• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Low-energy atomic displacement model of SRIM simulations

    2021-12-15 10:31:36ShengLiChen
    Nuclear Science and Techniques 2021年11期

    Sheng-Li Chen

    Abstract Radiation-induced atomic displacement damage is a pressing issue for materials.The present work investigates the number of atomic displacements using the Primary Knock-on Atom(PKA)energy EPKA and threshold displacement energy Ed as two major parameters via lowenergy SRIM Binary Collision Approximation(BCA)full cascade simulations.It is found that the number of atomic displacements cannot be uniquely determined by EPKA/Ed or ED/Ed(ED refersto thedamageenergy)when theenergy is comparable with Ed.The effective energy ED,eff proposed in the present work allows to describing the number of atomic displacements for most presently studied monatomic materials by the unique variable ED,eff/Ed.Nevertheless,it is noteworthy that the BCA simulation damage energy depends on Ed,whereas the currently used analytical method is independent of Ed.A more accurate analytical damage energy function should be determined by including the dependence on Ed.

    Keywords Atomic displacement.Damage energy.Effective energy.SRIM neutron cascade simulations

    1 Introduction

    Radiation damage is an important issue for materials because it changes the properties of materials(e.g.,radiation-induced segregation,swelling,hardening,and variation of resistivity[1]).Primary radiation damage,widely known as atomic displacement damage,is fundamental for studying the irradiation effect on materials.The number of atomic Displacements per Atom(DPA)was proposed to unify the damage caused by different irradiation sources,such as neutrons,protons,photons,electrons,positrons,and ions.DPA is now used as an essential parameter for studying the secondary(or macroscopic)radiation damage of materials[2].

    In the past decades,various methods and computational codes have been developed to calculate the number of stable atomic displacements(i.e.,Frenkel pairs).The Stopping and Rangeof Ionsin Matter(SRIM)Monte Carlo code[3](or the former TRansport of Ions in Matter(TRIM)code[4]included in)iswidely used for computing atomic vacancies because of its ease of use with a userfriendly graphical interface.Presently,it is almost a nonofficial standard step to use SRIM simulations for ion irradiation studies.

    Regardless of the discrepancy between the Quick Calculation(QC)and Full-Cascade simulations(FC)[5,6],SRIM ispowerful for modeling ion irradiation in materials.However,it cannot be directly used to compute the displacement damage induced by other radiation sources.To unify the atomic vacancies induced by irradiation with different sources,simulation tools or models using the kinetic energy of the Primary Knock-on Atom(PKA)as a major parameter should be used.Therefore,the so-called neutron cascade simulation has been implemented in the SRIM code[3].With the neutron cascade option,users identify the position and energy of PKA in a separate file(i.e.,TRIM.DAT)to compute the atomic vacancies induced by a PKA rather than an external ion.For irradiation sources other than ions,the PKA spectra can be determined using specific calculation tools and combined with neutron cascade simulations to obtain the number of point defects.Therefore,consistent results can be obtained for the number of atomic vacancies induced by different irradiation sources with SRIM simulations.

    However,the numbers of atomic vacancies(from vacancies.txt file)obtained using the two basic options,QC and FC,of SRIM-like codes differ by a factor of about 2[5,6](1.0–2.7 depending on the incident ion and target atom[7]).Stoller et al.[6]recommended the useof the QC option for obtaining results comparable with the Norgett-Robinson-Torrens(NRT)[8]model.Recently,Crocombette and Van Wambeke[9]and Weber and Zhang[10]recommended using the FC option,especially for compound materials,because it is physically more reasonable.Weber and Zhang[10]and Chen and Bernard[11]explained that the discrepancy between QC and FC is due to the displacements induced by low-energy atoms,which are considered unable to produce additional displacements in classical models[12,13](detailsare given in Sect.2.1).Nevertheless,the residual energy transfer effect[11]is not evident for a low initial energy.Consequently,further studies on the atomic displacement model for low PKA energy are crucial for unifying the displacement damage induced by different radiation sources,especially for light particles such as electrons,positrons,and photons.

    In addition,because the atomic displacements at low energies have an integrated effect on the model at high energies[10],studies on low-energy cascades can reveal thefeaturesof theprimary radiation damageover theentire energy range.Therefore,the present work investigates the atomic displacements mainly based on SRIM-2013 FC simulations at low PKA energies.The simulation methods are described in Sect.2.2.The simulated results and corresponding discussion are presented in Sect.3.Detailed discussion and comments on the use of damage energy for quantifying displacement damage are presented in Sect.4.The main conclusions of the present study are summarized in Sect.5.

    2 Current atomic displacement models and SRIM simulations

    2.1 Current atomic displacement models

    The Threshold Displacement Energy(TDE)is defined as the minimum recoil energy required to create a stable point defect.The direction-averaged TDE,denoted by Edin the present study,is widely used in analytical atomic displacement models.Using Ed,Kinchin and Pease(KP)got a formula for computing the number of atomic vacancies(denoted byνin the present work)induced by a PKA with the kinetic energy of EPKAas[12]

    It is noteworthy that the cut-offenergy Ecis not used in more recent models nor in the present work.The main reason for this can be found in Ref.[14].

    Considering electronic energy loss and a more realistic atomic collision cross section,Norgett,Robinson,and Torrens(NRT)proposed a modified KPformula based on several Binary Collision Approximation(BCA)calculations[8,15]:

    where EDis the effective energy for atomic motion,also called damage energy,first proposed by Lindhard et al.[16].Figure 1 shows Lindhard’s partition function(i.e.,P=ED/EPKA)with Robinson’s analytical fitting[17]for various monatomic materials.

