• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Efficient Hybrid PAPR Reduction for 5G NOMA-FBMC Waveforms

    2021-12-15 07:06:50ArunKumarSivabalanAmbigapathyMehediMasudEmadSamiJahaSumitChakravartyandKanchanSengar
    Computers Materials&Continua 2021年12期

    Arun Kumar,Sivabalan Ambigapathy,Mehedi Masud,Emad Sami Jaha,Sumit Chakravarty and Kanchan Sengar

    1Department of Electronics and Communication Engineering,JECRC University,Jaipur,303905,India

    2Center for System Design,Chennai Institute of Technology,India

    3Department of Computer Science,College of Computers and Information Technology,Taif University,Taif,21944,Saudi Arabia

    4Department of Computer Science,Faculty of Computing and Information Technology,King Abdulaziz University,Jeddah,Saudi Arabia

    5Department of Electrical and Computer Engineering,Kennesaw State University,GA,USA

    Abstract: The article introduces Non-Orthogonal Multiple Access (NOMA)and Filter Bank Multicarrier(FBMC),known as hybrid waveform(NOMAFBMC), as two of the most deserving contenders for fifth-generation (5G)network.High spectrum access and clampdown of spectrum outflow are unique characteristics of hybrid NOMA-FBMC.We compare the spectral efficiency of Orthogonal Frequency Division Multiplexing(OFDM),FBMC,NOMA,and NOMA-FBMC.It is seen that the hybrid waveform outperforms the existing waveforms.Peak to Average Power Ratio(PAPR) is regarded as a significant issue in multicarrier waveforms.The combination of Selective Mapping-Partial Transmit Sequence (SLM-PTS)is an effective way to minimize large peak power inclination.The SLM,PTS,and SLM-PTS procedures are applied to the NOMA-FBMC waveform.This hybrid structure is applied to the existing waveforms.Further, the correlated factors like Bit Error Rate(BER) and Computational Overhead (CO) are studied and computed for these waveforms.The outcome of the work reveals that the NOMA-FBMC waveform coupled with the SLM-PTS algorithm offers superior performance as compared to the prevailing systems.

