM layer; (ii) We stack four SAEs; (iii) We append softmax layer at the bottom of our AI model.The details of this proposed PZM-DSSAE model are listed in Tab.2 and illustrated in Fig.6.After processing, all the CCT images are normalized to fixed grayscaled images with the size ofW×H.Then, PZM is applied to obtain feature vector with size of(p+1)2×1.In the classification stage, four SAE blocks with number of neurons of(M1,M2,M3,M4)are employed.Finally, a softmax layer with neurons ofMcis appended, whereMcmeans the number of categories to be identified.

    Table 2:Layer details of proposed PZM-DSSAE model

    Figure 6:Structure of proposed PZM-DSSAE model

    3.5 18-Way Data Augmentation

    The small size of training images causes overfitting, one solution to data augmentation (DA)that creates fake training images.Multiple-way DA (MDA) is an enhanced method of DA.Wang [33] proposed a 14-way data augmentation, in which they employed seven different DA techniques onk-th training imageg(k)and its mirrored imageg(m)(k).

    In this study, we add two new DA techniques, speckle noise (SN) [34] and salt-and-pepper noise (SAPN).SN altered image is defined as

    whereNSNis uniformly distributed random noise.The mean and variance ofNSNis set tomSNandvSN, respectively.

    For thek-th training imageg(k), the SAPN altered image [35] is defined asgSAPN(k)with its values are set as

    wherestands for noise density, and P the probability function.gminandgmaxcorrespond to black and white colors, respectively.The definitions ofgminandgmaxcan be found in Algorithm 1.

    First,QDdifferent DA methods as shown in Fig.7 are applied tog(k).Let Hm,m=1,...,QDdenote each DA operation, we have the augmented dataset on raw imageg(k)as:

    Figure 7:Diagram of proposed 16-way DA

    SupposeQNstands for the size of generated new images for each DA method, we have

    Second, horizontal mirrored image is generated as:

    wherezbstands for horizontal mirror function.

    Third, all theQDdifferent DA methods are performed on the mirror imagepc(k), and generateQDdifferent dataset.

    Fourth, the raw imageg(k), the mirrored imageg(m)(k), all the aboveQD-way results of raw image Hm[g(k)], andQD-way DA results of horizontal mirrored imageare combined together.The final generated dataset fromg(k)is defined as F(k):

    wherezastands for the concatenation function.Suppose augmentation factor isQA, which stands for the number of images in F(k), we have

    Algorithm 2 summarizes the pseudocode of proposed 18-way DA method.

    ?

    3.6 Cross-Validation

    F-fold cross-validation was used in this study.The whole dataset is divided intoFfolds.Atf-th trial, 1 ≤f≤F, thef-th fold is selected as the test, and the restF- 1 folds [36]:[1,...,f-1,f+1,...,F] are selected as training set (Fig.8).In this study, supposeF=10, then each fold will contain 32 COVID-19 images and 32 HC images.

    Figure 8: F-fold cross validation

    3.7 Evaluation

    To avoid randomness, we run the whole above procedureNRtimes with different initial random seeds and different cross-validation partitions.The ideal confusion matrix (CM)Ridealis defined as

    Note here the off-diagonal entries ofRidealare all zero, viz.,rideal(m,n)= 0,?mn.C1andC2are the number of samples of each category, which can be found in Algorithm 1.Seven measures are defined based on realistic CM [37] defined as:

    The first four measures are sensitivity, specificity, precision and accuracy, common in most pattern recognition papers.The last three measures are F1 score, Matthews correlation coefficient(MCC) [38], and Fowlkes–Mallows index (FMI) [39].They are defined as:

    Besides, the receiver operating characteristic (ROC) curve [40] is used to provide a graphical plot of our model.ROC curve is created by plotting the true positive rate against the false-positive rate at various threshold settings.The area under the curve (AUC) is also calculated.

