• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Data and Machine Learning Fusion Architecture for Cardiovascular Disease Prediction

    2021-12-15 08:14:40MunirAhmadMajedAlfayadShabibAftabMuhammadAdnanKhanAreejFatimaBilalShoaibMohammadShDaoudandNouhSabriElmitwally
    Computers Materials&Continua 2021年11期

    Munir Ahmad,Majed Alfayad,Shabib Aftab,3,Muhammad Adnan Khan,Areej Fatima,Bilal Shoaib,Mohammad Sh.Daoud and Nouh Sabri Elmitwally,8

    1School of Computer Science,National College of Business Administration&Economics,Lahore,54000,Pakistan

    2College of Computer and Information Sciences,Jouf University,Sakaka,72341,Saudi Arabia

    3Department of Computer Science,Virtual University of Pakistan,Lahore,54000,Pakistan

    4Riphah School of Computing&Innovation,Riphah International University,Lahore Campus,Lahore,54000,Pakistan

    5Department of Computer Science,Lahore Garrison University,Lahore,54000,Pakistan

    6Department of Computer Science,Minhaj University Lahore,Lahore,54000,Pakistan

    7College of Engineering,Al Ain University,Abu Dhabi,112612,UAE

    8Department of Computer Science,Faculty of Computers and Artificial Intelligence,Cairo University,12613,Egypt

    Abstract:Heart disease,which is also known as cardiovascular disease,includes various conditions that affect the heart and has been considered a major cause of death over the past decades.Accurate and timely detection of heart disease is the single key factor for appropriate investigation,treatment,and prescription of medication.Emerging technologies such as fog,cloud,and mobile computing provide substantial support for the diagnosis and prediction of fatal diseases such as diabetes,cancer,and cardiovascular disease.Cloud computing provides a cost-efficient infrastructure for data processing,storage,and retrieval,with much of the extant research recommending machine learning (ML) algorithms for generating models for sample data.ML is considered best suited to explore hidden patterns,which is ultimately helpful for analysis and prediction.Accordingly,this study combines cloud computing with ML,collecting datasets from different geographical areas and applying fusion techniques to maintain data accuracy and consistency for the ML algorithms.Our recommended model considered three ML techniques:Artificial Neural Network,Decision Tree,and Na?ve Bayes.Real-time patient data were extracted using the fuzzy-based model stored in the cloud.

    Keywords:Machine learning fusion;cardiovascular disease;data fusion;fuzzy system;disease prediction

    1 Introduction

    The clinical investigation of heart disease,which is also known as cardiovascular disease,constitutes a major topic of interest for medical research,both historically and in contemporary times.According to the World Health Organization,around 23 million cardiovascular disease patients die annually due to cardiac arrest and stroke [1],with a significant number of cases in developing countries.Heart diseases have a major influence not only on the life of an individual but also on the economies of countries.As such,heart health awareness programs significantly prevent disease by encouraging the adoption of a healthy lifestyle.Technology also provides remarkable support for the prevention of disease through medical applications of,for example,cloud computing and artificial intelligence.Cardiovascular diseases include all types of blood circulation problems and heart malfunctions.

    Several underlying factors constitute the root causes of heart disease,including excessive intake of saturated fats,lack of exercise,and an imbalanced diet.In addition,genetic predisposition is increasingly recognized as a prominent cause [2].Cloud computing provides applications and resources on an on-demand basis [3]and is compatible with modern tools and technologies.It can effectively support machine learning (ML) models and ultimately improve diagnostic analysis,as well as meet other needs of the healthcare industry [4].Cloud-based applications are becoming the first choice for medical professionals and technicians,because they not only allow test reports to be updated instantly but also contribute to resolving the big data issues surrounding computerized tomography (CT) scans and radiology.However,this requires a tool to provide security,privacy and optimal accuracy along with enhancing the availability of information [5].As a part of artificial intelligence,ML facilitates the accurate prediction of the likelihood of a particular event using the predefined dataset.In 2018,Khan et al.recommended a fuzzy inference system to predict the chances of heart disease [6],by examining examples from an array of research studies on heart health.For instance,in 2013,Kumar and Kaur conducted research on a heart disease diagnosis system using fuzzy logic and suggested that a fuzzy-based system could predict disease with 93.33% accuracy [7].We proposed a cloud-based prediction model using ML techniques after considering the gravity of the problem and its fatal effects.

