• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Energy-Efficient Routing Algorithm Based on Small-World Characteristics

    2021-12-15 08:14:44QianSunGongxueChengXiaoyiWangJipingXuLiWangHuiyanZhangJiabinYuNingCaoandRuichaoWang
    Computers Materials&Continua 2021年11期

    Qian Sun,Gongxue Cheng,Xiaoyi Wang,*,Jiping Xu,Li Wang,Huiyan Zhang,Jiabin Yu,Ning Cao and Ruichao Wang

    1School of Artificial Intelligence,Beijing Technology and Business University,Beijing,100048,China

    2Beijing Laboratory for Intelligent Environmental Protection,Beijing,100048,China

    3Shandong Chengxiang Information Technology Co.Ltd.,Dezhou,253000,China

    4University College Dublin,Dublin4,Ireland

    Abstract:Water quality sensor networks are widely used in water resource monitoring.However,due to the fact that the energy of these networks cannot be supplemented in time,it is necessary to study effective routing protocols to extend their lifecycle.To address the problem of limited resources,a routing optimization algorithm based on a small-world network model is proposed.In this paper,a small-world network model is introduced for water quality sensor networks,in which the short average path and large clustering coefficient of the model are used to construct a super link.A short average path can reduce the network’s energy consumption,and a large coefficient can improve its fault-tolerance ability.However,the energy consumption of the relay nodes near the heterogeneous node is too great,and as such the energy threshold and non-uniform clustering are constructed to improve the lifecycle of the network.Simulation results show that,compared with the low-energy adaptive clustering hierarchy routing algorithm and the best sink location clustering heterogeneous network routing algorithm,the proposed improved routing model can effectively enhance the energy-utilization.The lifecycle of the network can be extended and the data transmission amount can be greatly increased.

    Keywords:Water quality sensor networks;small-world characteristics;clustering routing protocol;heterogeneous clustering

    1 Introduction

    Environmental protection is an important topic,and safeguarding ecology and the environment has become a global research focus.In particular,the protection of the water environment is an important part of ecological protection [1].Advancements in the Internet of Things,big data,and others have resulted in the increasing usage of real-time environmental monitoring technology using wireless sensor networks (WSN).However,some problems still exist,such as limited resources [2,3].Experts have done a significant amount of research regarding this issue,e.g.,the energy-efficient fuzzy routing protocol for wireless sensor networks proposed by Jain et al.[4],the energy efficient protocol for routing and scheduling in wireless body area networks proposed by Yang et al.[5],and the energy-aware and load-balanced distributed geographic routing algorithm for wireless sensor networks with a dynamic hole proposed by Hadikhani et al.[6].Wang et al.[7],on the other hand,proposed an event-driven routing protocol for WSNs.

    Although scholars carried out numerous pertinent studies,the problem of the limited network lifecycle caused by limited resources is still severe.To solve this problem,we propose a nonuniform clustering routing optimization algorithm based on small-world characteristics.Compared with the traditional routing protocol,it can effectively improve resource utilization,and has practical operability for water environment monitoring.

    2 Construction of a Water Quality Sensor Network with Small-World Characteristics

    2.1 Construction of a Water Quality Sensor Network

    To protect the water environment,a flow model was built to simulate the working process of a water quality sensor network under practical water environment conditions.Water quality sensors were deployed to measure water quality parameters.The water quality sensor network was formed by a routing protocol and fed back to the monitoring and control center.Throughout the monitoring process,the water quality sensor nodes were powered by batteries,and the total energy of the entire network was limited.As shown in Fig.1,100 sensor nodes were deployed in the water,and consume the network’s energy over time.The black solid dots in the figure are the cluster head nodes.After deployment of the network,all nodes become green with sufficient energy.As time passes,due to uneven energy consumption,some of the nodes consume energy very fast,and their color gradually changes from green to red.When the nodes are dead,they are denoted as black circles.Therefore,it is important to overcome the resource limitations of wireless sensor networks and facilitate network monitoring through an effective routing algorithm.In this paper,we propose an effective method of maximizing the network lifecycle.

    2.2 Small-World Network Model

    The small-world characteristics of complex networks were analyzed to address the energy problem.The concept of small-world characteristics was proposed by Watts and Strogatz in 1998.A small-world network requires that a network with a small average path length still has a large clustering coefficient.The definition of a small-world network is as follows:if the distance L between two randomly selected nodes in the network (i.e.,the number of hops required to access each other) increases proportionally with the logarithm of the number of nodes n in the network,i.e.,L∝logN,the clustering coefficient of the network is not small [8].In small-world networks,most nodes are not adjacent to each other,but the neighbors of any given node are likely to be adjacent to each other.Most nodes can be accessed from any other node with few hops.The final coupling network that results whenn=16,k=8,andP=0.8 is shown in Fig.2.