    Keywords: 5G; NOMA-FBMC; SLM-PTS; PAPR; BER; OFDM

    1 Introduction

    Due to the increased requirement of cellular capacity, there is an urgency to design an advanced radio network.It is anticipated that the cellular capacity will increase by 30%, which cannot be supported by the current fourth-generation (4G) cellular network.Additionally, technologies such as the Internet of Things (IoT), Device to Device communications (D2D), and smart health care require high spectral efficiency.To fulfill these requirements, the advanced waveform implementation plays a key role in the standardization of the fifth-generation (5G) network.Presently, 4G is based on Orthogonal Frequency Division Multiplexing (OFDM).OFDM is implemented by splitting a single carrier into several orthogonal sub-carriers.The key parameters in the structure of OFDM consist of Inverse Fast Fourier Transform (IFFT), Fast Fourier Transform(FFT), and Cyclic Prefix (CP).The purpose of IFFT is to generate a composite signal, FFT is used to detect the desired signal, and CP is utilized to mitigate Inter-Symbol Interference(ISI).Though OFDM is utilized in several applications [1], it is not recommended as a suitable candidate for the 5G network.OFDM consists of several drawbacks.The use of CP result in loss of spectrum [2], and filtering in OFDM is not suitable for cognitive applications.Frequency characteristics of OFDM are poor, not suitable to support huge data traffic, and its performance degrades for Digital Subscribers Line (DSL) applications.Hence, the regularization of the 5G network requires an efficient waveform scheme.Filter Bank Multicarrier (FBMC) and Non-Orthogonal Multiple Access (NOMA) is the most popular advanced waveform for the 5G radio network.In FBMC, a poly-phase filter is used at the transceiver of the framework.A PHYDYAS filter is applied to the sub-carriers’group, which mitigates the effect of ISI between the subcarriers.Further, the spectral performance of FBMC is better than the OFDM structure.However,it is observed that the performance of FBMC degrades with Multiple Inputs and Multiple Outputs (MIMO) or Cognitive Network Systems (CNS).Additionally, the requirement of a multitap detection system for each sub-carrier is seen severe disadvantage of the FBMC waveform [3].On the other hand, NOMA is hugely popular and even regarded as the top waveform contender for the 5G network.It efficiently utilizes the spectrum and allows multiple subscribers to access the resources in both the time and frequency domain.The subscribers are multiplexed in either time or code domain, resulting in enhanced throughput of the framework.It also supports a large number of subscribers as compared to OFDM or FBMC [4].It is observed that NOMA significantly supports weak users, which results in a better probability of outage than FBMC or OFDM.The integration of NOMA and massive MIMO also enables user overload more effectively than FBMC system.NOMA provides excellent service even if subscribers’number exceeds the number of users allocated per base station [5].The NOMA structures comprise of the components:IFFT,Successive Interference Cancellation (SIC), FFT, and Super Coding (SC).IFFT is used to generate the sub-carriers, SC allows the users to simultaneously access the spectrum resources, and SIC helps in the detection of the signal.The ability to serve a massive number of devices, provide high spectral access, enable low propagation delay, or low probability of outage are the novelties of the NOMA structure.Hence, it is more appropriate as a 5G candidate, than the FBMC or OFDM.In the projected framework, a cluster of filters is applied to a group of sub-carriers, and thereby allowing them to maintain signal separation, enabling system compatibility with cognitive radio, overcoming frequency and temporal domain error etc.The NOMA-FBMC is considered an important contender for 5G radio due to its several advantages:large device connectivity, efficient utilization of spectrum, high data speed, better connectivity, high capacity, and amenability to the use of advanced techniques [6].Peak to Average Power Ratio (PAPR) is a common problem in multicarrier schemes such as OFDM, FBMC, and NOMA.PAPR is the ratio of the power of transmitted symbols to the symbol’s average power.PAPR is seen as an important concern in the rollout of the 5G radio network.PAPR degrades the power amplifier’s gain and reduces the Signal-to-Noise Ratio (SNR) [7].Though PAPR cannot be eliminated, it can be reduced by using PAPR minimization algorithms.PAPR algorithms are grouped into:a.signaling methods [8],b.distortion minimization [9] and c.scrambling methods [10].Several PAPR conventional reduction algorithms can be utilized in OFDM and can efficiently reduce the amplitude power [11].The conventional PAPR algorithms cannot apply to the advanced waveforms due to their different structural arrangement as compared to the OFDM.The recent studies reveal that the conventional algorithms perform poorly when applied to the FBMC structure [12].In this work, advanced PTS-SLM hybrid algorithms are applied to the OFDM, FBMC, NOMA and, NOMA-FBMC structures.The conventional PTS and SLM lower down the multicarrier waveforms peak power but increase the framework’s computational complexity’s [13].The proposed PTS-SLM efficiently minimizes the PAPR and the complexity of the waveforms.Various reduction algorithms are studied and an advanced Discrete-SLM-Circulation Transformation algorithm is introduced to decrease the peak power of advanced waveforms.It is seen that the proposed algorithm enhances the throughput of the structure, although the complexity and BER of the systems are significantly increased.The PAPR analysis on SC-OFDM is estimated and analyzed for different PAPR minimization algorithms.It is found that the peak power and the complexity are significantly decreased in the projected structure in comparison to the traditional methods [14].OFDM is widely used in many applications, but it is not suitable for the 5G network.The gain of the power amplifier is adversely affected by the high peak power.A technique like Tone reservation(TR) is an efficient method to minimize the PAPR, and increases the hardware overhead.The combination of TR and Fast Iterative Shrinkage Threshold Algorithm (FISTA) is designed to improve the PAPR performance of OFDM [15].In [16], the OFDM symbols’ amplitude is analyzed and estimated in the time domain.The large amplitude OFDM symbols are reduced by multiplying with the scaling elements.The proposed algorithm minimizes the peak power from 13 to 7 dB.Hence, the efficiency of 53% is achieved.In [17], the combination of PTS-PSO was introduced to enhance the efficiency of PA in the OFDM structure.The simulation outcomes reveal a remarkable improvement in the throughput of the system.The peak power reduction based on PTS and Genetic Algorithm (GA) is implemented for the OFDM framework [18].The experimental outcomes reveal that the projected algorithm significantly lowers the PAPR while sustaining a moderate arithmetical overhead.The key contributions of the proposed work are as follows:

    a.A significant reduction in PAPR is obtained by introducing a PTS-SLM algorithm.Further, the optimal PAPR is obtained by experimenting with different sub-blocks and phase elements.

    b.Proposed a hybrid PAPR reduction applied to the combination of NOMA and FBMC.The performance of the Hybrid waveform is better than the OFDM, FBMC, or NOMA.

    c.The proposed PTS-SLM considerably reduces the complexity overhead of the structure.

    2 System Model

    2.1 PAPR in Multicarrier System

    The structure of the multicarrier system is given in Fig.1.

    Figure 1:OFDM

    Let us consider an N-sub-carrier to modulate the OFDM symbols:

    An IFFT is applied on Eq.(1) to generate a time-domain OFDM symbols (L), given as:

    wheren=0,1,...,KN-1 and K is the overlapping factor.The PAPR of the OFDM symbols in the transmitter is given as:

    To estimate the peak power of the OFDM symbols in dB is given as:

    To analyze the efficiency of peak power of OFDM system, it is important to estimate the complementary cumulative distribution function (CCDF), given as:

    The average value of the OFDM symbol (Average|y(n)|2)is one.

    The PAPR for different threshold value is given as:

    2.2 PAPR in NOMA-FBMC

    The schematic of the projected waveform is given in Fig.2.