    This paper organizes our approach into seven phases.Phase 1 concerns data collection.We collected datasets from geographically diffuse locations to ensure maximum coverage.Phase 2 consolidated all datasets into the fuzzy dataset.Phase 3 was a pre-processing layer involving the elimination of records with missing values;this included normalization and,ultimately,splitting training and testing data.Phase 4 concerned the training layer,in which we applied three algorithms:Artificial Neural Network (ANN),Decision Tree (DT),and Na?ve Bayes (NB).Next,in Phase 5,we evaluated the data to obtain target accuracy.In the ML-fusion phase (Phase 6),the fuzzy-based system accepted data meeting our predefined criteria for two of three brains.Finally,in Phase 7,the fuzzy model was compared with the model stored in the cloud.

    2 Related Work

    Researchers have explored various alternative techniques for identifying cardiovascular disease.For example,some researchers have applied the neural method,obtaining results with 83% accuracy [8].Meanwhile,in 2017,Kim and Kang applied ML techniques to predict coronary heart disease,with the recommended model viewed as a single layer.After performing 4146 tests,3031 cases were deemed low-risk and 1115 were considered high-risk.The proposed model had 81.09%accuracy [9].Elsewhere,researchers conducted a study predicting cerebral infarction disease,by developing convolutional neural network models to predict vulnerability relevant to structured and unstructured data from various sources.This was a unique experiment for the use of big data analysis in the medical sciences field.The proposed algorithm attained a 94.8% accuracy level [10].

    Meanwhile,ANN techniques have been widely used to predict heart disease.Generalized regression neural networks and radial basis functions have been widely used to investigate heart function problems,with experimental analysis proving that ANNs provide more accurate results than any other technique [11].Recent medical research studies have also emphasized computational intelligence techniques for clinical investigation,developing models using deep extreme ML for diagnosing cardiovascular disease and concluding that more accurate and precise results can be achieved using these techniques [12].Numerous techniques can probe the root causes of ailments,including fuzzy set,fuzzy deduction framework,and fuzzy connection.Research studies have highlighted the application of the latest approaches for therapeutic conclusions [13].Many researchers have discussed ANN models and their relative importance for diagnosing heart disease at an early stage [14,15].Meanwhile,multilayer perceptron and other data mining techniques have been successfully implemented for heart disease prediction,with one study using two distinct datasets featuring 303 and 270 cases.They identified 15 features for each patient that included smoking,body fat,hypertension,and gender.The accuracy of the DT was 99.62%,compared to 100% for multilayer perceptron [16].

    3 Materials and Methods

    Early-stage mild cardiovascular disease is curable through significant lifestyle changes,including adopting a more balanced diet [17].However,this requires early identification of potential patients.Accordingly,this research considers cloud-based heart disease prediction using ML following the seven-phase methodology presented in Fig.1.

    Dataset selection [18]provided the foundation of the training layer.This study used a prelabelled dataset of heart disease patients [19]for the implementation of the proposed framework.The selected dataset comprised 1190 cases and considered 12 features.Eleven of the features were independent and 1 was dependent,which represented the output class.The pre-processing layer involved data normalization,data cleaning,and data splitting,with the mean imputation method used to remove missing values before the data normalization process synchronized the values of the various features.These activities enabled the classification process to perform better and more accurately.

    After the cleaning and normalization process,the dataset was divided into training data (70%)and test data (30%).Next,the classification process was started,which first involved training for the three classification techniques:ANN,NB,and DT.The classification process generated three predictions that were based on algorithms optimized to achieve maximum accuracy.A hidden layer was used with 12 neurons during the configuration of the ANN,with the weight backpropagation technique used to fine-tune the hidden layer.This involved multiple steps,including initialization of weight,feedforward,backpropagation of error and weight updating.In addition to the input and output layers,a multilayer perceptron was also used for at least one hidden layer.The sigmoid function for input and the hidden layer of the proposed back propagation neural network was expressed as follows:

    Figure 1:Proposed cloud-based heart disease prediction using a data and ML fusion model

    The input derived from the output layer is given by:

    The output layer activation function is as follows:

    whereτtandφtrepresent the desired output and estimated output,respectively.Eq.(6) describes the rate of weight change for the output:

    After applying the chain rule method,this can be presented as:

    By substituting the values in Eq.(7),the value of weight change can be obtained using Eq.(8):

    where

    ζt=(τt-φt)×φt(1-φt).

    Next,applying the chain rule for the updating of weights between input and hidden layers gives:

    where∈represents the constant and

    This can be presented as Eq.(9) after simplification:

    where

    Eq.(10) updates weights between hidden layers and outputs.Eq.(11) updates weights between the input and hidden layer:

    In the DT,three optimizers were applied individually,including random search,Bayesian optimization,and grid search.The Bayesian optimization performed well and it was therefore selected for this framework:

    The GINI index is provided by Eq.(13):

    Information gain is provided by Eq.(14):

    Here,f(z)demonstrates the aim of minimizing the error rate or the root mean square error,which is assessed as the validation set.zcan take any value from domainZandz*is the set of hyper-parameters that represent the lowest value of the score.This approach sought the model hyper-parameters that could deliver the best score for the validation set metric.This model,which is known as the “surrogate” model,is represented asp(z|n)for the objective function:

    This is intended to optimize expected improvement with respect to the proposed set of hyperparametersn.Here,z*is an edge value of the objective function,z depicts the actual value of the function using the set of hyperparametersn,andp(z|n)is the surrogate probability model that states the probability ofzgivenn.This enables finding the best set of hyperparameters under the functionp(z|n).