    2.3 Text Layout Construction of the Water Quality Sensor Network

    Heterogeneous nodes are deployed to form a small-world network model with super links.The preset common nodes are powered by batteries,and their energies are limited.However,the energies of heterogeneous nodes can be supplemented.In the network model,sink nodes exist in the monitored area,and ordinary nodes transmit the monitored information to the sink node through multiple hops or super links.It is specified that each node in the network cannot move and has a unique ID.The steps of constructing a Watts-Strogatz small-world model (WS smallworld model) are as follows:starting from the regular graph,n nodes form a ring,in which each node is connected with each K/2 node that is adjacent to it,where K is an even number [9].An evolution diagram of the small-world model is shown in Fig.3.The deployment location of heterogeneous nodes in the network model is based on the ant colony algorithm [10].A transmission path diagram of the multi hop transmission of ordinary nodes in the network with super links is shown in Fig.4.

    Figure 1:Plots of energy vs.time (a) Initial energy (b) Energy after 600 h (c) Energy after 850 h(d) Energy after 1150 h

    Figure 2:Final coupling network:n=8,and P=16

    Figure 3:Evolution of small-world model

    Figure 4:Network model with super links

    3 Improved Routing Protocol for Water Quality Sensor Networks Based on Small-World Characteristics

    3.1 Analysis of Small-World Network Model

    In wireless sensor networks,a shorter average path can reduce the energy consumption of the network,and a larger clustering coefficient can improve the fault tolerance ability of the network.Therefore,the network can continue to work when some nodes are dead,which can improve the network lifecycle [11].Regarding the construction of wireless sensor networks with small-world characteristics,Zhang et al.[12]suggested that the introduction of small-world characteristics can optimize the energy utilization rate of the network,thereby extending the lifecycle of the network.

    A routing protocol based on small-world characteristics (RPSC) is introduced in this paper.We find that there are still some shortcomings in the RPSC.In heterogeneous sensor networks with small-world characteristics,ordinary nodes adopt a greedy routing strategy according to their location [13],and directly send the monitored water quality information to the sink or heterogeneous nodes,as shown in Fig.4.The solid lines represent super links,and the whole network is equivalent to the cluster routing network with heterogeneous nodes as cluster heads [14].When an ordinary node is one hop away from a sink node or heterogeneous node,it is necessary to transmit data to the sink or heterogeneous node through some relay nodes near the sink or heterogeneous node.As shown in Fig.5,node a,which is near the heterogeneous nodehj,transmits data frequently;however,the energy consumption of node a is too fast,leading to uneven energy consumption of nodes in the network and thus affecting the network lifecycle.Similarly,ordinary nodes must transmit data to the sink node through relay nodes near the sink node,which aggravates the energy consumption of the relay nodes near the sink.In addition,each node that monitors the data directly sends the data to the heterogeneous node or the sink [15].A large amount of unprocessed data will lead to data redundancy and increase the energy consumption of the network.Therefore,it is necessary to improve the RPSC.

    Figure 5:Heterogeneous node transmission mode

    3.2 Non-Uniform Clustering Routing Optimization Algorithm for Water Quality Sensor Networks with Small-World Characteristics

    To solve the problem of fast energy consumption and data redundancy of the nodes that are near sink and heterogeneous nodes,an improved routing protocol based on small-world characteristics (IRPSC) is proposed by introducing the idea of non-uniform clustering.In a non-uniform cluster,the cluster head is the manager of the data transmission.An energy threshold is proposed to select the cluster head through multiple iterations.Thus,an effective energy consumption model is established.

    The common nodes that are close to the heterogeneous nodes are responsible for the relay task and exhibit a high energy consumption.The same problem exists near the sink nodes.The idea of non-uniform clustering is used for optimization [16-20],as shown in Fig.6.The optimal number of heterogeneous nodes of a 100×100 network is two,and their locations are random [21].