    Figure 2:NOMA-FBMC

    The NOMA symbols are expressed as:

    The modulated NOMA symbols form-subcarriers (S) are given by:

    A cluster of filters is applied to theym,j[m], given by:

    whereFcis the group of filters.The filtered symbols are added to reconstruct the NOMA-FBMC symbols represented as:

    yjdenotes the NOMA-FBMC symbols multiplexed in the power domain.Let P be the total power allocated to the NOMA subs-carriers, given as:

    The PAPR of the NOMA-FBMC is expressed as:

    The CCDF of the NOMA-FBMC is given by:

    2.3 Selective Mapping(SLM)

    The conventional arrangement of SLM is given in Fig.3.It is one of the most adopted PAPR approaches due to its numerous benefits.

    Figure 3:SLM

    The symbols are segregated into the cluster of blocks, which can be represented as:

    The clusters of phase sequence u are given as:

    The symbols (Qn) are multiplied with the clusters of phase sequence U:

    Applying IFFT to the Eq.(17)

    The symbols (qsu(n)) with low amplitudes are estimated and transmitted to the receiver.

    2.4 PTS(Partial Transmission Sequence)

    The structure of PTS is given in Fig.4.

    Figure 4:PTS

    The PTS method reduces the PAPR by splitting the multicarrier signals (Z) into the number of sub-blocks (S).

    The signals (Zs) are weighted by constant phase elements (es)to lower down the peak power.The phase element vector is express as:

    where e is written as:

    P is the acceptable phase elements limited to {±1}, {±1,±i}:

    An IFFT is applied to the sub-blocks to estimate the large peak values of the signals,expressed as:

    The minimal PAPR is obtained by finding the best phase elements given as:

    2.5 Proposed SLM-PTS

    The structural arrangement of SLM-PTS is given in Fig.5.SLM’s spectral and PAPR performance is superior to the PTS, but SLM results in high computational overhead as equated to the PTS.The primary concern is to lower the value of peak power while reducing the framework’s complexity.Hence, we proposed to integrate PTS-SLM for advanced waveforms.

    Figure 5:Proposed SLM-PTS

    Let us consider multicarrier signals separated into several sub-blocks (S) is given by:

    The phase sequence ?pis given as:

    The symbols (BS) and phase elements (?p)are multiplied given as:

    Applying IFFT to the Eq.(26)

    The low amplitudes of SLM symbols (S (n)) are selected and transmitted to the PTS system.The PTS method reduces the complexity by splitting SLM symbols into the number of sub-blocks given as:

    where e is written as:

    An IFFT is applied to the sub-blocks to estimate the large peak values of the signals,expressed as:

    The minimum PAPR is expressed as:

    3 Results

    The projected method is implemented and studied by using MATLAB v2014 on a Core i7 system.The BER, PAPR, and spectral accessing performance have been explored for the OFDM,FBMC, NOMA, and NOMA-FBMC centered PTS, SLM, and SLM-PTS algorithms.Tab.1 shows the simulation constraints of the projected work.

    Complexity is one of the major apprehensions in PAPR procedures.The complexity of the different waveforms can be obtained as [19]:

    We consider arithmetic operational as the intricacy of this work.The addition (Add) and multiplication (Mul) of PTS [20], SLM [21], and proposed SLM-PTS are given below:

    Table 1:Parameters

    Fig.6 indicated the spectral and Out of Band Emission (OOBE) comparison of OFDM,FBMC, NOMA, and NOMA-FBMC.It is seen that the OOBE of the SLM-PTS is -115 dB as compared with the NOMA (-87 dB), FBMC (-80 dB), and OFDM (-55 dB).It is noted that the spectral leakage of NOMA-FBMC is very low.Hence, it is concluded that the projected hybrid waveform is superior to the standard or advanced waveforms.

    Figure 6:Spectrum leakage performance

    The BER estimation of the OFDM structure for the PAPR minimization method is given in Fig.7.The projected SLM-PTS obtained a BER of 10-3at SNR of 7.2 dB in comparison to the SLM (7.2 dB) and PTS (8.4 dB), respectively.It is seen that the SLP-PTS enhanced the throughput of the OFDM by 24% as compared with the SLM (18%) and PTS (12%).It is concluded that SLM-PTS is a novel PAPR algorithm and can be applied to the conventional waveforms scheme.

    Figure 7:BER OFDM

    In Fig.8 we evaluate the CCDF of OFDM structure for PAPR algorithms.The original signal’s peak power without applying the reduction algorithm is 9.6 dB at the CCDF of 10-3.It is seen that the SLM and PTS enlarge the peak of the OFDM signals, hence increases the PAPR to 7 and 6.6 dB.However, the projected SLM-PTS scales down the peak of the symbols,consequently reducing the PAPR to 6.6 dB.It is observed that the SLM-PTS obtained a gain of 0.4 and 1.1 dB as compared to the SLM and PTS.

    Figure 8:OFDM PAPR

    The analysis of BER curves of FBMC arrangement for different PAPR algorithms is given in Fig.9.The SLM-PTS, SLM, and PTS achieved an efficiency of 38%, 30%, and 25%, respectively.Hence, it is concluded that projected SLM-PTS performance is better when applied to the FBMC structure than the OFDM.