    The hyperparameter does not expect to produce any improvement ifp(z|n)is zero in all cases thatz<z*.In contrast,the set of hyperparametersnis expected to produce a better result than the threshold value if the fundamental part is positive:

    p(n|z) function is expressed as:

    There are two different distributions for the hyperparameters in this equation,one where the value of the objective function is less thanl(n)and one where the objective function is greater thang(n):

    For NB,the following three kernel types were used:box,Gaussian,and triangle:

    The traditional NB classifier estimates probabilities by approximating the data through a function such as a Gaussian distribution:

    whereμtrepresents the mean of the values of an attributeStaveraged over training points with class labelszandσzrepresenting standard deviation.One-parameter Box-Cox transformations are defined as:

    The two-parameter Box-Cox transformation is defined as:

    After each optimization,the optimized model was stored in the cloud before creating and implementing fuzzy logic on the results of the optimized classification algorithms as shown in Fig.2.This involved using the results of the ANN,DT,and NB classifications to generate output using fuzzy rules as shown in Figs.3 and 4;this output was again stored in the cloud.

    Figure 2:Proposed fuzzy output using the decision tree and artificial neural network classifications

    Figure 3:Results showing the presence of heart disease

    Conditional (if-then) statements are used to construct fuzzy logic.Fuzzy rules are then constructed based on this logic.In these statements,HD represents heart disease:

    IF (ANN is yes,and NB is yes,and DT is also yes) THEN (HD is yes).

    IF (ANN is yes,and NB is yes,and DT is no) THEN (HD is yes).

    IF (ANN is yes,and NB is no,and DT is yes) THEN (HD is yes).

    IF (ANN is no,and NB is yes,and DT is yes) THEN (HD is yes).

    IF (ANN is no,and NB is no,and DT is also no) THEN (HD is no).

    IF (ANN is yes,and NB is no,and DT is no) THEN (HD is no).

    IF (ANN is no,and NB is no,and DT is yes) THEN (HD is no).

    IF (ANN is no,and NB is yes,and DT is no) THEN (HD is no).

    Figure 4:Results showing absence of heart disease

    The rules indicate that if any two of the three supervised classification techniques are true then heart disease is considered present;if not,heart disease is not present.

    The second layer of the recommended framework concerns the real-time classification of heart disease.Real-time patient data were inputted into the ML-fused model;hypothetically,the results can then be used to schedule appointments.Patients predicted to have cardiovascular disease could be given appointments on an emergency basis;patients predicted to have non-cardiovascular disease could be given a regularly scheduled appointment.

    4 Results and Discussion

    Each stage systematically interacts with the next stage.We generated a dataset comprising five databases to initiate the model.For greater accuracy,we optimized geodemographic diffusion.

    Our experiment comprised 1190 cases and considered 12 attributes shown in Tab.1.We further refined the data by identifying distorted data,including conflicting records or missing values,after the consolidation of the dataset into a single fuzzy database.At this stage,we eliminated these data to achieve more accurate predictions.Refined data were then classified into two broad categories:testing and training.The training layer was initiated using the selected data,with the three most appropriate ML techniques implemented:ANN,DT,and NB.

    Table 1:Cardiovascular data set attributes

    The following mathematical equations were applied to obtain results:

    First,we used a neural network to classify the data,which involved establishing an ANN structure using 70% of the cases for training data (833 of 1190) and the remaining 30% of cases(357) for testing data.As shown in Tab.2,393 of the records used for training were negative and 440 were positive;the training process classified 351 as negative and 400 as positive,which indicates an accuracy of 90.20% and a miss rate of 9.80%.For the testing data,144 records were negative and 28 were positive,with the testing process producing an accuracy of 85.40% and a miss rate of 14.60%.

    The NB classification shown in Tab.3 classified 337 training records as negative and 366 as positive,which indicates an accuracy of 84.40% and a miss rate of 15.60%.For testing data,NB classified 142 records as negative and 158 as positive,which indicates 84.00% accuracy and a miss rate of 16.00%.