    Figure 6:Heterogeneous nodes with heterogeneous clustering

    The energy consumption of the nodes closer to the heterogeneous nodeshiandhjand the sink node is great,and the energy consumption of the member nodes in the cluster is low.The cluster head node is responsible for transmitting less data in the cluster to balance the energy consumption.The maximum radius of the cluster is set toRmax.By controlling the radius range,the nearest competition radius between the sink and heterogeneous nodes is(1-c)Rmax,wherecis the parameter used to control the range of values,c∈(0,1).The competitive radiusRCHof cluster headVCHis

    wheredmaxanddminare the maximum and minimum distances of the network nodes away from the sink node,respectively,andrepresents the distance from nodeVto the sink or heterogeneous nodeshiandhj.The competition radius is determined by Eq.(1),and a list of the energy statuses of the member nodes in the cluster is generated.The node with the largest energy value is selected as the cluster head node.

    Clusters of different sizes are formed according to the distance between the ordinary nodes and heterogeneous nodes,and cluster heads are selected in rounds.Because the cluster head is responsible for the information transmission between heterogeneous nodes,the node with the largest energy value in the cluster is selected as the cluster head node.On this basis,the energy thresholdE(n)is set.When the energy of the cluster head is less than the energy threshold,the next round of cluster head selection is conducted,and the current cluster head is used as the node in the next round of the selection.The maximum energy of the common nodes isEmax,that is,the current energy of cluster head nodes isE≤Emax.The specified energy threshold is

    wherenis the number of member nodes in the cluster after the competition radius is determined by Eq.(1),andE1,E2,...,Enare the energy statuses of each member node.According to Eq.(2),the node with the largest energy in the cluster is selected as the cluster head node in the first round.As the network runs,the cluster heads quickly consume energy.To avoid death of cluster head nodes,they are selected in rounds,which also balances the energy of cluster members.To prolong the lifecycle of the network,after the cluster head selection is completed,if a node does not detect water quality information,it enters the idle state;the energy consumption in the idle state is larger than that in the sleep state.In order to further reduce the energy consumption of nodes and prolong the lifecycle of the network,the idle nodes are set to the sleep state.

    The data transmission mode in the network is shown in Fig.7.Water quality sensor nodes that detect water quality information can be divided into the following two situations according to the distance between the node and sink:the distance betweenV1and the sink is within one hop,so the data are directly sent to the sink,and the distance betweenV2and the sink is too far to arrive in one hop.At this time,nodeV2sends data to the cluster head of V2,VCH.Then,the distance betweenVCHand the sink is determined.In the second situation,as for the distance betweenV2and the sink,there are three sub-situations as shown in Fig.7.When the distance between the cluster head nodeVCH1and the sink is within one hop,the processed data is directly sent to the sink.When the distance between the cluster headVCH2and heterogeneous nodeh1is within one hop,the processed data is sent to heterogeneous nodeh1,and then transmitted to the sink byh1’s super link.Lastly,for cluster headVCH3,because the distance to the sink and heterogeneous node is too far for the data to arrive in one hop,the data is transmitted to the nearest heterogeneous nodeh2by other cluster head nodes,and then transmitted to the sink by the super link ofh2.

    In IRPSC,by using the idea of non-uniform clustering,ordinary nodes transmit data to the cluster head.The cluster head can compress the data of the member nodes in the cluster to reduce energy consumption during data transmission.However,due to the rotation of the cluster head,the transmission path between nodes changes,and thus the energy consumption of network nodes is uniform and the lifecycle of the entire network is improved.In addition,the effective energy threshold and sleep state control can balance the energy consumption of the network and further improve the overall lifecycle of the network.

    Figure 7:IRPSC data transmission mode

    The number of heterogeneous nodes to be deployed in the water quality sensor network is specified asβ,and the deployment locations ofβheterogeneous nodes are found by an ant colony algorithm [22].The number of ordinary nodes isn,and the cluster number of ordinary nodes isnCH.A flow chart of the IRPSC algorithm is shown in Fig.8.

    4 Simulation and Discussion

    To prove the effectiveness of the IRPSC algorithm,two kinds of heterogeneous algorithms were introduced:the improved LEACH-C (ILC),and best sink locations (BSL).To analyze the experimental results,MatLab (MathWorks,USA) was used to carry out simulation experiments.It was assumed that 100 nodes were randomly distributed in the 100×100-m2network area,and the sink node was located in the interior of the sensor network area.

    Fig.9 shows the simulation comparison of the number of dead nodes in each round of the four algorithms being compared.The experimental results show that the IRPSC algorithm has the longest network lifecycle,while the ILC algorithm has the shortest.