    Figure 9:FBMC BER

    The CCDF of the FBMC structure is given in Fig.10.It is noted that the SLM-PTS, SLM,and PTS decrease the peak power to 5.4, 6.2, and 6.8 dB, respectively, at the CCDF of 10-3.Hence, it is concluded that the SLM-PTS clipped the OFDM signal’s peak at the desired level,thus enhancing the structure’s PAPR performance.

    Figure 10:FBMC PAPR

    The BER estimation of the NOMA waveform structure is given in Fig.11.It is seen that the efficiency of BER performance is greatly improved at the lower SNRs prerequisite.The SLM-PTS,SLM, and PTS enhanced the efficiency of the framework by 43%, 37%, and 28%, respectively.Hence it is concluded, the overall throughput of the NOMA arrangement is greatly enhanced as compared to the OFDM and FBMC structure.

    Figure 11:NOMA BER

    The CCDF estimation of the NOMA structure is given in Fig.12.The NOMA signal’s peak power is 9.6 dB at the CCDF of 10-3, without applying the PAPR algorithms.The peak power is minimized to 4.6 dB for SLM-PTS, 5.2 dB for SLM, and 6 dB for PTS.Hence, it is concluded that the PAPR performance of the NOMA is superior to the FBMC and OFDM structure.

    Figure 12:NOMA PAPR

    The BER analysis of the Hybrid waveform for different PAPR minimization schemes is given in Fig.13.The BER of 10-3is obtained at the SNR of 9.6 dB, 4.4, 5.3, and 6 dB for NOMAFBMC, SLM-PTS, SLM, and PTS respectively.It is seen that the SNR requirement is drastically reduced for the hybrid waveform scheme.Further, the projected SLM-PTS obtained an efficiency of 54%, due to which it becomes a more desired candidate for 5G radio.

    Figure 13:NOMA-FBMC BER

    To estimate the effect of PAPR algorithms, the CCDF analysis of NOMA-FBMC is given in Fig.14.The CCDF of NOMA-FBMC at 10-3for SLM-PTS, SLM, and PTS is 3, 4.2, and 5.4 dB, respectively, in comparison to the original signal (9.6 dB).Hence, it is noted that the PAPR performance of the projected algorithm is highly optimized in hybrid-scheme.

    Figure 14:NOMA-FBMC PAPR

    4 Conclusion

    The BER, PAPR, and spectral performance of the conventional, advanced, and projected hybrid-waveforms are analyzed.The projected SLM-PTS, SLM, and PTS algorithms are applied to the radio waveforms, and simulation results are rigorously investigated.In the first part of the work, we examined and compared the radio waveforms’spectral performance.However, from the existing literature, it is revealed that the currently used waveforms like OFDM may not serve the key requirements of the 5G radio.Hence, we designed a hybrid NOMA-FBMC waveform to mitigate the drawbacks of current waveforms.It is noted that the spectrum leakage and utilization capability of NOMA-FBMC are better than the existing radio waveforms.In the second part of the work, we mitigate the PAPR effect of multicarrier waveforms.SLM and PTS lower down the PAPR, but the computational overhead is large.Hence, a hybrid SLM-PTS algorithm is suggested to enhance the PAPR and BER performance while sustaining the framework’s complexity overhead.The outcome of the work reveals that the projected SLM-PTS surpasses the performance of standard PAPR algorithms.

    Acknowledgement:The authors would like to thank for the support from Taif University Researchers Supporting Project Number (TURSP-2020/10), Taif University, Taif, Saudi Arabia and the Centre of Artificial Intelligence, Chennai Institute of Technology, INDIA, vide funding number CIT/CAI/2021/RP-002.