    Table 2:Artificial neural network

    Table 3:Na?ve Bayes

    The DT classification shown in Tab.4 classified 358 training records as negative and 399 as positive,which indicates 90.90% accuracy and a miss rate of 9.10%.For testing data,DT classified 141 records as negative and 174 as positive,which indicates 88.20% accuracy and a miss rate of 11.80%.

    Subsequent test data records were used for the fuzzy-based system along with the output class to arrive at the final classification.The fuzzy-based system classified 150 records as negative and 176 records as positive (Tab.5).A comparison of the output of the fuzzy-based system with the expected output revealed an accuracy of 89.30% and a miss rate of 10.70%.

    Table 5:Proposed fuzzy model (testing)

    The consolidated results of all classification techniques and the proposed model are presented in Tab.6.The fuzzy model performed better based on accuracy measurements.

    Table 6:Consolidated results

    Further analysis of the model in relation to input parameters was provided by the decision support system.Accordingly,the specific predictions of the three classifiers along with the results derived from the fuzzy-based system are presented in Tab.7.

    Table 7:Prediction comparison of human vs. proposed ML approach

    Finally,the proposed framework is compared with frameworks described in previous research(Tab.8).The results obtained from the proposed framework in this study is compared with Hybrid random forest linear model (HRFLM) [20],NB [20],DT [20],Support vector machine with the Radial basis function (SVM RBF) [21],Logistic Regression [9],and Framingham Risk Score [9].The accuracy results of the proposed fuzzy framework are significantly higher than those obtained from previous research.

    Table 8:Comparison with state-of-the-art methods

    5 Conclusion

    Accurately predicting heart disease using ML techniques is a challenge.This research paper proposed a cloud-based prediction model that used ML techniques.The approach features seven phases:dataset collection,data fusion,pre-processing,training,performance evolution,ML fusion,and real-time testing.Three widely used ML techniques were used:ANN,DT,and NB.The combined results of the ANN,NB,and DT classifications were tested using a fuzzy-based system.The ratio of training data to testing data was set to 70:30,which enabled accurate prediction.The classification process for all of the techniques was combined with results obtained by the fuzzy-based system,and the processes were conducted until accuracy levels could be observed.The results demonstrated that the proposed fuzzy-based model is 91.30% accurate.