    The data transmission amount of the four algorithms is compared in Fig.10.The RPSC algorithm is used after introducing small-world characteristics,and the IRPSC algorithm is an improved algorithm also used after introducing small-world characteristics.Comparing the number of surviving nodes in each round,it can be seen that the RPSC algorithm can effectively extend the network lifecycle after introducing the small-world model.However,there are still some deficiencies due to the death of the relay nodes and data redundancy.The IRPSC algorithm can extend the lifecycle much more than the RPSC algorithm because of the introduction of the nonuniform clustering and the specification of an effective energy threshold.After the improvement,the energy utilization rate of the network is further improved,the lifecycle of the network extended,and the data transmission amount greatly increased.

    Figure 8:IRPSC algorithm flowchart

    Figure 9:Network lifecycle

    Figure 10:Data transmission amounts

    5 Conclusions

    In view of the limited resources available to water quality sensor networks,the energy consumption of the network can be reduced by constructing super links by introducing the small-world model of complex networks.However,the network is still inadequate.Based on the construction of a water quality sensor network with a small-world model,a heterogeneous sensor network is built based on the idea of heterogeneous clustering.Data compression and other processes are used to reduce energy consumption in the data transmission process.A cluster head rotation mechanism shortens the transmission path of nodes and controls the sleep state so that the energy consumption of network nodes is uniform and the network lifecycle is prolonged.