    Funding Statement:Taif University Researchers Supporting Project Number (TURSP-2020/10).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    波多野结衣高清无吗| 亚洲国产欧美在线一区| 国产免费视频播放在线视频 | 99久国产av精品国产电影| 久久精品久久久久久久性| 精品久久久噜噜| 夫妻性生交免费视频一级片| 国产精品久久久久久精品电影| 久久久精品欧美日韩精品| 99在线视频只有这里精品首页| 又爽又黄a免费视频| 一个人看视频在线观看www免费| 久久欧美精品欧美久久欧美| 嫩草影院精品99| 乱系列少妇在线播放| 老师上课跳d突然被开到最大视频| 日韩国内少妇激情av| 国产极品天堂在线| 久久久精品94久久精品| 精品无人区乱码1区二区| 免费一级毛片在线播放高清视频| 你懂的网址亚洲精品在线观看 | 老师上课跳d突然被开到最大视频| 高清日韩中文字幕在线| 性色avwww在线观看| 亚洲人成网站在线播| 欧美+日韩+精品| 亚洲精品自拍成人| 青春草亚洲视频在线观看| 亚洲欧美一区二区三区国产| 亚洲成av人片在线播放无| 日本黄大片高清| 国产精品国产三级国产av玫瑰| 欧美成人a在线观看| 18禁动态无遮挡网站| 久久久久久久久久成人| 精品人妻视频免费看| 一级二级三级毛片免费看| 少妇高潮的动态图| 久久久久精品久久久久真实原创| 午夜福利在线观看吧| 亚洲图色成人| 精品不卡国产一区二区三区| 精品久久久久久电影网 | av在线蜜桃| 亚洲av免费在线观看| 性色avwww在线观看| av黄色大香蕉| 大话2 男鬼变身卡| 淫秽高清视频在线观看| 久久久国产成人精品二区| 天堂av国产一区二区熟女人妻| 久久人妻av系列| 亚洲精品一区蜜桃| 久久久久久久久大av| 一区二区三区高清视频在线| 国内精品美女久久久久久| 汤姆久久久久久久影院中文字幕 | 天天一区二区日本电影三级| 久久精品91蜜桃| 国产午夜精品久久久久久一区二区三区| 久久这里只有精品中国| 97在线视频观看| 国产免费视频播放在线视频 | 国产亚洲一区二区精品| 国产亚洲av片在线观看秒播厂 | 亚洲成色77777| 婷婷六月久久综合丁香| 麻豆成人午夜福利视频| 成人欧美大片| 亚洲自拍偷在线| 视频中文字幕在线观看| 国产91av在线免费观看| av福利片在线观看| 国产男人的电影天堂91| 免费在线观看成人毛片| 少妇熟女aⅴ在线视频| 精华霜和精华液先用哪个| 日日干狠狠操夜夜爽| 成年av动漫网址| 免费无遮挡裸体视频| 国内揄拍国产精品人妻在线| 亚洲综合精品二区| 波多野结衣巨乳人妻| 久久久午夜欧美精品| 久久久精品欧美日韩精品| 女人被狂操c到高潮| 两性午夜刺激爽爽歪歪视频在线观看| 九九久久精品国产亚洲av麻豆| 亚洲国产最新在线播放| 99久久精品一区二区三区| 2022亚洲国产成人精品| 日韩av在线大香蕉| 国产日韩欧美在线精品| av在线观看视频网站免费| 搡老妇女老女人老熟妇| 又黄又爽又刺激的免费视频.| 亚洲电影在线观看av| 爱豆传媒免费全集在线观看| 国产乱来视频区| 如何舔出高潮| 精品不卡国产一区二区三区| 丰满乱子伦码专区| 蜜桃亚洲精品一区二区三区| 最近中文字幕2019免费版| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产伦精品一区二区三区四那| 边亲边吃奶的免费视频| 狠狠狠狠99中文字幕| 欧美高清性xxxxhd video| 小说图片视频综合网站| av又黄又爽大尺度在线免费看 | 中文亚洲av片在线观看爽| 亚洲av免费在线观看| 精品人妻熟女av久视频| 亚洲最大成人中文| av又黄又爽大尺度在线免费看 | 天堂中文最新版在线下载 | 亚洲第一区二区三区不卡| 国产成年人精品一区二区| 麻豆成人午夜福利视频| 国内精品一区二区在线观看| 亚洲18禁久久av| 亚洲成人久久爱视频| 中文资源天堂在线| 日韩制服骚丝袜av| 午夜激情欧美在线| 国产黄片美女视频| 亚洲18禁久久av| 一级黄片播放器| 日韩国内少妇激情av| 精品久久久久久电影网 | 日产精品乱码卡一卡2卡三| 久久精品影院6| 亚洲aⅴ乱码一区二区在线播放| 午夜福利成人在线免费观看| 国产精品乱码一区二三区的特点| 亚洲怡红院男人天堂| 99久久精品国产国产毛片| 亚洲自拍偷在线| 色播亚洲综合网| 