    Acknowledgement:We are grateful to our families and colleagues for their emotional support.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    亚洲激情在线av| 亚洲成人久久爱视频| 久久精品国产99精品国产亚洲性色| 美女被艹到高潮喷水动态| 日韩国内少妇激情av| ponron亚洲| 丰满人妻一区二区三区视频av | 精品久久久久久久久久免费视频| 精品不卡国产一区二区三区| 丰满人妻一区二区三区视频av | 老司机深夜福利视频在线观看| 国产爱豆传媒在线观看| 丰满乱子伦码专区| 欧美日韩一级在线毛片| 午夜精品一区二区三区免费看| 欧美日韩精品网址| 久久婷婷人人爽人人干人人爱| 日日干狠狠操夜夜爽| aaaaa片日本免费| 黑人欧美特级aaaaaa片| 全区人妻精品视频| www.色视频.com| 最近最新中文字幕大全免费视频| 欧美中文综合在线视频| 一级黄色大片毛片| 国产精品,欧美在线| 欧美成人a在线观看| 99久久综合精品五月天人人| 国产精品99久久久久久久久| 国产真人三级小视频在线观看| 欧美一区二区亚洲| 亚洲第一欧美日韩一区二区三区| 国产毛片a区久久久久| 日本五十路高清| 国产精品香港三级国产av潘金莲| 九九久久精品国产亚洲av麻豆| 国产午夜精品论理片| 小蜜桃在线观看免费完整版高清| 国产激情偷乱视频一区二区| 久久久久精品国产欧美久久久| 国内精品久久久久精免费| 丰满人妻熟妇乱又伦精品不卡| 久久人妻av系列| 99热精品在线国产| 看黄色毛片网站| 一个人看视频在线观看www免费 | 女生性感内裤真人,穿戴方法视频| 午夜福利免费观看在线| 欧美成人a在线观看| 最近在线观看免费完整版| 国产精品一区二区免费欧美| 国产一级毛片七仙女欲春2| 91麻豆精品激情在线观看国产| 国产精品 国内视频| 熟女少妇亚洲综合色aaa.| 色老头精品视频在线观看| 欧美在线黄色| 69人妻影院| 少妇的丰满在线观看| 国产精品99久久久久久久久| eeuss影院久久| 91在线精品国自产拍蜜月 | 日本 av在线| 一级a爱片免费观看的视频| av欧美777| 天堂√8在线中文| 真人一进一出gif抽搐免费| 久久久久久久亚洲中文字幕 | 亚洲av美国av| 麻豆成人午夜福利视频| netflix在线观看网站| 97碰自拍视频| 91在线精品国自产拍蜜月 | 十八禁网站免费在线| 给我免费播放毛片高清在线观看| 亚洲在线自拍视频| 99国产极品粉嫩在线观看| or卡值多少钱| 成熟少妇高潮喷水视频| 一区二区三区激情视频| 亚洲精品美女久久久久99蜜臀| 日韩亚洲欧美综合| 99久久99久久久精品蜜桃| 国产男靠女视频免费网站| 黄色视频,在线免费观看| 国产亚洲欧美98| 熟妇人妻久久中文字幕3abv| 男女做爰动态图高潮gif福利片| 91久久精品国产一区二区成人 | 亚洲国产精品999在线| 两个人视频免费观看高清| 91麻豆av在线| 在线天堂最新版资源| 日韩欧美三级三区| 99久久精品国产亚洲精品| 国产熟女xx| 精品久久久久久,| 午夜a级毛片| 天天添夜夜摸| svipshipincom国产片| av福利片在线观看| 男人舔女人下体高潮全视频| 给我免费播放毛片高清在线观看| 国产亚洲精品av在线| 亚洲美女黄片视频| 精品久久久久久久末码| 美女被艹到高潮喷水动态| 欧美又色又爽又黄视频| a在线观看视频网站| 国内久久婷婷六月综合欲色啪| 波野结衣二区三区在线 | 少妇的丰满在线观看| 欧美精品啪啪一区二区三区| 日本精品一区二区三区蜜桃| av女优亚洲男人天堂| 国产激情欧美一区二区| 精华霜和精华液先用哪个| 男女视频在线观看网站免费| 免费在线观看日本一区| 无遮挡黄片免费观看| 最近最新中文字幕大全免费视频| 欧美一级a爱片免费观看看| 日韩免费av在线播放| 露出奶头的视频| 国产69精品久久久久777片| 老司机深夜福利视频在线观看| 精品国产三级普通话版| 别揉我奶头~嗯~啊~动态视频| 麻豆一二三区av精品| 无遮挡黄片免费观看| 国产精品久久久久久人妻精品电影| 国产精品 欧美亚洲| 午夜两性在线视频| 亚洲狠狠婷婷综合久久图片| 中文在线观看免费www的网站| 999久久久精品免费观看国产| 国产三级黄色录像| 国产久久久一区二区三区| 中文亚洲av片在线观看爽| 中文字幕人妻丝袜一区二区| xxxwww97欧美| 