    4 Experimental Results

    4.1 Parameter Setting

    Tab.3 displays the parameter setting of this study.The number of samples of each class is 320.The minimum and maximum grayscale values are set to(0,255).For the crop operation, 200 pixels are removed from all four sides.The preprocessed image is with size of 256×256.The max order of PZM is set to 19, so we have(19+1)2=400 PZM features.The weight regularization factoraA=0.001, the sparsity regulation factoras=1.1, and the sparsity proportion factor isρ=0.05.The neurons of four SAEs are 300, 200, 100, and 50, respectively.The number of classes to be classified is set to 2.The number of folds in cross-validation is set to 10.The mean and variance of uniformly distributed random noise in SN are set to 0 and 0.05, respectively.The noise density of SAPN is set to 0.05.The number of different DA methods is set to 9, and the number of the newly generated image is set to 30.The augmentation factor is obtained asQA=542 (See Algorithm 2).The number of runs is set to 10.

    Table 3:Parameter setting

    4.2 Illustration of 18-Way Data Augmentation

    Fig.9 shows theQD-way DA to the raw image.Due to the page limit, the mirrored image and its corresponding DA results are not displayed.As can be observed in Fig.9, the multiple-way DA can increase our training images’diversity.

    Figure 9: QD-way DA results of raw image (a) Gaussian noise (b) SAPN (c) SN (d) Horizontal shear (e) Vertical shear (f) Rotation (g) Gamma correction (h) Random translation (i) Scaling

    4.3 Statistical Analysis and Transformation Comparison

    Tab.4 gives the 10 runs of 10-fold cross-validation, where we can see our method achieves a sensitivity of 92.06% ± 1.54%, a specificity of 92.56% ± 1.06%, a precision of 92.53% ± 1.03%,and an accuracy of 92.31% ± 1.08%.Its F1 score, MCC, and FMI arrive at 92.29% ± 1.10%,84.64% ± 2.15%, and 92.29% ± 1.10%, respectively.The AUC is 0.9576.

    In addition, we compared the two transformation settings:IP over UC against IP inside UC(See Fig.4).The IP inside the UC setting achieves a sensitivity of 91.84% ± 2.18%, a specificity of 92.44% ± 1.31%, and an accuracy of 92.14% ± 1.12%, which are worse than IP over UC setting.This comparison result demonstrates the reason why we choose IP over UC in this study.Particularly, the receiver operating characteristics (ROC) curves of both settings are displayed in Fig.10.

    4.4 Comparison to State-of-the-Art Methods

    This proposed PZM-DSSAE method is compared with 8 state-of-the-art methods.The comparison results are carried out on the same dataset via 10 runs of 10-fold cross-validation, and the results are displayed in Tab.5.Fig.11 displays the error bar of the proposed method against 8 state-of-the-art methods.We can see that the proposed PZM-DSSAE gives the best performance among all the methods.The reason is three folds:(i) We try to use PZM as the feature descriptors,(ii) DSSAE is used as the classifier, (iii) 18-way DA is employed to solve the overfitting problem.

    Table 4:10 Runs of statistical analysis of proposed PZM-DSSAE method

    Figure 10:ROC curves of two settings (a) IP over UC (b) IP inside UC

    Table 5:Comparison to state-of-the-art methods

    Figure 11:Error bar plot of method comparison

    5 Conclusion

    This study proposed a novel PZM-DSSAE system for COVID-19 diagnosis.As far as the authors’best known, we are the first to apply PZM to COVID-19 image analysis.Also, two other improvements are carried out:(i) DSSAE is used as the classifier, and (ii) multiple-way data augmentation is employed to generalize the classifier.Our model yields a sensitivity of 92.06% ±1.54%, a specificity of 92.56% ± 1.06%, an accuracy of 92.31% ± 1.08%, and an AUC of 0.9576.

    In the future, we shall collect more COVID-19 images from more patients and multiple modalities.Also, other advanced AI models will be tested, such as graph neural networks and attention networks.

    Funding Statement:This study was supported by Royal Society International Exchanges Cost Share Award, UK (RP202G0230); Medical Research Council Confidence in Concept Award, UK(MC_PC_17171); Hope Foundation for Cancer Research, UK (RM60G0680); Global Challenges Research Fund (GCRF), UK (P202PF11)