日本一本二区三区精品| av播播在线观看一区| 色播亚洲综合网| 亚洲av成人精品一区久久| 精品人妻偷拍中文字幕| 国产精品久久视频播放| 国产又色又爽无遮挡免| 99热网站在线观看| 久久人人爽人人片av| www.av在线官网国产| 国产私拍福利视频在线观看| 国产麻豆成人av免费视频| 亚洲无线观看免费| 国产精品国产三级国产av玫瑰| 国产精品美女特级片免费视频播放器| 国语自产精品视频在线第100页| 亚洲国产欧洲综合997久久,| 欧美极品一区二区三区四区| 亚洲中文字幕一区二区三区有码在线看| 国产精品日韩av在线免费观看| 国产一级毛片在线| 我的老师免费观看完整版| 美女xxoo啪啪120秒动态图| 欧美高清性xxxxhd video| 寂寞人妻少妇视频99o| 久久久久久大精品| 丝袜喷水一区| 日韩中字成人| 国产成人aa在线观看| 免费看光身美女| 亚洲av免费在线观看| 麻豆精品久久久久久蜜桃| 国产精品99久久久久久久久| 九色成人免费人妻av| 级片在线观看| 国产精品无大码| 丝袜美腿在线中文| 亚洲欧美精品综合久久99| 欧美高清成人免费视频www| 黄色一级大片看看| 1000部很黄的大片| 亚洲伊人久久精品综合 | 女的被弄到高潮叫床怎么办| 国产免费男女视频| 国产一区二区三区av在线| 听说在线观看完整版免费高清| 欧美xxxx性猛交bbbb| 夜夜爽夜夜爽视频| 欧美日韩一区二区视频在线观看视频在线 | eeuss影院久久| 美女xxoo啪啪120秒动态图| 成年免费大片在线观看| 亚洲无线观看免费| 国产精品福利在线免费观看| 久久婷婷人人爽人人干人人爱| 看非洲黑人一级黄片| 日日摸夜夜添夜夜爱| 成年av动漫网址| 欧美三级亚洲精品| 中文精品一卡2卡3卡4更新| 一个人观看的视频www高清免费观看| 久久精品国产鲁丝片午夜精品| 亚洲中文字幕日韩| 成年女人永久免费观看视频| 国内精品宾馆在线| 美女被艹到高潮喷水动态| 亚洲精品久久久久久婷婷小说 | 男人的好看免费观看在线视频| 国产乱人偷精品视频| 少妇熟女aⅴ在线视频| 黄片无遮挡物在线观看| 青青草视频在线视频观看| 少妇熟女欧美另类| 中文字幕av在线有码专区| 男女啪啪激烈高潮av片| 亚洲欧洲日产国产| 国产美女午夜福利| 午夜视频国产福利| 久久久午夜欧美精品| 我要看日韩黄色一级片| 美女高潮的动态| 久久精品国产亚洲av涩爱| 国产精品无大码| 日日干狠狠操夜夜爽| 亚洲国产精品久久男人天堂| 欧美日韩综合久久久久久| 亚洲av一区综合| 国产精品久久视频播放| 内射极品少妇av片p| 亚洲熟妇中文字幕五十中出| 亚洲国产精品久久男人天堂| 少妇人妻一区二区三区视频| 久久人人爽人人片av| 九九在线视频观看精品| av视频在线观看入口| 免费一级毛片在线播放高清视频| 久久久久久久久大av| 色视频www国产| 身体一侧抽搐| 亚洲av熟女| 久久精品熟女亚洲av麻豆精品 | 亚洲av成人av| 精品久久久久久久久久久久久| 日产精品乱码卡一卡2卡三| 男人的好看免费观看在线视频| 亚洲,欧美,日韩| 高清av免费在线| 国产精品永久免费网站| 国产真实伦视频高清在线观看| 在现免费观看毛片| 岛国毛片在线播放| 日韩成人av中文字幕在线观看| 黄色欧美视频在线观看| 国产成人91sexporn| 建设人人有责人人尽责人人享有的 | 亚洲成人中文字幕在线播放| 韩国av在线不卡| 日本黄色视频三级网站网址| 六月丁香七月| 国产伦在线观看视频一区| 亚洲熟妇中文字幕五十中出| 久久久a久久爽久久v久久| 色哟哟·www| 高清在线视频一区二区三区 | 国产成人aa在线观看| 最近中文字幕2019免费版| 在线观看美女被高潮喷水网站| 国产探花在线观看一区二区| 美女黄网站色视频| 亚洲图色成人| 精品国产三级普通话版| 嘟嘟电影网在线观看| 久久精品人妻少妇| 亚洲国产精品成人久久小说| 日本黄色视频三级网站网址| 91精品伊人久久大香线蕉| 欧美高清成人免费视频www| 精品午夜福利在线看| 中文字幕免费在线视频6| 国产av在哪里看| 在现免费观看毛片| 日本黄色视频三级网站网址| 插阴视频在线观看视频| 亚洲成人av在线免费| 91在线精品国自产拍蜜月| 欧美变态另类bdsm刘玥| 少妇的逼好多水| 国产在视频线在精品| 日韩中字成人| 欧美成人免费av一区二区三区| 汤姆久久久久久久影院中文字幕 | 韩国高清视频一区二区三区| 婷婷色麻豆天堂久久 | 久久99蜜桃精品久久| 水蜜桃什么品种好| 国产免费福利视频在线观看| 