    Funding Statement:This research was funded by the National Natural Science Foundation of China (Grant No.61802010),Hundred-Thousand-Ten-Thousand Talents Project of Beijing(Grant No.2020A28),National Social Science Fund of China (Grant No.19BGL184),and Beijing Excellent Talent Training Support Project for Young Top-Notch Team (Grant No.2018000026833TD01).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    欧美bdsm另类| 亚洲久久久国产精品| 性色avwww在线观看| 亚洲国产av新网站| 久久久久久久久久久免费av| 免费黄网站久久成人精品| 青青草视频在线视频观看| 亚洲欧洲日产国产| 久久久久人妻精品一区果冻| 中文字幕av电影在线播放| 好男人视频免费观看在线| 99久国产av精品国产电影| 日韩 亚洲 欧美在线| 建设人人有责人人尽责人人享有的| 国产成人精品一,二区| 久久久久久久久久久免费av| 亚洲国产av影院在线观看| 欧美日韩视频高清一区二区三区二| 欧美日韩av久久| 日韩制服丝袜自拍偷拍| 国产欧美亚洲国产| 久久精品国产自在天天线| 日本猛色少妇xxxxx猛交久久| av国产久精品久网站免费入址| 美女视频免费永久观看网站| 欧美变态另类bdsm刘玥| 天堂中文最新版在线下载| 久久久久精品久久久久真实原创| 91在线精品国自产拍蜜月| 99热全是精品| 国产毛片在线视频| 国产精品偷伦视频观看了| 又粗又硬又长又爽又黄的视频| 人人妻人人澡人人爽人人夜夜| 日韩一本色道免费dvd| 免费不卡的大黄色大毛片视频在线观看| 高清不卡的av网站| 国产一级毛片在线| 国产在线视频一区二区| 看非洲黑人一级黄片| 精品第一国产精品| 亚洲av综合色区一区| 丝瓜视频免费看黄片| 一区二区日韩欧美中文字幕 | 欧美成人午夜精品| 婷婷成人精品国产| 乱人伦中国视频| 男女午夜视频在线观看 | 26uuu在线亚洲综合色| 亚洲国产av新网站| 黑人高潮一二区| 女人精品久久久久毛片| 爱豆传媒免费全集在线观看| 亚洲内射少妇av| 国产片内射在线| 免费不卡的大黄色大毛片视频在线观看| 国产一区亚洲一区在线观看| 性色avwww在线观看| 乱人伦中国视频| 久久久久久久久久久免费av| 视频在线观看一区二区三区| av福利片在线| 免费不卡的大黄色大毛片视频在线观看| 欧美精品av麻豆av| 在线观看美女被高潮喷水网站| 高清欧美精品videossex| 男人爽女人下面视频在线观看| 精品99又大又爽又粗少妇毛片| 亚洲久久久国产精品| av播播在线观看一区| 亚洲综合色网址| 夜夜骑夜夜射夜夜干| 久久精品国产鲁丝片午夜精品| 五月开心婷婷网| 波多野结衣一区麻豆| 一边亲一边摸免费视频| 观看美女的网站| 亚洲高清免费不卡视频| 少妇猛男粗大的猛烈进出视频| 高清不卡的av网站| 精品一区二区三区视频在线| 少妇熟女欧美另类| 美女视频免费永久观看网站| 中文字幕免费在线视频6| 涩涩av久久男人的天堂| 国产又爽黄色视频| 国产午夜精品一二区理论片| 国产一区二区三区综合在线观看 | 毛片一级片免费看久久久久| 十八禁高潮呻吟视频| 国产精品一区二区在线观看99| 日韩精品有码人妻一区| 国语对白做爰xxxⅹ性视频网站| av线在线观看网站| 寂寞人妻少妇视频99o| 国产欧美另类精品又又久久亚洲欧美| 日本欧美国产在线视频| 久久久久久人人人人人| 老女人水多毛片| h视频一区二区三区| 欧美变态另类bdsm刘玥| 精品人妻在线不人妻| 亚洲人成网站在线观看播放| 高清视频免费观看一区二区| 成人亚洲精品一区在线观看| 少妇高潮的动态图| 精品国产露脸久久av麻豆| 美女大奶头黄色视频| 国产精品一国产av| 久久久久精品久久久久真实原创| 免费av中文字幕在线| 国产 精品1| 亚洲人成网站在线观看播放| 91aial.com中文字幕在线观看| 校园人妻丝袜中文字幕| 亚洲国产成人一精品久久久| 成年美女黄网站色视频大全免费| 九色成人免费人妻av| 亚洲精品日本国产第一区| 亚洲国产毛片av蜜桃av| 久久久亚洲精品成人影院| 国产高清国产精品国产三级| 亚洲av综合色区一区| 国产欧美亚洲国产| 国产精品人妻久久久影院| 国产精品嫩草影院av在线观看| 久久精品aⅴ一区二区三区四区 | 亚洲天堂av无毛| 黄色毛片三级朝国网站| 又黄又爽又刺激的免费视频.