    Because some displaced atoms are recombined before reaching thermal equilibrium,the Athermal Recombination-Corrected(ARC)model corrects the NRT model for ED>2Ed/0.8=2.5Ed[13,18,19].The athermal recombination of displaced atoms cannot be simulated by BCA codes.However,it hasa quitelimited influence for thelow PKA energy,which is the case for the present work;thus,it is not considered here.

    In the KP and NRT(or NRT-based)models,one can conclude that the effective variables are EPKA/Edand ED/Ed,respectively.Therefore,the present study uses the energy normalized by Edas an essential parameter to reduce the number of variables and simplify the comparison among different materials as well as the analysis.To simplify the expressions in the following discussion,letdenote the number of atomic vacancies using the normalized energy as a unique parameter,i.e.,

    2.2 SRIM simulations

    In SRIM-likecodes,thereare four methodsto obtain the number of atomic displacements:number of vacancies directly from BCA simulations(vacancies.txt for SRIM)and the value calculated using the NRT formula with the damage energy from the BCA simulations for both the QC and FC options.Since the FC option is more physically reasonable,the present work is based on FC.

    Because themethod of using damage energy isbased on the NRT formula,the direct results from collision simulations should be more reliable.Conversely,Agarwal et al.[7]recently pointed out that the latter should be incorrect according to the details of collisions and recommended using the former method.Their reasoning is absolutely convincing.It is however surprising that the results obtained with the recently developed code Iradina are consistent with those of the SRIM FC[9,20].In addition,because the first method using damage energy is slightly different from the NRT model calculations,and the theories behind it are well understood,the present work investigates the number of atomic vacancies from SRIM-2013 FC using the vacancies.txt file,simply referred to as SRIM FC hereinafter.

    In both the KP and NRT or most other models,it is a common conclusion or assumption that only one atomic vacancy is produced for PKA energy(or damage energy)larger than Edbut smaller than~2Ed.For a high initial energy,the atomic displacements induced by a PKA or an incident self-ion are almost identical[11].For an initial energy comparable with Ed,a PKA is very different from an incident self-ion.Therefore,PKAs,rather than externally incident ions in SRIM simulations,are used in the present work.The original position of the PKAs is set to the center of a 10×10×10 nm3(or larger for a few high PKA energies)cube.

    Because SRIM is a stochastic code,the convergence of the Monte Carlo simulations must be ensured.Figure 2 displays the number of atomic vacancies from the SRIM FC of the neutron cascade for 50 and 80 eV Fe PKAs in pure Fe.The study of the numerical convergence is performed on thegrid of 2nPKAs.One can conclude that 8192(=213)PKAs are reasonable to ensure the convergence of SRIM Monte Carlo simulations;thus,the following studies are based on 8192 PKAs simulations.Different from the assumption thatν=1 for Ed≤EPKA<2Ed,the SRIM FC gives ν>1 for Ed<EPKA<2Ed,which is achievable for atomistic simulations because the TDE is direction-dependent.It ismuch lessevident in SRIM simulationsowing to the amorphism of the materials.Nevertheless,this is consistent with the case of Ni studied by Weber and Zhang[10].Agarwal et al.[7]believed that this is due to the incorrect count of some replacements as displacements.

    Fig.2 Number of atomic vacancies in Fe versus the number of simulated PKAs for 50 and 80 eV Fe PKAs

    Using SRIM FC,we again compare the displacement damage induced by a PKA and an externally incident ion.Figure 3 plots the number of atomic displacements in Si induced by PKAs and externally incident Si ions(coming from one side of the simulated cube)using the initial kinetic energy and corresponding damage energy as variables.It should be noted that the PKA-induced damage energies used in the present work are the PKA energies after subtracting the ionization energies stored in the IONIZ.TXT SRIM output file.SRIM FCconfirmsthenonnegligible differences between the atomic displacements induced by a PKA and those induced by an incident selfion when the energies are comparable with Ed.Accordingly,the neutron cascade option must be used to study atomic displacements versus PKA energy.

    The present work is based on selected important monatomic materials because the current analytical formula is valid only for monatomic materials.Moreover,the materials are chosen to cover a wide range of atomic numbers(from Z=6 to 74).Fe and Ni are widely used in stainless steel,Al is used in many fission reactors[21],C,Cu,and W[22]are used for fusion applications,and Si is a necessary element for semiconductors in various applications[23].The average TDEs of the studied elements are given in Table 1.All binding energies are set to be 0 to study the analytical atomic displacement models.

    Table 1 Average TDE for monatomic materials

    3 Simulation results and discussion

    3.1 Atomic displacements from SRIM FC

    Figure 4 shows the number of atomic displacements for Fe PKA(i.e.,using the neutron cascade option)up to 100 keV in pure Fe by SRIM FC.Both the valuesfrom the VACANCY.TXT file and those computed with the NRT formula using the damage energy from the SRM FC are illustrated.The NRT formula is also multiplied by a factor of 2 for an intuitive comparison.The results are quite similar to the case of Ni PKA in Ni shown by Weber and Zhang[10].For damage energy above 2.5Ed,a typical discrepancy of a factor of about 2 is found between the SRIM FCand NRT calculation.Such discrepancy hasbeen widely recognized and analyzed[5,6,9–11];therefore,the present work does not emphasize this point.

    Fig.4 (Color online)Number of atomic displacements versus PKA energy for Fe PKA in Fe.Vacancy is the data taken from VACANCY.TXT,whereas NRT refers to the value computed with the NRT model using damage energy computed using SRIM FC

    In the range of Ed≤ED<2.5Ed,SRIM FC show that ν>1 and is a strictly increasing function of damage energy,whereas the NRT model implies thatνNRT=1.The ratio of SRIM FC to NRT increases from~1 to~2 when EDincreases from~Edto 2.5Ed.This region has received much lessattention becauseit isnot crucial for the displacement damage induced by reactor neutronsand ions.However,it has a large influence on that induced by light particles(e.g.,electrons,positrons,photons)(see Refs.[28,29]for example).Therefore,the atomic displacements for energy below 2.5Edare yet to be studied.