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    丰满的人妻完整版| 一进一出好大好爽视频| 黄色欧美视频在线观看| 国产在线精品亚洲第一网站| 免费看美女性在线毛片视频| 亚洲美女视频黄频| 成年版毛片免费区| 成人亚洲精品av一区二区| a级毛片a级免费在线| 小说图片视频综合网站| 一本精品99久久精品77| 精品欧美国产一区二区三| 嫩草影院新地址| 97人妻精品一区二区三区麻豆| 天堂av国产一区二区熟女人妻| 国产69精品久久久久777片| 俺也久久电影网| 日日撸夜夜添| 久久精品91蜜桃| 久久久久久久久中文| 亚洲第一电影网av| 亚洲欧美日韩卡通动漫| 丰满人妻一区二区三区视频av| 国产三级在线视频| 日韩,欧美,国产一区二区三区 | 色播亚洲综合网| 欧美黑人欧美精品刺激| 午夜免费成人在线视频| .国产精品久久| 在线播放无遮挡| 人妻久久中文字幕网| 日本 欧美在线| 国产亚洲91精品色在线| 欧美日韩精品成人综合77777| 九九在线视频观看精品| 亚洲中文日韩欧美视频| 91麻豆av在线| a在线观看视频网站| 偷拍熟女少妇极品色| 色综合亚洲欧美另类图片| 一进一出抽搐gif免费好疼| av在线亚洲专区| 国产不卡一卡二| 日本黄色视频三级网站网址| 看黄色毛片网站| 亚洲男人的天堂狠狠| 欧美成人一区二区免费高清观看| 午夜亚洲福利在线播放| 精品午夜福利在线看| 久久人人精品亚洲av| 午夜福利在线观看免费完整高清在 | 成人鲁丝片一二三区免费| av视频在线观看入口| 在线免费观看的www视频| 国产三级中文精品| 一个人看的www免费观看视频| 看片在线看免费视频| 亚洲男人的天堂狠狠| 热99re8久久精品国产| 嫩草影院新地址| 麻豆国产97在线/欧美| 热99在线观看视频| 97碰自拍视频| 亚洲 国产 在线| 99视频精品全部免费 在线| 午夜免费男女啪啪视频观看 | 99热这里只有精品一区| 在线免费观看不下载黄p国产 | 成人永久免费在线观看视频| 国产色婷婷99| 一卡2卡三卡四卡精品乱码亚洲| 中文字幕精品亚洲无线码一区| 欧美xxxx黑人xx丫x性爽| 国产精品自产拍在线观看55亚洲| 国产蜜桃级精品一区二区三区| 精品一区二区三区人妻视频| 一个人看视频在线观看www免费| 成人一区二区视频在线观看| 久久久久久久久久久丰满 | 日韩一区二区视频免费看| 精品久久久久久久久久久久久| 国产日本99.免费观看| 欧美色视频一区免费| 亚洲欧美日韩卡通动漫| 天堂√8在线中文| 亚洲乱码一区二区免费版| 亚洲经典国产精华液单| 老熟妇乱子伦视频在线观看| 免费av观看视频| av在线老鸭窝| 欧美丝袜亚洲另类 | 波野结衣二区三区在线| 午夜日韩欧美国产| 小蜜桃在线观看免费完整版高清| 国产在视频线在精品| 欧美日韩亚洲国产一区二区在线观看| 99热6这里只有精品| 免费观看的影片在线观看| 99久久无色码亚洲精品果冻| 免费高清视频大片| 99热网站在线观看| 美女免费视频网站| 成人国产一区最新在线观看| 国产一区二区三区视频了| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产日韩欧美精品在线观看| 日韩大尺度精品在线看网址| 天堂影院成人在线观看| 99热这里只有精品一区| 亚洲avbb在线观看| 亚洲av不卡在线观看| 91精品国产九色| 成年免费大片在线观看| 很黄的视频免费| 国产人妻一区二区三区在| 久久国内精品自在自线图片| 亚洲精华国产精华精| 