| 永久免费av网站大全| 夫妻午夜视频| 欧美成人精品欧美一级黄| 黄色一级大片看看| 自拍欧美九色日韩亚洲蝌蚪91| 在线 av 中文字幕| 久久av网站| 国产 一区精品| 中文字幕av电影在线播放| 亚洲av在线观看美女高潮| 九九在线视频观看精品| 国产视频首页在线观看| 国产爽快片一区二区三区| 黑丝袜美女国产一区| 国产探花极品一区二区| 桃花免费在线播放| 亚洲精品成人av观看孕妇| 免费少妇av软件| 亚洲国产精品一区二区三区在线| 人人妻人人澡人人看| 久久综合国产亚洲精品| 高清欧美精品videossex| 亚洲精品一区蜜桃| 久久久国产欧美日韩av| 日韩精品免费视频一区二区三区 | 日韩av不卡免费在线播放| 婷婷色综合大香蕉| 2018国产大陆天天弄谢| 一区二区三区四区激情视频| 亚洲四区av| 国产69精品久久久久777片| 精品亚洲成a人片在线观看| 两个人免费观看高清视频| 国产在线视频一区二区| 成人毛片a级毛片在线播放| 精品国产一区二区久久| 国产成人a∨麻豆精品| av线在线观看网站| 亚洲精品日韩在线中文字幕| av卡一久久| 国产xxxxx性猛交| 成人亚洲精品一区在线观看| 七月丁香在线播放| 啦啦啦啦在线视频资源| 日本-黄色视频高清免费观看| 免费av中文字幕在线| 丰满饥渴人妻一区二区三| 成年动漫av网址| 亚洲成人av在线免费| 欧美亚洲 丝袜 人妻 在线| 精品一区二区三区四区五区乱码 | 日韩伦理黄色片| 大片电影免费在线观看免费| 天美传媒精品一区二区| 欧美精品亚洲一区二区| 亚洲,欧美,日韩| 日韩精品有码人妻一区| 亚洲精品成人av观看孕妇| 亚洲中文av在线| 精品久久蜜臀av无| 国产精品蜜桃在线观看| 中文天堂在线官网| 少妇猛男粗大的猛烈进出视频| 国产高清三级在线| 日本色播在线视频| 久久久久精品性色| 人人妻人人澡人人爽人人夜夜| 免费久久久久久久精品成人欧美视频 | 亚洲国产精品成人久久小说| 亚洲经典国产精华液单| 国产激情久久老熟女| 超碰97精品在线观看| 色网站视频免费| 欧美精品av麻豆av| 巨乳人妻的诱惑在线观看| 亚洲精品,欧美精品| 18禁在线无遮挡免费观看视频| 久久婷婷青草| 欧美bdsm另类| 久久国内精品自在自线图片| 欧美日本中文国产一区发布| 日韩av免费高清视频| 免费看av在线观看网站| 午夜福利在线观看免费完整高清在| 欧美性感艳星| 午夜免费观看性视频| 日本av免费视频播放| 亚洲欧美清纯卡通| 久久久久国产网址| 久久久精品94久久精品| 久久久国产欧美日韩av| 日本av免费视频播放| 2021少妇久久久久久久久久久| 18禁国产床啪视频网站| 99热网站在线观看| 久热久热在线精品观看| 永久免费av网站大全| 高清不卡的av网站| 尾随美女入室| 又粗又硬又长又爽又黄的视频| 建设人人有责人人尽责人人享有的| 亚洲人成网站在线观看播放| av网站免费在线观看视频| 国产欧美另类精品又又久久亚洲欧美| 午夜激情av网站| 成年动漫av网址| 天天操日日干夜夜撸| 久久人人爽人人爽人人片va| 亚洲人与动物交配视频| 国产成人一区二区在线| 最黄视频免费看| 久久久久久久精品精品| 国产深夜福利视频在线观看| 国产有黄有色有爽视频| 久久久国产一区二区| 国产精品熟女久久久久浪| 国产一区有黄有色的免费视频| 国产熟女欧美一区二区| 啦啦啦在线观看免费高清www| 又黄又粗又硬又大视频| 国产亚洲精品第一综合不卡 | 一二三四中文在线观看免费高清| 黄色 视频免费看| 国产伦理片在线播放av一区| 欧美人与性动交α欧美精品济南到 | 日韩,欧美,国产一区二区三区| 黄片无遮挡物在线观看| 9色porny在线观看| 纯流量卡能插随身wifi吗| 最近最新中文字幕大全免费视频 | 国产熟女欧美一区二区| 美女福利国产在线| 不卡视频在线观看欧美| 亚洲国产精品一区三区| 久久精品熟女亚洲av麻豆精品| 美女主播在线视频| 人妻系列 视频| 插逼视频在线观看| 嫩草影院入口| 久久久久精品人妻al黑| 久久午夜综合久久蜜桃| 精品视频人人做人人爽| 各种免费的搞黄视频| 久久久久久久大尺度免费视频| 天天躁夜夜躁狠狠久久av| 精品国产一区二区三区久久久樱花| 亚洲国产欧美在线一区| 亚洲国产精品成人久久小说| 伦精品一区二区三区| 亚洲国产av影院在线观看| 欧美精品亚洲一区二区| 岛国毛片在线播放| 亚洲一级一片aⅴ在线观看| 免费黄色在线免费观看| 国产毛片在线视频| 草草在线视频免费看| 成年人午夜在线观看视频| 精品人妻熟女毛片av久久网站| 爱豆传媒免费全集在线观看| 啦啦啦啦在线视频资源| 中文字幕另类日韩欧美亚洲嫩草| √禁漫天堂资源中文www| 秋霞在线观看毛片| 成人亚洲精品一区在线观看| 高清av免费在线| 少妇 在线观看| 久久鲁丝午夜福利片| 日韩不卡一区二区三区视频在线| 一本大道久久a久久精品| 老女人水多毛片| 男女下面插进去视频免费观看 | 国产xxxxx性猛交| 亚洲av国产av综合av卡| 亚洲av电影在线观看一区二区三区| 国产亚洲一区二区精品| 九草在线视频观看| www.