    3.2 Atomic displacements for ED<Ed

    As the results shown in Fig.3,atomic displacements are observed when ED<Edbut EPKA≥Ed.This is a direct consequence of the definition of Ed:a PKA with EPKA≥Edis able to produce one atomic displacement(itself or a replacement)because the energy loss in inelastic collisions occurs after the displacement of PKA[29].Therefore,for PKA energy comparable with Ed,it is questionable to use the damage energy as the effective energy for computing the number of atomic displacements.

    Fig.3 Number of atomic vacancies in Si versus the PKA(black)or incident ion(red)energy(solid symbols fitted by solid lines)and the corresponding damageenergy(center-dotted symbolsfitted by dashed lines)with the unit of Ed.The grey plot is the linear fitting of the vacanciesversus PKA energy without PKA itself(i.e.,–1),it isshown for an intuitive comparison with the vacancies induced by an incident ion

    3.3 Atomic displacements between Ed and 2.5Ed

    Once EPKAis larger than 2 times the minimum TDE,denoted by Ed,minhereinafter,it is possible to produce two atomic displacements.Because the TDE is direction dependent,it is possible thatν>1 for Ed<EPKA<2Ed.In fact,for some materials,Ed> 2Ed,min.For iron,Table 2 reveals that 9 of the 11 interatomic potentials used in Ref.[30]give Ed> 2Ed,min.Because the NRT model and NRT-based models use 2.5Edas a demarcation energy to ensure continuity,we investigate the point defects for both PKA energy and damage energy in the range of[Ed,2.5Ed].Because the present work and the SRIM code use only the average TDE,it is simply denoted by TDE hereinafter if without any other statement.

    Figure 5 plots the numbers of atomic displacements for various monatomic materials with PKA and damage energies between Edand 2.5Ed.For the sake of simplification,they are respectively denoted byKP(left plot)andNRT(right plot)with the variables EPKA/Edand ED/Ed.It is obviously confirmed thatν>1 for EPKA>Edfor all monatomic materials.Excluding the material dependence already included in Ed(and ED),is additionally dependent on the material.For the seven monatomic materials studied in the present work,Fe,Ni,and Cu follow almost the same law.KPof C and W are quasi-identical but smaller than that of the other five.KPof Si is between those of Al,Fe,Ni,and Cu and the ones of C and W.However,NRT.seems to be decreasing with the increasing atomic number of the target.The main reason is that the partition function is larger for heavier atoms[14,16](Fig.1).It is noticeable that.of C and W are quite different,whereas theirKPare quasi-identical.

    Fig.1 (Color online)Lindhard’s partition function for selected monatomic materials

    The discrepancies shown in Fig.5 can be attributed to the different materials and different TDEs.Therefore,Fig.6 compares the results of Si with two different values of Ed.It is noted that 24 eV is the average threshold energy for a bond defect or a Frenkel pair[26].This value is comparable with Ed=21 eV obtained by Bourgoin et al.[31].It can bconcluded that the value of Edinfluences bothKPandNRT,even though they are independent of Edin typical models(cf.Section 2.1).In addition,comparing the resultsof C(Fig.5)and Si(Figs.5 and 6),KPandNRTof Si with Ed=24 eV are larger than those of C,of which Ed=25 eV.Consequently,>1 for EPKA>Edanddepends on both the material and value of Ed.Therefore,we cannot obtain a unique simple function of EPKA/Edor ED/Edto describe the number of atomic displacements from the SRIM FC in the range of.Nevertheless,as the results shown in Figs.5 and 6,a linear fitting of the number of atomic displacementsvs.PKA energy or damage energy is suitable for each monatomic material.

    Fig.5 (Color online)Number of atomic vacanciesversusnormalized PKA(left,noted by KP in thetext)and damage(right,noted by NRT in the text)energies from SRIM FC of neutron cascade.The straight lines are linear fittings

    4 Comments on the effective energy in displacement models

    Comparing the two plots with the PKA energy shown in Fig.6,Ed=24 eV has large number of atomic displacementsthan Ed=36 eV for agiven EPKA/Ed.For aspecific material with a smaller Ed,the same EPKA/Edimplies a smaller EPKA,so that the partition function is larger,which further implies a larger ED/Ed.Therefore,the two different plots versus PKA energy in Fig.6 confirm that the damage energy better describes the number of atomic displacements than the PKA energy.

    However,theresultsversusdamage energy illustrated in Fig.6 show that the damage energy is not necessarily better than the PKA energy for determining a simple unique formula for a specific material.In fact,the inelastic energy loss has little influence on the atomic displacements when the kinetic energy iscomparable with or even smaller than Ed.Therefore,the PKA energy and damageenergy are two extreme energies for computing the atomic displacements. New efficient energy should be determined for more accurate calculations.