国产高清有码在线观看视频| 免费大片18禁| 综合色av麻豆| 精品午夜福利在线看| 成人国产麻豆网| 18禁黄网站禁片免费观看直播| 亚洲精品在线观看二区| 日韩欧美 国产精品| 久久精品91蜜桃| 一区二区三区激情视频| 国产亚洲精品久久久久久毛片| 午夜福利高清视频| 国产三级在线视频| 日日啪夜夜撸| 欧美+亚洲+日韩+国产| 国产女主播在线喷水免费视频网站 | 国内精品美女久久久久久| 网址你懂的国产日韩在线| 国产伦一二天堂av在线观看| 精品久久久久久久人妻蜜臀av| 精品国内亚洲2022精品成人| 国内久久婷婷六月综合欲色啪| 亚洲av电影不卡..在线观看| 18禁黄网站禁片午夜丰满| 久99久视频精品免费| 久久久国产成人免费| 美女cb高潮喷水在线观看| 日韩欧美精品免费久久| 欧美成人a在线观看| 亚洲五月天丁香| 亚洲黑人精品在线| 丝袜美腿在线中文| 亚洲欧美日韩卡通动漫| av视频在线观看入口| 两个人视频免费观看高清| 日日干狠狠操夜夜爽| 亚洲七黄色美女视频| а√天堂www在线а√下载| 国产高清有码在线观看视频| 亚洲精品粉嫩美女一区| 亚洲熟妇中文字幕五十中出| 波多野结衣高清作品| 久久人人爽人人爽人人片va| 亚洲一级一片aⅴ在线观看| 亚州av有码| 精品乱码久久久久久99久播| 99热网站在线观看| 亚洲av成人av| 亚洲熟妇中文字幕五十中出| 国产高清视频在线观看网站| 九色成人免费人妻av| 欧美一区二区国产精品久久精品| 亚洲av一区综合| 亚洲性夜色夜夜综合| 欧美一区二区国产精品久久精品| 亚洲精品国产成人久久av| 听说在线观看完整版免费高清| 日日干狠狠操夜夜爽| 亚洲欧美日韩卡通动漫| 亚洲黑人精品在线| 国产精品久久视频播放| 国产精品久久视频播放| 午夜免费激情av| 一进一出抽搐动态| 桃色一区二区三区在线观看| 一级av片app| 别揉我奶头 嗯啊视频| 亚洲美女搞黄在线观看 | 欧美xxxx性猛交bbbb| 欧美xxxx性猛交bbbb| 成人鲁丝片一二三区免费| 如何舔出高潮| av黄色大香蕉| 久久国产精品人妻蜜桃| 欧美一级a爱片免费观看看| 亚洲av成人精品一区久久| 十八禁国产超污无遮挡网站| 啦啦啦观看免费观看视频高清| 免费av观看视频| 亚洲欧美日韩东京热| 日日摸夜夜添夜夜添av毛片 | 精品久久国产蜜桃| 久久久精品欧美日韩精品| 日本爱情动作片www.在线观看 | 亚洲性夜色夜夜综合| 制服丝袜大香蕉在线| 久久久久久久精品吃奶| 久久天躁狠狠躁夜夜2o2o| 亚洲最大成人手机在线| 三级毛片av免费| 婷婷丁香在线五月| 日本一本二区三区精品| 看片在线看免费视频| 成人综合一区亚洲| 国产亚洲精品av在线| 99久久九九国产精品国产免费| 亚洲av五月六月丁香网| 国产精品久久久久久久电影| 国产精品综合久久久久久久免费| 村上凉子中文字幕在线| 久久精品国产清高在天天线| 琪琪午夜伦伦电影理论片6080| 色播亚洲综合网| 在线免费十八禁| 欧美另类亚洲清纯唯美| 级片在线观看| av专区在线播放| 国内久久婷婷六月综合欲色啪| 午夜福利成人在线免费观看| 久久久久免费精品人妻一区二区| 欧美+亚洲+日韩+国产| 成人国产麻豆网| 国产高清视频在线观看网站| 日韩欧美免费精品| 夜夜爽天天搞| 中国美女看黄片| 久99久视频精品免费| 欧美极品一区二区三区四区| 精品久久久噜噜| 欧美绝顶高潮抽搐喷水| 不卡一级毛片| 国产真实伦视频高清在线观看 | 国产亚洲欧美98| 日韩欧美国产在线观看| 色综合婷婷激情| 日本黄色视频三级网站网址| 久久人人精品亚洲av| www.