女同久久另类99精品国产91| 天天添夜夜摸| 日本三级黄在线观看| 日本黄色视频三级网站网址| 免费看美女性在线毛片视频| 制服人妻中文乱码| 午夜福利高清视频| 亚洲黑人精品在线| 九色国产91popny在线| 日韩欧美 国产精品| 最近视频中文字幕2019在线8| 国产精品久久久久久久久免 | 大型黄色视频在线免费观看| 啪啪无遮挡十八禁网站| 男女那种视频在线观看| 国产午夜精品久久久久久一区二区三区 | 18禁黄网站禁片午夜丰满| 熟妇人妻久久中文字幕3abv| 香蕉av资源在线| 99精品久久久久人妻精品| 好看av亚洲va欧美ⅴa在| 久久精品夜夜夜夜夜久久蜜豆| 一本久久中文字幕| 一级毛片高清免费大全| 日韩欧美一区二区三区在线观看| 免费在线观看成人毛片| 在线天堂最新版资源| 90打野战视频偷拍视频| 男女那种视频在线观看| 日韩 欧美 亚洲 中文字幕| 国产精华一区二区三区| 又黄又爽又免费观看的视频| 国产精品三级大全| 高清在线国产一区| 国内少妇人妻偷人精品xxx网站| 18禁在线播放成人免费| 国产在线精品亚洲第一网站| 国产不卡一卡二| 桃红色精品国产亚洲av| 啦啦啦免费观看视频1| 欧美成人性av电影在线观看| 可以在线观看毛片的网站| 亚洲成人精品中文字幕电影| 久久性视频一级片| 在线十欧美十亚洲十日本专区| 国产91精品成人一区二区三区| 一进一出抽搐动态| 国内精品一区二区在线观看| 久久精品综合一区二区三区| 国产综合懂色| 国产一区在线观看成人免费| 美女 人体艺术 gogo| 日韩精品中文字幕看吧| a级毛片a级免费在线| 欧美另类亚洲清纯唯美| 波多野结衣高清无吗| 欧美成人a在线观看| 一级毛片高清免费大全| 久久久久久久久久黄片| 熟女少妇亚洲综合色aaa.| 亚洲成人久久性| 一夜夜www| 亚洲在线观看片| 少妇人妻一区二区三区视频| 热99re8久久精品国产| 亚洲av二区三区四区| 国产黄a三级三级三级人| 成人亚洲精品av一区二区| 国产高潮美女av| 精品免费久久久久久久清纯| 小蜜桃在线观看免费完整版高清| 99精品欧美一区二区三区四区| 成年免费大片在线观看| 精品国产超薄肉色丝袜足j| 少妇裸体淫交视频免费看高清| 国产在线精品亚洲第一网站| 久久婷婷人人爽人人干人人爱| 一级黄片播放器| 国产精品亚洲一级av第二区| 日本a在线网址| 国产高清三级在线| 国内揄拍国产精品人妻在线| 久久久久性生活片| 动漫黄色视频在线观看| 欧美zozozo另类| 国产精品电影一区二区三区| 日韩欧美三级三区| 国产精品 欧美亚洲| 99国产极品粉嫩在线观看| 高清毛片免费观看视频网站| 国产精品国产高清国产av| 国产亚洲欧美在线一区二区| 黄色丝袜av网址大全| 人人妻人人澡欧美一区二区| 国产淫片久久久久久久久 | 身体一侧抽搐| 欧美zozozo另类| 免费一级毛片在线播放高清视频| 黄片小视频在线播放| 性欧美人与动物交配| 91九色精品人成在线观看| 啦啦啦免费观看视频1| 国产麻豆成人av免费视频| 久久久久国产精品人妻aⅴ院| 天堂√8在线中文| 亚洲不卡免费看| 国产av在哪里看| 免费人成视频x8x8入口观看| 亚洲无线观看免费| 88av欧美| 午夜久久久久精精品| 亚洲乱码一区二区免费版| 久久性视频一级片| 国产老妇女一区| 亚洲欧美一区二区三区黑人| 好看av亚洲va欧美ⅴa在| 久久精品国产清高在天天线| 熟女少妇亚洲综合色aaa.| 波多野结衣高清无吗| 国产亚洲精品久久久com| 国产精品乱码一区二三区的特点| 天天添夜夜摸| 中文字幕av在线有码专区| 亚洲激情在线av| 蜜桃亚洲精品一区二区三区| 午夜免费成人在线视频| 久9热在线精品视频| 国产黄片美女视频| 91麻豆av在线| 999久久久精品免费观看国产| 亚洲黑人精品在线| www日本在线高清视频| 女生性感内裤真人,穿戴方法视频| 精品人妻一区二区三区麻豆 | 国产成人aa在线观看| 国产精品亚洲一级av第二区| 亚洲黑人精品在线| www日本在线高清视频| 嫩草影院精品99| 国产成人a区在线观看| 国产不卡一卡二| 夜夜夜夜夜久久久久| 国产爱豆传媒在线观看| 一级作爱视频免费观看| 国产99白浆流出| 嫩草影院入口| 天天一区二区日本电影三级| 舔av片在线| 午夜精品一区二区三区免费看| 国产蜜桃级精品一区二区三区| 女人被狂操c到高潮| 嫩草影视91久久| 久久午夜亚洲精品久久| 久久精品91蜜桃| 日本 欧美在线| 欧美日韩国产亚洲二区| 俄罗斯特黄特色一大片| 在线观看舔阴道视频| 