    Fig.6 (Color online)Number of atomic vacancies versus the normalized PKA(solid points)and damage(center-dotted points)energies for Si with Ed=36 eV(black squares)and 24 eV(red circles).The straight lines are linear fittings

    Table 2 Comparison of Ed and Ed,min for Fe with 11 different potentials [30]

    4.1 Correcting the damage energy in the displacement calculation

    Robinson and Oen[32]recognized that the inelastic energy loss for atoms with kinetic energy smaller than 2.5Eddoes not influence the number of atomic displacements.Thus,the inelastic energy loss when an atom slows down from 2.5Edto 0 should be added to the damage energy for computing theatomic displacements[32].Based on this reasoning,they obtained the effective energy as[32]

    It is noteworthy that the demarcation of 2.5Edin the NRT formula is used only to ensure the continuity of the displacement function.According to the reasoning of Kinchin and Pease[12],2Edisaphysically crucial limit.In addition,an atom does not slow down with continuous energy loss.A collision may decrease the energy of an atom from E1>2Edto E2<2Ed.Assuming the equiprobableenergy distribution(i.e.,hard-spherecollision[11])for an atom slowed down to E<2Edfor thefirst time,one can introduce a correction factor by

    Because the partition function can be considered as quasi-constant for the PKA energy from 0 to 2Ed,ED(EPKA)≈ EPKA×P(Ed)when 0≤EPKA≤2Ed.Therefore,the correction factor can be approximated using

    Using Lindhard’s analytical partition function for monatomic materials,ηcan be simply calculated as

    For atoms from Li to U with Edof several tens of eV,η≈1.2.This value is in good agreement with the experimental values of Fe and Ni summarized in the Nuclear Energy Agency(NEA)report[33],theexperimental results of Cu obtained by Averback et al.[34],and many MD simulations for energy around 2Ed.

    It is noticeable that the correction factor proposed by Robinson and Oen[32]is numerically close to the present one because the partition function varies insignificantly between Edand 2.5Ed.The difference is only a factor of 1.16 in the second term ofη.Therefore,η≈ 1.2 for both corrections.This value leads to νNRT(ED)≈ ED/2Edfor ED>2Ed.One obtains exactly the same formula as the KP formula by replacing of the PKA energy with the damage energy.

    However,it is noticeable thatκ≈0.86 or 0.8 in the formula νNRT(ED)= κED/2Edis determined by fitting the BCA calculation results[15].Therefore,if the effective energy ED,eff= ηEDrather than EDis used,the fitted constant(or widely recognized as the correction to the hard-sphere collision cross section) becomes κ′= κ/η ≈ 0.7.

    4.2 Effective energy for SRIM simulations

    Because Lindhard’s partition function is slightly different from that computed by SRIM,the present correction factor for damage energy is calculated with ED(Ed)from SRIM FC and denoted byηSRIM.The effective energy is computed as follows:

    Fig.7 (Color online)Number of atomic displacements versus the effective energy from the SRIM FC of neutron cascade.The straight line is the linear fitting of the six cases excluding W(R2=0.994)

    However,it should be noted that the number of atomic displacements in W still differs from the others.Moreover,the use ofηSRIMcannot makethe two curvesof Si in Fig.6 coincide.In fact,it is important to indicate that the damage energy from the SRIM FCdepends on the value of Ed(e.g.,the example on Si shown in Fig.8),whereas Lindhard’s damage energy is independent of Ed[16].Using the data for Ed=36 eV as a reference,we rescale the effective energy for Ed=24 eV by a factor of 1.1 to get the same damage energy function.The rescaled data are plotted in Fig.9 together with the data versusthe damage energy and effective energy.Rescaling the effective energy to eliminate the bias induced by Edresults in similar atomic displacements for Si with Ed=24 eV and Ed=36 eV.

    Fig.8 (Color online)Damage energy versus PKA energy from SRIM-2013 FC for Si with Ed=36 eV(black)and 24 eV(red)

    Fig.9 (Color online)Number of atomic displacements versus the normalized damage and effective energies for Si using Ed=24 eV(circle)and 36 eV(square).The straight line is the linear fitting of two data sets(R2=0.997)

    From the case of Si shown above,one can find that none of ED,eff/Ed,ED/Ed,and EPKA/Edcan be the unique variable for describing the number of atomic displacements from the SRIM FC.Therefore,the number of atomic displacements versus ED,eff/Ed,ED/Ed,or EPKA/Edfor two arbitrary monatomic materialsare not necessarily the same.The only general conclusion is that linear fitting can be used to describe the number of atomic displacements versus ED,eff,ED,and EPKAfor energy comparable with Ed.One can also adopt a specific value of Edfor W to reduce the difference with the other materials,as shown in Fig.7.The difference decreases but still exists using of Ed=55 eV[35,36]rather than 90 eV.The difference can be further decreased by decreasing Ed;however,using an unphysical value for Edis unnecessary.

    4.3 Further comments on the damage energy

    Figure 8 shows that the damage energy from SRIM FC depends on the value of Ed,whereas the Lindhard’s damage energy is independent of Ed.However,these are not physically incompatible.In fact,the original equation governing the damage energy(or atomic vacancies)includes Edas a basic parameter[16].The currently used Lindhard’s damage energy is TDE-independent because it is obtained according to the numerical solutions after removing Edin the original equation(i.e.,their approximation(B):Edis negligeable when compared with kinetic energies of atoms[16]).

    Table 3 summarizes the damage energies and numbers of atomic displacements for Fe PKA in Fe from SRIM FC using two different values for Ed:40 eV and 20 eV.The results show that the damage energy depends on Edfor PKA energiesup to 100 keV.For a given PKA energy,the damage energy is larger for a larger Ed.This is a consequence of knocked-on atoms having a smaller kinetic energy for larger Ed.A lower kinetic energy results in lower inelastic energy losses in subsequent collisions.Therefore,once Edis changed,the corresponding number of atomic displacementscannot be directly predicted as the inverse proportion to Ed.Taking the Fe PKA in Fe shown in Table 3 as an example,the number of atomic displacementsisreduced by afactor greater than 2(the last column in Table 3)if Edisdoubled(20 eV→40 eV),whereasthe NRT model predictsareduction of afactor of 2(or smaller than 2 if the slight increase in damage energy is considered).This confirms the conclusion given in Sect.4.2:ED/Edor ED,eff/Edcannot be the unique variable for computing the number of atomic displacements.A variation of Edby a factor of x does not imply a variation of a factor of 1/x for the number of atomic displacements.