色视频.com| 老司机影院成人| 80岁老熟妇乱子伦牲交| 制服诱惑二区| 王馨瑶露胸无遮挡在线观看| 国产色爽女视频免费观看| 国产精品 国内视频| av国产久精品久网站免费入址| 久久久久精品人妻al黑| 国产成人av激情在线播放| 80岁老熟妇乱子伦牲交| 国产激情久久老熟女| 日本91视频免费播放| 69精品国产乱码久久久| 妹子高潮喷水视频| 国产精品国产三级专区第一集| 国内精品宾馆在线| 亚洲国产日韩一区二区| 桃花免费在线播放| 免费黄色在线免费观看| 九草在线视频观看| 亚洲av.av天堂| 亚洲国产色片| 中国美白少妇内射xxxbb| 视频区图区小说| 又黄又粗又硬又大视频| 精品人妻在线不人妻| 亚洲美女黄色视频免费看| 久久国产亚洲av麻豆专区| 高清在线视频一区二区三区| 国产成人精品无人区| 狂野欧美激情性xxxx在线观看| 欧美丝袜亚洲另类| 亚洲成色77777| 国产一区亚洲一区在线观看| 一级黄片播放器| 久久这里有精品视频免费| 欧美xxⅹ黑人| 人人妻人人添人人爽欧美一区卜| 久久久a久久爽久久v久久| 1024视频免费在线观看| 丝袜美足系列| av视频免费观看在线观看| 99香蕉大伊视频| 国产亚洲精品久久久com| 久热这里只有精品99| 婷婷色综合大香蕉| 丝袜脚勾引网站| 99re6热这里在线精品视频| av片东京热男人的天堂| 亚洲精品成人av观看孕妇| 女性生殖器流出的白浆| 国产亚洲最大av| 18禁动态无遮挡网站| 日本-黄色视频高清免费观看| 中国国产av一级| 自线自在国产av| 22中文网久久字幕| 咕卡用的链子| 亚洲精品美女久久久久99蜜臀 | 9191精品国产免费久久| 成人亚洲精品一区在线观看| 久久精品国产综合久久久 | a级毛片黄视频| 亚洲一码二码三码区别大吗| 熟女人妻精品中文字幕| 亚洲精品乱码久久久久久按摩| 九色亚洲精品在线播放| 交换朋友夫妻互换小说| 最近的中文字幕免费完整| 日韩一本色道免费dvd| 欧美精品亚洲一区二区| 亚洲精品久久久久久婷婷小说| 亚洲五月色婷婷综合| a级毛片在线看网站| 狂野欧美激情性bbbbbb| 这个男人来自地球电影免费观看 | 高清欧美精品videossex| 欧美日韩一区二区视频在线观看视频在线| 热99国产精品久久久久久7| 亚洲第一区二区三区不卡| 久久国内精品自在自线图片| 人成视频在线观看免费观看| 亚洲精品第二区| 国产极品天堂在线| 欧美3d第一页| 国产国语露脸激情在线看| 亚洲美女搞黄在线观看| 一级毛片 在线播放| 国产日韩欧美亚洲二区| 久久久久视频综合| 精品国产一区二区三区四区第35| 欧美国产精品一级二级三级| a级片在线免费高清观看视频| 亚洲精品国产色婷婷电影| 久久毛片免费看一区二区三区| 黑人猛操日本美女一级片| 80岁老熟妇乱子伦牲交| 人人澡人人妻人| 国产在线视频一区二区| 久久午夜福利片| 欧美日韩综合久久久久久| 亚洲精品国产av成人精品| 亚洲欧美一区二区三区黑人 | 男女无遮挡免费网站观看| 午夜久久久在线观看| 精品人妻在线不人妻| 搡老乐熟女国产| 久久久久久久久久成人| 啦啦啦中文免费视频观看日本| 亚洲中文av在线| 9191精品国产免费久久| 亚洲国产精品一区二区三区在线| 少妇人妻精品综合一区二区| 国产精品一国产av| 乱人伦中国视频| 亚洲成国产人片在线观看| 日韩视频在线欧美| 狂野欧美激情性xxxx在线观看| 亚洲,欧美精品.| 在线观看美女被高潮喷水网站| 国产欧美亚洲国产| 国语对白做爰xxxⅹ性视频网站| 天堂中文最新版在线下载| 亚洲欧美中文字幕日韩二区| 欧美亚洲 丝袜 人妻 在线| 婷婷成人精品国产| www.