色视频.com| 综合色av麻豆| 午夜老司机福利剧场| 欧美极品一区二区三区四区| 亚洲三级黄色毛片| 亚洲va日本ⅴa欧美va伊人久久| 免费看光身美女| 我的老师免费观看完整版| 免费看a级黄色片| 婷婷六月久久综合丁香| 我要看日韩黄色一级片| 国模一区二区三区四区视频| 中出人妻视频一区二区| 人妻丰满熟妇av一区二区三区| 国内精品一区二区在线观看| 三级国产精品欧美在线观看| 自拍偷自拍亚洲精品老妇| 久久久久久久久大av| 久久久精品欧美日韩精品| 精品欧美国产一区二区三| 成年女人毛片免费观看观看9| 国产精品电影一区二区三区| 国产伦在线观看视频一区| 日本成人三级电影网站| 人人妻,人人澡人人爽秒播| 亚洲国产欧洲综合997久久,| 一级毛片久久久久久久久女| 亚洲欧美清纯卡通| 国产中年淑女户外野战色| 精品日产1卡2卡| 久久人妻av系列| 色5月婷婷丁香| 免费av不卡在线播放| 又粗又爽又猛毛片免费看| 国内揄拍国产精品人妻在线| 亚洲熟妇熟女久久| 校园人妻丝袜中文字幕| xxxwww97欧美| 国产高清三级在线| 成人高潮视频无遮挡免费网站| 99久久久亚洲精品蜜臀av| 黄色女人牲交| 久久久精品欧美日韩精品| 国产欧美日韩一区二区精品| 极品教师在线视频| 人妻丰满熟妇av一区二区三区| 搞女人的毛片| 欧美一区二区精品小视频在线| 九九久久精品国产亚洲av麻豆| 国产亚洲91精品色在线| 嫩草影院入口| 又爽又黄无遮挡网站| 日韩大尺度精品在线看网址| 婷婷亚洲欧美| 亚洲自拍偷在线| 波多野结衣高清作品| 欧美黑人巨大hd| 99热这里只有是精品在线观看| 久久精品国产亚洲av天美| av在线亚洲专区| 午夜福利高清视频| 丰满的人妻完整版| 亚洲最大成人av| 久久午夜亚洲精品久久| 日韩欧美在线二视频| 久久久久国产精品人妻aⅴ院| 日韩欧美国产一区二区入口| 国产男人的电影天堂91| 男插女下体视频免费在线播放| 极品教师在线视频| 色综合婷婷激情| 国内精品美女久久久久久| 草草在线视频免费看| 一个人免费在线观看电影| 精品人妻熟女av久视频| 亚洲avbb在线观看| 国产伦在线观看视频一区| 亚洲成人精品中文字幕电影| 国内揄拍国产精品人妻在线| 久久久精品欧美日韩精品| 男人和女人高潮做爰伦理| 精品久久久久久成人av| 国产亚洲精品av在线| 一a级毛片在线观看| 俄罗斯特黄特色一大片| 1024手机看黄色片| 天堂影院成人在线观看| 久久久久国产精品人妻aⅴ院| 神马国产精品三级电影在线观看| 久久人人爽人人爽人人片va| 亚洲精品久久国产高清桃花| 午夜福利成人在线免费观看| 赤兔流量卡办理| 精品一区二区三区视频在线观看免费| 婷婷六月久久综合丁香| 99国产精品一区二区蜜桃av| 成人二区视频| 亚洲午夜理论影院| 悠悠久久av| 亚洲成av人片在线播放无| 日本与韩国留学比较| 长腿黑丝高跟| 日本欧美国产在线视频| 淫妇啪啪啪对白视频| 午夜福利高清视频| 亚洲18禁久久av| 亚洲av免费高清在线观看| 精品久久久久久久久久久久久| 免费无遮挡裸体视频| 深夜a级毛片| 91久久精品国产一区二区三区| 非洲黑人性xxxx精品又粗又长| 欧美激情国产日韩精品一区| 人人妻,人人澡人人爽秒播| 最近视频中文字幕2019在线8| 老司机午夜福利在线观看视频| 国产精品国产高清国产av| 91av网一区二区| 国产黄色小视频在线观看| 麻豆av噜噜一区二区三区| 色5月婷婷丁香| 又粗又爽又猛毛片免费看| 国产一区二区亚洲精品在线观看| 日韩亚洲欧美综合| 