    Table 3 Damage energy and the number of atomic displacements for Fe PKA in Fe with Ed=40 eV(a)and 20 eV(b)from SRIM FC

    5 Conclusion

    In SRIM FC,the number of atomic displacementsν>1 and cannot beuniquely described by ED/Edor EPKA/Edfor PKA energy from Edto a few times of Ed.Because a part of the inelastic energy loss(when the kinetic energy is smaller than~2Ed)does not influence the number of atomic displacements,an effective energy ED,eff= ηEDis proposed.An approximate value ofη≈1.2 is obtained for both the present proposal and that of Robinson and Oen[32].Thisvalueisconsistent with the experimental data for Fe,Ni,and Cu for damage energies of about 2Ed.Using ηSRIM=Ed/ED(Ed),six of the seven monatomic materials considered in the present work have the same number of atomic displacements as a function of ED,eff/Ed.

    However,further investigation shows that the damage energy depends on Ed,whereas the currently used analytical damage energy is independent of Ed.For a given PKA energy,the damage energy is larger for a larger Ed.Consequently,none of ED,eff/Ed,ED/Ed,and EPKA/Edcan be the unique variable for describing the number of atomic displacements.The only general conclusion is that a linear function fitting is suitable for quantifying the number of atomic displacements as a function of ED,eff,ED,and EPKAfor energy comparable with Ed.A more accurate analytical damage energy function should be determined by solving Lindhard’s integro-differential equation with Ed.