色视频.com| 国产成人精品一,二区| 国产亚洲午夜精品一区二区久久| 免费看不卡的av| 黑人欧美特级aaaaaa片| 看十八女毛片水多多多| av免费观看日本| 黄色 视频免费看| 日韩精品有码人妻一区| 亚洲国产毛片av蜜桃av| av一本久久久久| 亚洲精品美女久久久久99蜜臀 | 成人毛片60女人毛片免费| 国产 精品1| 国产精品偷伦视频观看了| 中文字幕制服av| 亚洲av.av天堂| 日韩电影二区| 欧美日韩视频高清一区二区三区二| 看免费成人av毛片| 久久韩国三级中文字幕| 免费观看在线日韩| 秋霞在线观看毛片| 99热国产这里只有精品6| 91成人精品电影| 亚洲综合色网址| a级片在线免费高清观看视频| av国产精品久久久久影院| 黑丝袜美女国产一区| 国产片特级美女逼逼视频| 蜜臀久久99精品久久宅男| 亚洲精品456在线播放app| 亚洲伊人久久精品综合| 亚洲精品久久成人aⅴ小说| 丰满迷人的少妇在线观看| 黄色配什么色好看| 国内精品宾馆在线| 只有这里有精品99| 国产在线一区二区三区精| 欧美精品国产亚洲| 伦精品一区二区三区| 美女内射精品一级片tv| 成人毛片a级毛片在线播放| 久久99热6这里只有精品| 国产一区二区三区av在线| 亚洲av在线观看美女高潮| xxx大片免费视频| 18禁国产床啪视频网站| 99久久综合免费| 天堂中文最新版在线下载| 亚洲五月色婷婷综合| 久久精品国产自在天天线| 又黄又爽又刺激的免费视频.| 男女国产视频网站| 日韩熟女老妇一区二区性免费视频| 2021少妇久久久久久久久久久| 婷婷色麻豆天堂久久| 狠狠精品人妻久久久久久综合| 黑人高潮一二区| a级片在线免费高清观看视频| 少妇猛男粗大的猛烈进出视频| 制服丝袜香蕉在线| 欧美3d第一页| 成人国语在线视频| 亚洲精品一二三| 啦啦啦视频在线资源免费观看| 国产有黄有色有爽视频| 国产乱来视频区| 日本wwww免费看| 在线观看免费视频网站a站| 精品少妇久久久久久888优播| 熟女电影av网| 熟女人妻精品中文字幕| 免费在线观看黄色视频的| 国产色婷婷99| 久久精品久久精品一区二区三区| 亚洲欧美精品自产自拍| 天堂俺去俺来也www色官网| 少妇被粗大猛烈的视频| 亚洲国产看品久久| 最近中文字幕高清免费大全6| av.在线天堂| 建设人人有责人人尽责人人享有的| 久久这里只有精品19| 精品人妻在线不人妻| 久久 成人 亚洲| 亚洲精品aⅴ在线观看| 妹子高潮喷水视频| 少妇的丰满在线观看| 午夜福利,免费看| av电影中文网址| 视频在线观看一区二区三区| 乱人伦中国视频| 男女国产视频网站| 亚洲av电影在线进入| 欧美xxxx性猛交bbbb| 中文字幕人妻熟女乱码| 丁香六月天网| 中国国产av一级| 99国产综合亚洲精品| 国产日韩欧美视频二区| 桃花免费在线播放| 免费在线观看完整版高清| 性色avwww在线观看| 久久99精品国语久久久| 一个人免费看片子| 色视频在线一区二区三区| 亚洲欧美精品自产自拍| 欧美成人精品欧美一级黄| 国产成人精品婷婷| 黄色一级大片看看| 国产黄色视频一区二区在线观看| 国产精品秋霞免费鲁丝片| 久久婷婷青草| av卡一久久| 国产黄色免费在线视频| 乱码一卡2卡4卡精品| 国产高清国产精品国产三级| 精品国产露脸久久av麻豆| 性色av一级| av又黄又爽大尺度在线免费看| 亚洲精品美女久久久久99蜜臀 | 国产精品成人在线| 丁香六月天网| 国产成人av激情在线播放| 寂寞人妻少妇视频99o| 欧美日韩亚洲高清精品| 精品久久国产蜜桃| 免费av不卡在线播放| 51国产日韩欧美| 一区二区av电影网| 欧美老熟妇乱子伦牲交| 久久国内精品自在自线图片| 日本色播在线视频| 亚洲精品久久成人aⅴ小说| 国产精品久久久久久av不卡| 最新的欧美精品一区二区| 国产乱人偷精品视频| 久久ye,这里只有精品| 国产高清不卡午夜福利| 久久精品久久久久久久性| 777米奇影视久久| 捣出白浆h1v1| 国产精品久久久久久精品电影小说| 成人国产麻豆网| 18+在线观看网站| 一本大道久久a久久精品| av免费观看日本| 成人午夜精彩视频在线观看| 丰满少妇做爰视频| 久久99蜜桃精品久久| 老女人水多毛片| 看免费av毛片| 男女啪啪激烈高潮av片| 十八禁高潮呻吟视频| 欧美日韩视频高清一区二区三区二| 亚洲一码二码三码区别大吗| 丝瓜视频免费看黄片| 丰满迷人的少妇在线观看| 亚洲av日韩在线播放| 欧美成人午夜免费资源| 亚洲国产精品一区三区| 久久99一区二区三区| 丝瓜视频免费看黄片| 亚洲av电影在线观看一区二区三区| 欧美xxⅹ黑人| 自线自在国产av| 欧美性感艳星| 欧美精品一区二区大全| 日日啪夜夜爽| 日本爱情动作片www.在线观看| 日韩人妻精品一区2区三区| 91成人精品电影| 国产av国产精品国产| 最新的欧美精品一区二区| 国产又爽黄色视频| av卡一久久| 国产一区二区三区av在线| 久久精品aⅴ一区二区三区四区 | 少妇人妻精品综合一区二区| 各种免费的搞黄视频| 国产精品.久久久|