欧美黑人欧美精品刺激| 国产又黄又爽又无遮挡在线| 色吧在线观看| 国产在视频线在精品| 亚洲精品日韩av片在线观看 | 成年女人看的毛片在线观看| 日韩高清综合在线| 老司机在亚洲福利影院| 99国产精品一区二区蜜桃av| 99国产精品一区二区三区| 90打野战视频偷拍视频| 午夜视频国产福利| 国产亚洲欧美在线一区二区| 真人做人爱边吃奶动态| 九九热线精品视视频播放| 国产探花在线观看一区二区| 哪里可以看免费的av片| 高潮久久久久久久久久久不卡| 黄色女人牲交| 国内久久婷婷六月综合欲色啪| 五月伊人婷婷丁香| 午夜福利成人在线免费观看| 国产一区在线观看成人免费| 校园春色视频在线观看| 久久亚洲精品不卡| 内地一区二区视频在线| 久久精品夜夜夜夜夜久久蜜豆| 老司机午夜福利在线观看视频| av天堂在线播放| 51国产日韩欧美| 老熟妇仑乱视频hdxx| 一本一本综合久久| 亚洲中文字幕一区二区三区有码在线看| 成人无遮挡网站| 久久久久国产精品人妻aⅴ院| 少妇裸体淫交视频免费看高清| 中文资源天堂在线| 超碰av人人做人人爽久久 | 19禁男女啪啪无遮挡网站| 一本精品99久久精品77| 岛国视频午夜一区免费看| 精品人妻一区二区三区麻豆 | 婷婷丁香在线五月| 一级a爱片免费观看的视频| 欧美3d第一页| 91av网一区二区| 又爽又黄无遮挡网站| 国产精品影院久久| 老司机午夜十八禁免费视频| 国产午夜精品久久久久久一区二区三区 | 成人精品一区二区免费| 国产一区二区三区在线臀色熟女| 亚洲无线观看免费| 国产黄色小视频在线观看| 国产伦一二天堂av在线观看| 一个人免费在线观看电影| 韩国av一区二区三区四区| 中文字幕熟女人妻在线| 在线观看舔阴道视频| 色综合站精品国产| 亚洲成av人片在线播放无| 久久精品综合一区二区三区| 亚洲午夜理论影院| 欧美性感艳星| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲成av人片免费观看| 国产精品久久久久久久电影 | 神马国产精品三级电影在线观看| 欧美色欧美亚洲另类二区| av天堂在线播放| 国产日本99.免费观看| 日韩精品青青久久久久久| 可以在线观看的亚洲视频| 91久久精品电影网| bbb黄色大片| 日本免费一区二区三区高清不卡| 很黄的视频免费| 欧美又色又爽又黄视频| 欧美中文日本在线观看视频| 美女免费视频网站| 日本三级黄在线观看| 国产精品久久久人人做人人爽| 尤物成人国产欧美一区二区三区| 亚洲精品色激情综合| 男女那种视频在线观看| 19禁男女啪啪无遮挡网站| 天堂av国产一区二区熟女人妻| 欧美一区二区国产精品久久精品| 国产亚洲精品av在线| 欧美一区二区亚洲| 婷婷亚洲欧美| 十八禁人妻一区二区| 成年女人看的毛片在线观看| 在线观看免费午夜福利视频| 亚洲真实伦在线观看| 免费在线观看亚洲国产| 少妇人妻一区二区三区视频| 亚洲不卡免费看| 亚洲激情在线av| 国产在线精品亚洲第一网站| 国产精品日韩av在线免费观看| 成人精品一区二区免费| 日本免费a在线| 伊人久久精品亚洲午夜| 午夜福利在线观看吧| 欧美区成人在线视频| 禁无遮挡网站| 老熟妇仑乱视频hdxx| 午夜激情欧美在线| 2021天堂中文幕一二区在线观| 夜夜夜夜夜久久久久| 丁香欧美五月| 99久久成人亚洲精品观看| 国产精品一及| 日日摸夜夜添夜夜添小说| 亚洲狠狠婷婷综合久久图片| 国内精品一区二区在线观看| a在线观看视频网站| 色哟哟哟哟哟哟| 18禁黄网站禁片午夜丰满| 日本五十路高清| 成年女人毛片免费观看观看9| 亚洲精品成人久久久久久| 午夜福利成人在线免费观看| 色吧在线观看| 麻豆一二三区av精品| 亚洲18禁久久av| 免费观看精品视频网站| 久久久久久大精品| 久久精品国产亚洲av涩爱 | 在线播放国产精品三级| 一区福利在线观看| www.