    狠狠狠狠99中文字幕| АⅤ资源中文在线天堂| 五月玫瑰六月丁香| 18禁美女被吸乳视频| 欧美日韩乱码在线| 一边摸一边抽搐一进一小说| 国产又黄又爽又无遮挡在线| 免费在线观看视频国产中文字幕亚洲| 美女大奶头视频| 国产免费av片在线观看野外av| 日本a在线网址| 精品久久久久久久末码| 国产精品永久免费网站| 欧美丝袜亚洲另类 | 色尼玛亚洲综合影院| 99国产精品一区二区三区| av天堂在线播放| 国产黄a三级三级三级人| 国产精华一区二区三区| 在线看三级毛片| 少妇的丰满在线观看| 久久 成人 亚洲| 亚洲国产高清在线一区二区三| 99久久精品热视频| 亚洲五月天丁香| 人妻久久中文字幕网| 一本综合久久免费| 精华霜和精华液先用哪个| 免费看美女性在线毛片视频| 亚洲免费av在线视频| 成人三级做爰电影| 免费无遮挡裸体视频| 啦啦啦免费观看视频1| 91av网站免费观看| 成人亚洲精品av一区二区| 国产午夜精品论理片| 精品人妻1区二区| 亚洲国产欧美人成| 99久久精品国产亚洲精品| 国产亚洲精品综合一区在线观看 | xxxwww97欧美| 欧美精品啪啪一区二区三区| 99re在线观看精品视频| 18禁美女被吸乳视频| 亚洲一区高清亚洲精品| 成人高潮视频无遮挡免费网站| 少妇人妻一区二区三区视频| 在线观看美女被高潮喷水网站 | 亚洲成人久久性| 亚洲熟妇中文字幕五十中出| 亚洲人成电影免费在线| 亚洲国产日韩欧美精品在线观看 | 99久久久亚洲精品蜜臀av| 一二三四社区在线视频社区8| 两性夫妻黄色片| xxx96com| 18禁观看日本| 免费看美女性在线毛片视频| 亚洲第一欧美日韩一区二区三区| 又黄又粗又硬又大视频| avwww免费| 久久久久久久精品吃奶| 最新美女视频免费是黄的| 国产视频一区二区在线看| 香蕉av资源在线| 俺也久久电影网| 日本一本二区三区精品| 伊人久久大香线蕉亚洲五| 亚洲av日韩精品久久久久久密| 国产麻豆成人av免费视频| 人人妻人人看人人澡| 欧美又色又爽又黄视频| 国产高清有码在线观看视频 | 日韩欧美国产一区二区入口| 亚洲欧美一区二区三区黑人| 丰满人妻熟妇乱又伦精品不卡| 国产精品1区2区在线观看.| 久久亚洲精品不卡| 真人一进一出gif抽搐免费| 一级毛片女人18水好多| 国产亚洲精品第一综合不卡| 欧美zozozo另类| 亚洲免费av在线视频| 精品久久久久久成人av| 50天的宝宝边吃奶边哭怎么回事| 一级毛片女人18水好多| 精品高清国产在线一区| 妹子高潮喷水视频| 亚洲人成77777在线视频| 免费在线观看成人毛片| 757午夜福利合集在线观看| 亚洲片人在线观看| 香蕉国产在线看| 日韩大尺度精品在线看网址| 此物有八面人人有两片| 日本a在线网址| 99热这里只有精品一区 | 午夜视频精品福利| 精品久久久久久久毛片微露脸| 日本撒尿小便嘘嘘汇集6| 亚洲自偷自拍图片 自拍| 国产在线观看jvid| 日本 欧美在线| 精品第一国产精品| 欧美+亚洲+日韩+国产| 久久中文字幕人妻熟女| 国内久久婷婷六月综合欲色啪| 久久香蕉精品热| 天堂动漫精品| 成年免费大片在线观看| 在线a可以看的网站| 亚洲18禁久久av| 亚洲一卡2卡3卡4卡5卡精品中文| 好看av亚洲va欧美ⅴa在| 美女免费视频网站| 亚洲精品久久国产高清桃花| 精品高清国产在线一区| 午夜福利欧美成人| tocl精华| 欧美乱码精品一区二区三区| 一进一出好大好爽视频| 日本一区二区免费在线视频| 欧美乱码精品一区二区三区| 久久中文看片网| 精品欧美国产一区二区三| 人妻丰满熟妇av一区二区三区| 天天躁夜夜躁狠狠躁躁| 听说在线观看完整版免费高清| 免费看日本二区| 婷婷精品国产亚洲av| 国产91精品成人一区二区三区| 麻豆国产av国片精品| 午夜日韩欧美国产| av欧美777| 99riav亚洲国产免费| 亚洲在线自拍视频| 嫩草影视91久久| 一个人免费在线观看电影 | 在线观看66精品国产| 国产成年人精品一区二区| 在线观看日韩欧美| 波多野结衣高清作品| 最近在线观看免费完整版| 午夜日韩欧美国产| 午夜免费观看网址| 美女 人体艺术 gogo| 色综合婷婷激情| 99国产极品粉嫩在线观看| а√天堂www在线а√下载| 欧美国产日韩亚洲一区| 18禁观看日本| 一级片免费观看大全| 欧美一级a爱片免费观看看 | 99热这里只有是精品50| 亚洲国产精品sss在线观看| 中国美女看黄片| 精品国内亚洲2022精品成人| 色噜噜av男人的天堂激情| 黄片大片在线免费观看| 国产1区2区3区精品| 亚洲欧美日韩无卡精品| 久久午夜亚洲精品久久| 国内精品一区二区在线观看| 亚洲熟妇熟女久久| 亚洲国产中文字幕在线视频| 91字幕亚洲| 亚洲欧美一区二区三区黑人| 成人欧美大片| 香蕉av资源在线| 99久久国产精品久久久| 国语自产精品视频在线第100页| 亚洲熟妇中文字幕五十中出| 99热这里只有精品一区 | 国产在线观看jvid| 免费在线观看黄色视频的| 日韩国内少妇激情av| 日韩欧美三级三区| 欧美一级毛片孕妇| 午夜福利高清视频| cao死你这个sao货| 国产99久久九九免费精品| 少妇人妻一区二区三区视频| 久99久视频精品免费| 亚洲va日本ⅴa欧美va伊人久久| 丰满的人妻完整版| 可以免费在线观看a视频的电影网站| 婷婷精品国产亚洲av| 床上黄色一级片| 亚洲欧美精品综合久久99| 国产午夜福利久久久久久| 久久中文字幕一级| 成人欧美大片| 国产又色又爽无遮挡免费看| 精品无人区乱码1区二区| 亚洲色图av天堂| 亚洲精品国产精品久久久不卡| 成人三级做爰电影| 亚洲精品在线观看二区| 桃红色精品国产亚洲av| 亚洲欧美日韩东京热| 99精品欧美一区二区三区四区| 日本撒尿小便嘘嘘汇集6| 日本成人三级电影网站| 国产一区二区三区在线臀色熟女| 精品第一国产精品| avwww免费| 免费在线观看黄色视频的| 白带黄色成豆腐渣| videosex国产| 国产在线精品亚洲第一网站| 亚洲片人在线观看| 成人国语在线视频| 悠悠久久av| 一夜夜www| 欧美最黄视频在线播放免费| 91麻豆精品激情在线观看国产| 国内精品久久久久久久电影| 又紧又爽又黄一区二区| 在线永久观看黄色视频| 淫秽高清视频在线观看| 国产男靠女视频免费网站| 日韩 欧美 亚洲 中文字幕| 亚洲av电影在线进入| 久久久久性生活片| 国产亚洲精品综合一区在线观看 | 狠狠狠狠99中文字幕| 国产精品亚洲av一区麻豆| 欧美绝顶高潮抽搐喷水| 精华霜和精华液先用哪个| 大型av网站在线播放| 欧美另类亚洲清纯唯美| 国产精品98久久久久久宅男小说| 黄色女人牲交| 日韩大码丰满熟妇| www.