久久国内精品自在自线图片| 成年女人看的毛片在线观看| 99久久精品国产国产毛片| 免费av不卡在线播放| 久久久久国产网址| 综合色丁香网| 欧美+日韩+精品| 淫秽高清视频在线观看| 国产又色又爽无遮挡免| 国产精品爽爽va在线观看网站| 男女那种视频在线观看| 亚洲av免费在线观看| 国产精品永久免费网站| 亚洲怡红院男人天堂| 亚洲国产成人一精品久久久| 婷婷色综合大香蕉| 亚洲国产成人一精品久久久| 久久精品国产自在天天线| 免费在线观看成人毛片| 国产亚洲5aaaaa淫片| 水蜜桃什么品种好| 久久久亚洲精品成人影院| 亚洲欧美日韩高清专用| 内射极品少妇av片p| 亚洲自拍偷在线| 日韩av在线免费看完整版不卡| 国产视频首页在线观看| 少妇熟女欧美另类| 人妻制服诱惑在线中文字幕| 国产精品av视频在线免费观看| 亚洲精品影视一区二区三区av| 十八禁国产超污无遮挡网站| 日韩一本色道免费dvd| 免费观看人在逋| videos熟女内射| 天天躁夜夜躁狠狠久久av| 天美传媒精品一区二区| 真实男女啪啪啪动态图| 亚洲精品亚洲一区二区| 99久久无色码亚洲精品果冻| 夜夜爽夜夜爽视频| 亚洲成人精品中文字幕电影| 能在线免费观看的黄片| 伊人久久精品亚洲午夜| 国产伦精品一区二区三区四那| 麻豆久久精品国产亚洲av| 亚洲内射少妇av| av线在线观看网站| 99久久九九国产精品国产免费| 三级国产精品片| 国内精品一区二区在线观看| 国产高清视频在线观看网站| 久久久国产成人精品二区| 永久网站在线| 超碰av人人做人人爽久久| 国产精品麻豆人妻色哟哟久久 | 大话2 男鬼变身卡| 亚洲av一区综合| 亚洲人成网站高清观看| 少妇人妻一区二区三区视频| 午夜精品在线福利| 亚洲精品aⅴ在线观看| 精品一区二区三区视频在线| 日韩一本色道免费dvd| 熟女人妻精品中文字幕| 久久精品人妻少妇| 青春草国产在线视频| av在线观看视频网站免费| 三级国产精品片| 免费看a级黄色片| 国产视频内射| 国产亚洲5aaaaa淫片| 国产精品国产三级国产专区5o | 精品99又大又爽又粗少妇毛片| 看非洲黑人一级黄片| 欧美极品一区二区三区四区| 精品一区二区免费观看| 国产一区有黄有色的免费视频 | 国产高清国产精品国产三级 | 国模一区二区三区四区视频| 免费观看在线日韩| 久久久久网色| 可以在线观看毛片的网站| 黑人高潮一二区| 亚洲人成网站高清观看| 亚洲欧洲日产国产| 中文资源天堂在线| 狠狠狠狠99中文字幕| 国产毛片a区久久久久| 一区二区三区四区激情视频| 欧美不卡视频在线免费观看| 精品久久久久久久末码| 午夜福利在线观看免费完整高清在| 日本一二三区视频观看| 国产爱豆传媒在线观看| 日韩一区二区三区影片| 深夜a级毛片| 18禁动态无遮挡网站| 午夜a级毛片| 亚洲国产精品国产精品| 亚洲18禁久久av| 一级毛片aaaaaa免费看小| 久久久久久国产a免费观看| 看片在线看免费视频| 狂野欧美激情性xxxx在线观看| 久久亚洲国产成人精品v| 一个人免费在线观看电影| 黄色配什么色好看| 一区二区三区免费毛片| 国产一级毛片七仙女欲春2| 国产片特级美女逼逼视频| 午夜福利高清视频| 久久精品久久久久久久性| 亚洲成人精品中文字幕电影| 欧美成人午夜免费资源| 在线免费观看的www视频| 国产日韩欧美在线精品| 欧美性猛交黑人性爽| 色5月婷婷丁香| 校园人妻丝袜中文字幕| 国语自产精品视频在线第100页| 日韩欧美精品免费久久| 精品一区二区三区人妻视频| 午夜激情福利司机影院| 亚洲精品成人久久久久久| 午夜精品国产一区二区电影 | 99视频精品全部免费 在线| 午夜精品在线福利| 神马国产精品三级电影在线观看| 婷婷色av中文字幕| 国产精品久久久久久精品电影| 99热这里只有是精品50| 国产视频首页在线观看| 久久久久国产网址| 午夜福利视频1000在线观看| 久久热精品热| 久久草成人影院| 日本wwww免费看| 直男gayav资源| 婷婷色麻豆天堂久久 | 最近最新中文字幕免费大全7| 午夜精品一区二区三区免费看| 高清av免费在线| 日韩在线高清观看一区二区三区| 久久6这里有精品| 国产老妇女一区| 中文乱码字字幕精品一区二区三区 | 黄色日韩在线| 男人和女人高潮做爰伦理| 男人舔奶头视频| 久久草成人影院| 精品一区二区免费观看| 欧美潮喷喷水| 搡老妇女老女人老熟妇| 插逼视频在线观看| 午夜激情福利司机影院| 少妇丰满av| 国产综合懂色| 久久精品综合一区二区三区| 久久鲁丝午夜福利片| 