国产精品野战在线观看| 老熟妇仑乱视频hdxx| 国产精品一区二区三区四区久久| 国模一区二区三区四区视频| 久久久久精品国产欧美久久久| 欧美三级亚洲精品| 十八禁网站免费在线| 日韩欧美精品免费久久| 啦啦啦观看免费观看视频高清| 男女啪啪激烈高潮av片| 制服丝袜大香蕉在线| 中文字幕免费在线视频6| 日本成人三级电影网站| 亚洲熟妇中文字幕五十中出| 国产成人av教育| 国产精品不卡视频一区二区| 精品乱码久久久久久99久播| aaaaa片日本免费| 日韩精品中文字幕看吧| 99热只有精品国产| 18禁黄网站禁片午夜丰满| 亚洲,欧美,日韩| 国产主播在线观看一区二区| 国产亚洲av嫩草精品影院| 欧美日韩国产亚洲二区| 99久久中文字幕三级久久日本| 国产亚洲av嫩草精品影院| 99精品在免费线老司机午夜| 国产午夜精品久久久久久一区二区三区 | 精品一区二区三区av网在线观看| 12—13女人毛片做爰片一| 制服丝袜大香蕉在线| 色尼玛亚洲综合影院| 91久久精品电影网| 制服丝袜大香蕉在线| 国产在视频线在精品| 久久久久久九九精品二区国产| 搡老妇女老女人老熟妇| 国产成人a区在线观看| 亚洲乱码一区二区免费版| 在线观看午夜福利视频| 看片在线看免费视频| 欧美日韩精品成人综合77777| 禁无遮挡网站| 亚洲性久久影院| 久久这里只有精品中国| 能在线免费观看的黄片| 欧美日韩瑟瑟在线播放| 亚洲自偷自拍三级| 非洲黑人性xxxx精品又粗又长| 日韩国内少妇激情av| 哪里可以看免费的av片| 中文字幕免费在线视频6| 人妻夜夜爽99麻豆av| а√天堂www在线а√下载| 精品久久久噜噜| 无遮挡黄片免费观看| 亚洲va在线va天堂va国产| 看免费成人av毛片| 国产精品免费一区二区三区在线| 麻豆成人午夜福利视频| av在线亚洲专区| 亚洲av.av天堂| 无人区码免费观看不卡| 欧美激情国产日韩精品一区| 国产主播在线观看一区二区| 性色avwww在线观看| 赤兔流量卡办理| 搡女人真爽免费视频火全软件 | 国产 一区精品| 中国美女看黄片| 在线国产一区二区在线| 3wmmmm亚洲av在线观看| 国产精华一区二区三区| 看片在线看免费视频| av国产免费在线观看| 性色avwww在线观看| 国产精品人妻久久久久久| 少妇被粗大猛烈的视频| 亚洲av免费高清在线观看| 99久久精品一区二区三区| av国产免费在线观看| 亚洲va在线va天堂va国产| 欧美最黄视频在线播放免费| 韩国av一区二区三区四区| 九色国产91popny在线| 日本五十路高清| 一夜夜www| 久久国产精品人妻蜜桃| 午夜福利在线在线| 99久久无色码亚洲精品果冻| 欧美一级a爱片免费观看看| 亚洲人成网站在线播放欧美日韩| 有码 亚洲区| 国产成人a区在线观看| 人人妻人人澡欧美一区二区| 久久午夜亚洲精品久久| 免费av不卡在线播放| 天美传媒精品一区二区| 国产精品人妻久久久久久| 国产91精品成人一区二区三区| 亚洲av不卡在线观看| 22中文网久久字幕| 成人无遮挡网站| 亚洲无线观看免费| 亚洲精品色激情综合| 一级黄片播放器| 亚洲成人久久性| 成人性生交大片免费视频hd| 夜夜看夜夜爽夜夜摸| 嫩草影院入口| 看十八女毛片水多多多| 日日干狠狠操夜夜爽| 天天一区二区日本电影三级| 久久精品综合一区二区三区| 亚洲欧美日韩高清在线视频| 国产精品免费一区二区三区在线| 欧美国产日韩亚洲一区| 在线观看一区二区三区| 精品久久久久久成人av| 日韩中字成人| 国产v大片淫在线免费观看| eeuss影院久久| 