熟女人妻精品国产| 亚洲 欧美 日韩 在线 免费| 久久久水蜜桃国产精品网| 国产成人av教育| 国产亚洲精品一区二区www| 日韩成人在线观看一区二区三区| 亚洲成人久久爱视频| 久久国产精品影院| 亚洲七黄色美女视频| 国产探花在线观看一区二区| 欧美黄色片欧美黄色片| 精品久久久久久久久久久久久| 国产三级在线视频| 日本一区二区免费在线视频| 老司机靠b影院| 51午夜福利影视在线观看| 亚洲av中文字字幕乱码综合| 91麻豆精品激情在线观看国产| 国产区一区二久久| 成人国产一区最新在线观看| 亚洲五月婷婷丁香| 亚洲av五月六月丁香网| 欧美成人性av电影在线观看| 在线国产一区二区在线| 九色成人免费人妻av| 熟女少妇亚洲综合色aaa.| 亚洲 国产 在线| 18禁裸乳无遮挡免费网站照片| 欧美乱码精品一区二区三区| 麻豆国产97在线/欧美 | 久久人人精品亚洲av| 午夜精品在线福利| 亚洲成人免费电影在线观看| 免费搜索国产男女视频| 欧美精品啪啪一区二区三区| 日本免费a在线| 99精品在免费线老司机午夜| 香蕉av资源在线| 国产单亲对白刺激| 亚洲全国av大片| 91国产中文字幕| 免费无遮挡裸体视频| 国产精品精品国产色婷婷| 欧美一级a爱片免费观看看 | 国产伦一二天堂av在线观看| 女生性感内裤真人,穿戴方法视频| 亚洲第一电影网av| 巨乳人妻的诱惑在线观看| 午夜老司机福利片| 一区二区三区高清视频在线| 欧美成狂野欧美在线观看| 777久久人妻少妇嫩草av网站| 久久人妻福利社区极品人妻图片| 国产1区2区3区精品| 欧美黄色片欧美黄色片| 精品第一国产精品| 亚洲,欧美精品.| 欧洲精品卡2卡3卡4卡5卡区| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲专区中文字幕在线| 91国产中文字幕| 手机成人av网站| 久久久水蜜桃国产精品网| 亚洲男人的天堂狠狠| 亚洲乱码一区二区免费版| 在线观看免费午夜福利视频| 欧美一区二区精品小视频在线| 又大又爽又粗| 欧美成人午夜精品| 亚洲五月天丁香| 亚洲av中文字字幕乱码综合| 老汉色av国产亚洲站长工具| 在线播放国产精品三级| 国产成人系列免费观看| 欧美3d第一页| av中文乱码字幕在线| 午夜精品久久久久久毛片777| 黄色成人免费大全| av视频在线观看入口| 色综合婷婷激情| 亚洲熟妇中文字幕五十中出| 人妻丰满熟妇av一区二区三区| 国产蜜桃级精品一区二区三区| 婷婷丁香在线五月| 亚洲乱码一区二区免费版| 亚洲人与动物交配视频| 国产爱豆传媒在线观看 | 午夜福利在线在线| 亚洲人与动物交配视频| 亚洲全国av大片| 国产欧美日韩一区二区精品| 国产99白浆流出| 免费看十八禁软件| av免费在线观看网站| 国内毛片毛片毛片毛片毛片| 久久精品亚洲精品国产色婷小说| 俄罗斯特黄特色一大片| 搞女人的毛片| 黄色视频,在线免费观看| 国产激情偷乱视频一区二区| 国产黄a三级三级三级人| 伦理电影免费视频| 午夜免费观看网址| 91麻豆av在线| 美女大奶头视频| 99久久精品国产亚洲精品| 日本免费一区二区三区高清不卡| 亚洲人与动物交配视频| www.自偷自拍.com| 女警被强在线播放| 嫩草影视91久久| 99在线视频只有这里精品首页| 久久香蕉精品热| 亚洲五月天丁香| 手机成人av网站| 在线观看美女被高潮喷水网站 | 国产私拍福利视频在线观看| 午夜成年电影在线免费观看| 在线永久观看黄色视频| 伦理电影免费视频| 美女高潮喷水抽搐中文字幕| 级片在线观看| 久久天堂一区二区三区四区| 亚洲国产精品久久男人天堂| 男人舔女人下体高潮全视频| 精品午夜福利视频在线观看一区| 日韩 欧美 亚洲 中文字幕| 午夜激情福利司机影院| 天天躁夜夜躁狠狠躁躁| 中文字幕精品亚洲无线码一区| 999久久久国产精品视频| 亚洲色图 男人天堂 中文字幕| 成人特级黄色片久久久久久久| a在线观看视频网站| av福利片在线观看| 91国产中文字幕| 中文亚洲av片在线观看爽| 俺也久久电影网| 国产亚洲av高清不卡| 高清毛片免费观看视频网站| 亚洲精品在线美女| 最近在线观看免费完整版| 两个人的视频大全免费| 国产成人aa在线观看| 亚洲成人久久性| 日韩有码中文字幕| 波多野结衣高清无吗| 老司机午夜十八禁免费视频| 亚洲乱码一区二区免费版| 97超级碰碰碰精品色视频在线观看| 女人高潮潮喷娇喘18禁视频| 成年免费大片在线观看| 中文字幕人成人乱码亚洲影| 制服诱惑二区| 亚洲最大成人中文| 国产高清视频在线观看网站| 99精品久久久久人妻精品| 一本大道久久a久久精品| 巨乳人妻的诱惑在线观看| 亚洲色图 男人天堂 中文字幕| 又黄又粗又硬又大视频| 亚洲国产欧洲综合997久久,| 亚洲欧美精品综合久久99| 每晚都被弄得嗷嗷叫到高潮| 精品国产乱码久久久久久男人| 最近最新中文字幕大全电影3| 久久久国产欧美日韩av| 成年人黄色毛片网站| 少妇熟女aⅴ在线视频| 长腿黑丝高跟| 国产久久久一区二区三区| 97碰自拍视频| 18禁裸乳无遮挡免费网站照片| 又黄又粗又硬又大视频| 日韩三级视频一区二区三区| 午夜久久久久精精品| 久久这里只有精品中国| 久久精品国产99精品国产亚洲性色| 精品电影一区二区在线| 亚洲色图 男人天堂 中文字幕| 国产亚洲av高清不卡| 岛国在线免费视频观看| 成人国产综合亚洲| 亚洲精品久久国产高清桃花| 成人av一区二区三区在线看| 免费在线观看成人毛片| 亚洲自拍偷在线| 精品午夜福利视频在线观看一区| 两个人免费观看高清视频| 国产aⅴ精品一区二区三区波| 美女高潮喷水抽搐中文字幕| 日日摸夜夜添夜夜添小说| 90打野战视频偷拍视频| 欧美绝顶高潮抽搐喷水| 日日干狠狠操夜夜爽| 亚洲国产精品合色在线| 99riav亚洲国产免费| 亚洲精品在线美女| 99热6这里只有精品| 色在线成人网| √禁漫天堂资源中文www| 亚洲,欧美精品.