熟女人妻精品国产| 欧美黑人欧美精品刺激| 午夜日韩欧美国产| 免费看美女性在线毛片视频| 国产精品98久久久久久宅男小说| 毛片女人毛片| 神马国产精品三级电影在线观看| 成熟少妇高潮喷水视频| 久久久久久久久久黄片| 怎么达到女性高潮| 极品教师在线免费播放| 一个人免费在线观看的高清视频| 国产亚洲精品av在线| 叶爱在线成人免费视频播放| 婷婷精品国产亚洲av| 一个人观看的视频www高清免费观看| 在线观看66精品国产| 男人和女人高潮做爰伦理| 久久久久久九九精品二区国产| 桃色一区二区三区在线观看| 婷婷六月久久综合丁香| 国产探花在线观看一区二区| 超碰av人人做人人爽久久 | 一个人免费在线观看电影| 亚洲色图av天堂| 国产亚洲av嫩草精品影院| 99久久久亚洲精品蜜臀av| 99热6这里只有精品| www日本黄色视频网| av黄色大香蕉| 少妇的逼好多水| 国产伦一二天堂av在线观看| 国模一区二区三区四区视频| a级毛片a级免费在线| 国产亚洲精品一区二区www| 99国产精品一区二区蜜桃av| 亚洲一区二区三区色噜噜| 少妇人妻精品综合一区二区 | 十八禁网站免费在线| 亚洲成av人片在线播放无| 欧美zozozo另类| 亚洲精品在线美女| 欧美日韩福利视频一区二区| 村上凉子中文字幕在线| 日韩欧美国产在线观看| 女生性感内裤真人,穿戴方法视频| 欧美+日韩+精品| 亚洲黑人精品在线| 免费在线观看影片大全网站| 色视频www国产| 日韩欧美一区二区三区在线观看| 看片在线看免费视频| 69人妻影院| 日韩中文字幕欧美一区二区| 热99re8久久精品国产| 午夜福利欧美成人| 男女那种视频在线观看| 99国产综合亚洲精品| 网址你懂的国产日韩在线| 好男人在线观看高清免费视频| 午夜影院日韩av| 尤物成人国产欧美一区二区三区| 欧美性猛交黑人性爽| 少妇高潮的动态图| 日韩亚洲欧美综合| 亚洲精品日韩av片在线观看 | 日本 av在线| 看免费av毛片| 日日干狠狠操夜夜爽| 成人特级黄色片久久久久久久| 非洲黑人性xxxx精品又粗又长| avwww免费| 国产激情欧美一区二区| 成人午夜高清在线视频| 国产极品精品免费视频能看的| 久久久久性生活片| 国产欧美日韩一区二区三| 可以在线观看毛片的网站| 男女之事视频高清在线观看| 久久精品91蜜桃| 夜夜夜夜夜久久久久| 香蕉av资源在线| 午夜日韩欧美国产| 精品久久久久久久末码| 此物有八面人人有两片| 高清在线国产一区| 综合色av麻豆| 精品不卡国产一区二区三区| 日本撒尿小便嘘嘘汇集6| 亚洲美女视频黄频| 一区二区三区国产精品乱码| 男女视频在线观看网站免费| 好男人电影高清在线观看| 色av中文字幕| 亚洲av成人av| 韩国av一区二区三区四区| 精品久久久久久久末码| 午夜福利在线在线| 午夜久久久久精精品| 一个人免费在线观看的高清视频| 一级黄色大片毛片| 亚洲成a人片在线一区二区| 他把我摸到了高潮在线观看| 国产亚洲精品av在线| 18禁裸乳无遮挡免费网站照片| 悠悠久久av| 99久久综合精品五月天人人| 亚洲国产欧洲综合997久久,| 757午夜福利合集在线观看| 麻豆成人午夜福利视频| 中文字幕人成人乱码亚洲影| 欧美最黄视频在线播放免费| 啪啪无遮挡十八禁网站| 男人舔奶头视频| av黄色大香蕉| 我要搜黄色片| 精品国产亚洲在线| 国产精品亚洲av一区麻豆| 黄片小视频在线播放| 又黄又粗又硬又大视频| 最近在线观看免费完整版| 久久精品国产自在天天线| 日日摸夜夜添夜夜添小说| 嫩草影院入口| 亚洲精品一区av在线观看| 级片在线观看| 深爱激情五月婷婷| 亚洲中文字幕一区二区三区有码在线看| 成年女人毛片免费观看观看9| 天堂动漫精品| 欧美不卡视频在线免费观看| 午夜激情欧美在线| 国产精品一及| 两性午夜刺激爽爽歪歪视频在线观看| 给我免费播放毛片高清在线观看| 国产真人三级小视频在线观看| 丁香六月欧美| 天天躁日日操中文字幕| 日本五十路高清| 国产在线精品亚洲第一网站| 日本a在线网址| 国内少妇人妻偷人精品xxx网站| 欧美中文综合在线视频| 天天添夜夜摸| 国产一区二区三区视频了| 一卡2卡三卡四卡精品乱码亚洲| 丰满乱子伦码专区| 国产老妇女一区| 美女高潮的动态| 国产成年人精品一区二区| 日韩国内少妇激情av| 国产欧美日韩一区二区精品| 男女下面进入的视频免费午夜| 小蜜桃在线观看免费完整版高清| 俺也久久电影网| 亚洲自拍偷在线| 亚洲av成人精品一区久久| 日日干狠狠操夜夜爽| 欧美+亚洲+日韩+国产| 观看免费一级毛片| 两个人视频免费观看高清| 亚洲精品亚洲一区二区| 精品久久久久久成人av| 变态另类丝袜制服| 白带黄色成豆腐渣| 老司机午夜十八禁免费视频| 欧美午夜高清在线| 91在线观看av| 亚洲最大成人手机在线| 精品国产三级普通话版| 91在线观看av| tocl精华| 婷婷六月久久综合丁香| 国产成+人综合+亚洲专区| 欧美日韩福利视频一区二区| 久久精品国产清高在天天线| 亚洲欧美日韩东京热| 可以在线观看的亚洲视频| 免费电影在线观看免费观看| 又黄又爽又免费观看的视频| 久久久久性生活片| 久久精品影院6| 欧美日韩综合久久久久久 | 成熟少妇高潮喷水视频|