午夜老司机福利剧场| 日本黄大片高清| 麻豆乱淫一区二区| 久久这里只有精品中国| 啦啦啦韩国在线观看视频| 乱人视频在线观看| 国产毛片a区久久久久| 日本一二三区视频观看| 汤姆久久久久久久影院中文字幕 | 精品国内亚洲2022精品成人| 综合色丁香网| 全区人妻精品视频| 久久久久性生活片| 日韩制服骚丝袜av| 天堂av国产一区二区熟女人妻| 一个人免费在线观看电影| 三级男女做爰猛烈吃奶摸视频| 亚洲国产色片| 91aial.com中文字幕在线观看| 日本三级黄在线观看| 久久精品影院6| 国产伦一二天堂av在线观看| 国模一区二区三区四区视频| 91午夜精品亚洲一区二区三区| 一级av片app| av免费在线看不卡| 少妇的逼水好多| 欧美zozozo另类| 在线天堂最新版资源| 三级毛片av免费| 深夜a级毛片| 亚洲精品456在线播放app| 91aial.com中文字幕在线观看| 综合色丁香网| 韩国高清视频一区二区三区| av.在线天堂| 国模一区二区三区四区视频| 国产精品.久久久| 一级毛片久久久久久久久女| 欧美变态另类bdsm刘玥| 亚洲欧洲日产国产| 日韩一区二区视频免费看| 国产男人的电影天堂91| 国产成人精品一,二区| 色吧在线观看| 国产 一区 欧美 日韩| 美女黄网站色视频| 丝袜喷水一区| 五月玫瑰六月丁香| 国产免费又黄又爽又色| 国产男人的电影天堂91| 成人美女网站在线观看视频| 亚洲av免费在线观看| 国产 一区 欧美 日韩| 国产精品国产三级国产av玫瑰| 精品久久久久久久久久久久久| 国国产精品蜜臀av免费| 久久久久国产网址| 麻豆成人午夜福利视频| 日韩中字成人| 亚洲丝袜综合中文字幕| 一区二区三区四区激情视频| 国产高潮美女av| 亚洲av不卡在线观看| 长腿黑丝高跟| www.av在线官网国产| 国产片特级美女逼逼视频| av免费观看日本| 欧美97在线视频| 91在线精品国自产拍蜜月| 麻豆久久精品国产亚洲av| 嘟嘟电影网在线观看| 亚洲国产欧洲综合997久久,| 少妇熟女aⅴ在线视频| 1024手机看黄色片| 美女大奶头视频| 国产免费又黄又爽又色| 欧美激情在线99| 我的老师免费观看完整版| 晚上一个人看的免费电影| 国产国拍精品亚洲av在线观看| 一个人看视频在线观看www免费| 国产精品熟女久久久久浪| 97人妻精品一区二区三区麻豆| 欧美一级a爱片免费观看看| 免费观看性生交大片5| 人妻夜夜爽99麻豆av| 亚洲国产成人一精品久久久| 精品久久国产蜜桃| 波野结衣二区三区在线| 日韩一区二区三区影片| 丰满人妻一区二区三区视频av| 色5月婷婷丁香| 毛片女人毛片| 亚洲精品成人久久久久久| 成人一区二区视频在线观看| 亚洲国产精品成人综合色| 国产乱人视频| 国产在视频线在精品| 国产精品女同一区二区软件| 国产老妇女一区| 美女高潮的动态| 中文精品一卡2卡3卡4更新| 欧美激情久久久久久爽电影| 国产精品一区www在线观看| 男女下面进入的视频免费午夜| 成人午夜精彩视频在线观看| 能在线免费看毛片的网站| 亚洲自拍偷在线| 国产探花在线观看一区二区| 国产成人a∨麻豆精品| 久久欧美精品欧美久久欧美| 国产 一区 欧美 日韩| 一夜夜www| 欧美一区二区精品小视频在线| 亚洲美女搞黄在线观看| 青春草亚洲视频在线观看| 午夜福利在线观看免费完整高清在| 亚洲欧美精品综合久久99| 国国产精品蜜臀av免费| 国产av码专区亚洲av| 国产一级毛片在线| 97在线视频观看| 国产熟女欧美一区二区| 欧美成人精品欧美一级黄| 国产精品日韩av在线免费观看| 欧美日韩综合久久久久久| 超碰97精品在线观看| 国产精品一区二区三区四区久久| 99久久九九国产精品国产免费| 精品无人区乱码1区二区| 久久久久久久久久黄片| 黄色配什么色好看| 99热全是精品| 国产精品一区二区三区四区久久| 白带黄色成豆腐渣| 桃色一区二区三区在线观看| 天堂√8在线中文| .国产精品久久| 国产白丝娇喘喷水9色精品| 精品无人区乱码1区二区| 黑人高潮一二区| 看十八女毛片水多多多| 韩国高清视频一区二区三区| 99在线人妻在线中文字幕| 亚洲av二区三区四区| 女人被狂操c到高潮| 国产亚洲午夜精品一区二区久久 | 又黄又爽又刺激的免费视频.| 欧美激情在线99| 久久99精品国语久久久| 国产日韩欧美在线精品| av卡一久久| 亚洲国产精品sss在线观看| 成人午夜精彩视频在线观看| 日本一二三区视频观看| 免费播放大片免费观看视频在线观看 | 高清午夜精品一区二区三区|