| 看免费av毛片| 最近视频中文字幕2019在线8| 欧美乱色亚洲激情| 我要搜黄色片| 又黄又爽又免费观看的视频| 这个男人来自地球电影免费观看| 狂野欧美白嫩少妇大欣赏| 每晚都被弄得嗷嗷叫到高潮| e午夜精品久久久久久久| 亚洲成人精品中文字幕电影| 熟女少妇亚洲综合色aaa.| 久久精品国产清高在天天线| 丁香六月欧美| 黄色视频,在线免费观看| 99久久99久久久精品蜜桃| 亚洲无线在线观看| 日日夜夜操网爽| 欧美又色又爽又黄视频| 亚洲国产欧洲综合997久久,| 久久午夜综合久久蜜桃| 国产私拍福利视频在线观看| 午夜成年电影在线免费观看| 女人高潮潮喷娇喘18禁视频| 后天国语完整版免费观看| 变态另类成人亚洲欧美熟女| 男女视频在线观看网站免费 | 91麻豆精品激情在线观看国产| 欧美日韩亚洲国产一区二区在线观看| av中文乱码字幕在线| 亚洲欧美日韩高清专用| 一级黄色大片毛片| 岛国在线免费视频观看| 91在线观看av| 国产精品日韩av在线免费观看| 在线播放国产精品三级| 亚洲成人中文字幕在线播放| 三级毛片av免费| 在线观看免费视频日本深夜| 亚洲aⅴ乱码一区二区在线播放 | 18禁美女被吸乳视频| 国产精品国产高清国产av| 最近最新中文字幕大全免费视频| 亚洲专区字幕在线| 亚洲无线在线观看| 日日摸夜夜添夜夜添小说| 久久久久久大精品| 国产乱人伦免费视频| 国产欧美日韩一区二区精品| 在线视频色国产色| xxx96com| 国内毛片毛片毛片毛片毛片| 欧美日韩瑟瑟在线播放| 欧美zozozo另类| www日本在线高清视频| 他把我摸到了高潮在线观看| 变态另类丝袜制服| 久久久国产成人精品二区| 12—13女人毛片做爰片一| 午夜福利视频1000在线观看| 在线a可以看的网站| a级毛片在线看网站| 国产黄片美女视频| 夜夜爽天天搞| 曰老女人黄片| 一级片免费观看大全| 不卡av一区二区三区| 黄频高清免费视频| 99国产精品一区二区三区| 18禁美女被吸乳视频| 国产精品乱码一区二三区的特点| 琪琪午夜伦伦电影理论片6080| 50天的宝宝边吃奶边哭怎么回事| 亚洲国产欧洲综合997久久,| 看免费av毛片| 变态另类丝袜制服| 国产精品野战在线观看| 亚洲精品久久成人aⅴ小说| 色综合欧美亚洲国产小说| 五月伊人婷婷丁香| 国产精品久久电影中文字幕| 久久精品国产亚洲av香蕉五月| 亚洲精品国产一区二区精华液| 日韩欧美三级三区| 亚洲一区二区三区不卡视频| 又大又爽又粗| 亚洲乱码一区二区免费版| 最新美女视频免费是黄的| 极品教师在线免费播放| 亚洲熟女毛片儿| 亚洲免费av在线视频| 一进一出好大好爽视频| 搡老熟女国产l中国老女人| 一本久久中文字幕| 日韩成人在线观看一区二区三区| 91老司机精品| а√天堂www在线а√下载| 三级国产精品欧美在线观看 | 99热这里只有是精品50| 18禁美女被吸乳视频| 老汉色∧v一级毛片| 婷婷丁香在线五月| 麻豆国产97在线/欧美 | 91av网站免费观看| 亚洲成人免费电影在线观看| 又爽又黄无遮挡网站| 五月玫瑰六月丁香| 欧美激情久久久久久爽电影| 操出白浆在线播放| 国产免费av片在线观看野外av| 日韩欧美在线乱码| 高清毛片免费观看视频网站| 日韩成人在线观看一区二区三区| 夜夜躁狠狠躁天天躁| 男女之事视频高清在线观看| 99久久久亚洲精品蜜臀av| 精品久久久久久成人av| 午夜福利免费观看在线| 在线观看66精品国产| 两人在一起打扑克的视频| 在线免费观看的www视频| 国产免费男女视频| 亚洲一卡2卡3卡4卡5卡精品中文| 久久亚洲精品不卡| 看免费av毛片| 国产精品 国内视频| 国产精品影院久久| 欧美久久黑人一区二区| 日本a在线网址| ponron亚洲| 国产精品 欧美亚洲| 国产一区二区三区在线臀色熟女| 亚洲中文字幕日韩| 久久久国产成人精品二区| 天堂√8在线中文| 国产黄片美女视频| 欧美色欧美亚洲另类二区| 美女高潮喷水抽搐中文字幕| 久久久久国产精品人妻aⅴ院| 操出白浆在线播放| 国产av一区二区精品久久| 久久久久免费精品人妻一区二区| 制服诱惑二区| 久久精品aⅴ一区二区三区四区| 黑人操中国人逼视频| 青草久久国产| 午夜a级毛片| 黑人操中国人逼视频| 香蕉国产在线看| 国内揄拍国产精品人妻在线| 成人一区二区视频在线观看| 欧美性猛交黑人性爽| 亚洲va日本ⅴa欧美va伊人久久| av有码第一页| 久久久久九九精品影院| 亚洲熟女毛片儿| 精品熟女少妇八av免费久了| 久久欧美精品欧美久久欧美| 夜夜夜夜夜久久久久| 欧美在线黄色| 怎么达到女性高潮| 精品久久久久久久末码| 人人妻人人澡欧美一区二区| 91老司机精品| 狠狠狠狠99中文字幕| www.自偷自拍.com| 国产精品一区二区免费欧美| 两个人视频免费观看高清| 亚洲全国av大片| 两个人看的免费小视频| 人成视频在线观看免费观看| 女人高潮潮喷娇喘18禁视频| 精品国内亚洲2022精品成人| 亚洲精品久久国产高清桃花| 美女免费视频网站| 亚洲国产欧美网| 最近在线观看免费完整版| 国产免费av片在线观看野外av| 欧美绝顶高潮抽搐喷水| 国产成人av教育|