亚洲人成网站在线播| 久久精品国产亚洲av香蕉五月| 久久精品国产鲁丝片午夜精品 | 别揉我奶头~嗯~啊~动态视频| 成年女人看的毛片在线观看| 欧美黑人巨大hd| 亚洲va日本ⅴa欧美va伊人久久| 国产精品日韩av在线免费观看| 观看免费一级毛片| av天堂在线播放| 午夜爱爱视频在线播放| 国产精品亚洲一级av第二区| 免费人成视频x8x8入口观看| 免费看光身美女| 男女之事视频高清在线观看| 亚洲,欧美,日韩| 免费看美女性在线毛片视频| 亚洲av中文字字幕乱码综合| 午夜福利18| 国产亚洲精品久久久com| 国产探花极品一区二区| 亚洲av美国av| 欧美高清性xxxxhd video| 1000部很黄的大片| 亚洲av熟女| 看片在线看免费视频| 99热网站在线观看| 成年女人毛片免费观看观看9| 22中文网久久字幕| 啪啪无遮挡十八禁网站| 少妇的逼水好多| 高清日韩中文字幕在线| 久久精品国产99精品国产亚洲性色| 一区二区三区激情视频| 亚洲七黄色美女视频| 窝窝影院91人妻| 日日撸夜夜添| 精品人妻一区二区三区麻豆 | 日韩一本色道免费dvd| 日本欧美国产在线视频| 人妻制服诱惑在线中文字幕| 嫩草影院精品99| 免费一级毛片在线播放高清视频| 麻豆国产97在线/欧美| 看片在线看免费视频| 色综合站精品国产| 免费观看精品视频网站| 99热只有精品国产| 老师上课跳d突然被开到最大视频| 久久99热这里只有精品18| 内地一区二区视频在线| 3wmmmm亚洲av在线观看| 特大巨黑吊av在线直播| 国产精品无大码| 久久久国产成人精品二区| 婷婷精品国产亚洲av在线| x7x7x7水蜜桃| 亚洲欧美日韩无卡精品| 国产精品久久电影中文字幕| 少妇被粗大猛烈的视频| 亚洲欧美精品综合久久99| 亚洲国产精品sss在线观看| 欧美丝袜亚洲另类 | 欧美xxxx黑人xx丫x性爽| 色综合色国产| 少妇猛男粗大的猛烈进出视频 | 伦精品一区二区三区| a级毛片a级免费在线| 欧美日本视频| 18禁在线播放成人免费| 亚洲,欧美,日韩| 搡老妇女老女人老熟妇| 白带黄色成豆腐渣| 少妇猛男粗大的猛烈进出视频 | 成人特级黄色片久久久久久久| www.www免费av| 国产老妇女一区| 最后的刺客免费高清国语| 三级男女做爰猛烈吃奶摸视频| 亚洲精品影视一区二区三区av| 小说图片视频综合网站| 国产精品久久视频播放| 九九在线视频观看精品| 日本一二三区视频观看| 亚洲一区二区三区色噜噜| 一本一本综合久久| ponron亚洲| 免费在线观看成人毛片| 91av网一区二区| 99热这里只有精品一区| 亚洲国产精品sss在线观看| 国产日本99.免费观看| 精品久久久久久,| 亚洲成a人片在线一区二区| 亚洲专区中文字幕在线| 99在线视频只有这里精品首页| 日本-黄色视频高清免费观看| 午夜福利在线观看吧| 免费无遮挡裸体视频| 欧美黑人巨大hd| 国内精品一区二区在线观看| 亚洲av一区综合| 免费无遮挡裸体视频| 成人午夜高清在线视频| 日韩国内少妇激情av| 男女之事视频高清在线观看| 内射极品少妇av片p| 国产高清有码在线观看视频| 黄色配什么色好看| 在线观看午夜福利视频| 999久久久精品免费观看国产| 国产成人aa在线观看| av天堂在线播放| 欧美xxxx性猛交bbbb| 日本五十路高清| 中出人妻视频一区二区| 搡女人真爽免费视频火全软件 | 日日干狠狠操夜夜爽| 亚洲经典国产精华液单| 桃红色精品国产亚洲av| 1000部很黄的大片| 国产中年淑女户外野战色| 村上凉子中文字幕在线| 欧美极品一区二区三区四区|