• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Driving Style Recognition System Using Smartphone Sensors Based on Fuzzy Logic

    2021-12-15 08:12:42NidhiKalraRamanKumarGoyalAnshuParasharJaskiratSinghandGaganSingla
    Computers Materials&Continua 2021年11期

    Nidhi Kalra,Raman Kumar Goyal,Anshu Parashar,Jaskirat Singh and Gagan Singla

    1Department of Computer Science and Engineering,Thapar Institute of Engineering and Technology,Patiala,147001,Punjab,India

    2Computer Science and Engineering,University Institute of Engineering and Technology,Panjab University,160014,Chandigarh,India

    Abstract:Every 24 seconds,someone dies on the road due to road accidents and it is the 8th leading cause of death and the first among children aged 15-29 years.1.35 million people globally die every year due to road traffic crashes.An additional 20-50 million suffer from non-fatal injuries,often resulting in longterm disabilities.This costs around 3% of Gross Domestic Product to most countries,and it is a considerable economic loss.The governments have taken various measures such as better road infrastructures and strict enforcement of motor-vehicle laws to reduce these accidents.However,there is still no remarkable reduction in the number of accidents.To ensure driver safety and achieve vision of zero accidents,there is a great need to monitor drivers’driving styles.Most of the existing driving behavior monitoring solutions are based on expensive hardware sensors.As most people are using smartphones in the modern era,a system based on mobile application is proposed,which can reduce the cost for developing intelligent transport systems (ITS) to a large extent.In this paper,we utilize the accelerometer sensor data and the global positioning system(GPS)sensor deployed in smartphones to recognize driving and speeding events.A driving style recognition system based on fuzzy logic is designed to classify different driving styles and control reckless driving by taking the longitudinal/lateral acceleration and speed as input parameters.Thus,the proposed system uses fuzzy logic rather than taking the crisp values of the sensors.Results indicate that the proposed system can classify reckless driving based on fuzzy logic and,therefore,reduce the number of accidents.

    Keywords:Fuzzy logic;accelerometer;global positioning system;driving style

    1 Introduction

    The 2030 agenda for sustainable development formulated by United Nations sets an ambitious target that the number of deaths and injuries caused by road crashes should be decreased by half by 2020.This target hasn’t been met yet.Nowadays,vehicular traffic is a vital part of our day-to-day lives.India is a large developing country.In India,for the last 50 years,the number of automobiles has grown by 170 times,while the road infrastructure has grown by only nine times [1,2].The vehicle population in India is over 55,000,000 and growing by 500,000 per year.In developing countries like India,the road quality tends to be variable,and bumpy roads,as well as potholes,are found in many places,even in the core of cities.The flow of traffic is also chaotic.People drive recklessly without obeying the traffic rules,overtaking others,often honking,etc.Heterogeneous vehicles (i.e.,ranging from two-wheelers to four-wheelers) all travel on the same road.Therefore,monitoring these roads and vehicular conditions is of great importance.Studies reveal [3,4]that driver behavior is relatively safe if it is adequately monitored.

    1.1 Motivation and Our Contribution

    Prior work in monitoring driver behavior or road conditions has focused on the developed world,where the road conditions are good,the vehicles travel in an orderly manner,and there are proper lane systems.To monitor traffic,road,and driver behavior,the Intelligent Transportation System (ITS) [5]has been developed.It involves deploying dedicated sensors on roads and vehicles(e.g.,GPS-based tracking units,traffic cameras,Doppler radar,etc.).It is less valuable due to its high cost.Our newly developed system is implemented on a smartphone,and it is less expensive compared to the ITS.Second,the proposed system is featured with fuzzy logic to overcome the limitation that strict limits are defined for driving event detection in the system proposed by Kalra et al.[6].

    1.2 Prior Work

    Previously,various researchers have monitored driving style using specialized hardware sensors deployed inside the vehicle or smartphone.Singh et al.[7]developed an Android application to detect driving patterns using the combined data obtained from the accelerometer sensor,GPS sensor,and audio sound of the microphone sensor.They observed various driving patterns,including speed breaker,lane change left/right,left/right turn,sudden braking,and sudden acceleration.Furthermore,they correlated accelerometer and microphone sensor events.One such event is ‘if lane change turns are not accompanied by sound,it means rash driving’.

    Fazeen et al.[8]designed an application using smartphone sensors deployed inside the vehicle to monitor driver style.They used the X-and Y-axis of the accelerometer to measure driver control on steering and brakes.Johnson et al.[9]designed a Mobile-Sensor-Platform system for Intelligent Recognition of Aggressive Driving (MIROAD).They utilized the data taken from various sensors (accelerometer,gyroscope,magnetometer,GPS,and video) and converted the data into a single value using a dynamic time warping algorithm.Chigrurupati et al.[10]developed an Android application to rate the driver using the accelerometer sensor,GPS sensor,and video.Sharma et al.[11]proposed a novel method to detect driver behavior using multiple unmanned aerial vehicles (UAV) vehicular networks.Ryder et al.[12]designed a system that can warn the driver about accidental hotspots through their journey based on their current location.Papadimitriou et al.[13]exploited machine learning approaches to identify the driver distractions mainly caused by using the mobile phone.Tang et al.[14]proposed a novel lane change detection mechanism called FCMNN,which is based on the combination of Fuzzy C-means clustering algorithm and adaptive neural network.

    Kamaruddin et al.[15]detected the driver behavior based on emotions collected from speech using a combination of MFCC and MLP.Hu et al.[16]identified the driver activities such as using a mobile phone,talking with passengers,and smoking from still images using a deep learning multi-stream convolutional neural network approach.Zhao et al.[17]proposed a sensorbased head tracking system for monitoring driver behavior.Kalra et al.[18]conducted a survey on various smartphone sensors and methodologies for monitoring driver behavior.Kalra et al.[6]recognized the patterns of various driving events and road events using the accelerometer sensor of a smartphone.The recognized driving patterns include the left turn,right turn,sudden braking andsudden forward acceleration,and the recognized road events patterns include the potholes,bumps,and rough patches.The major limitation of their work is that they defined strict limits for the detection of events.For example,if the acceleration value of the accelerometer sensor is-1 to-3 g at the Y-axis,they denoted it as an abnormal braking event;otherwise,if the acceleration value of the accelerometer sensor is less than-3 g at the Y-axis,they denoted it as a sudden braking event.The difference of 0.1 g in acceleration value is not sufficient to differentiate between normal and reckless driver behavior.Kalra et al.[19]extended the work of Kalra et al.[6]for recognizing the patterns of various driving events using the accelerometer sensor of a smartphone.As an extension,they used a machine learning model (decision tree) to characterize and classify various driving events,such as the left turn,right turn,sudden braking,and sudden forward acceleration.

    The paper is organized as follows.Section 1 describes the need forvarious driving style recognition problems and prior work.Section 2 describes the data collection method.In Section 3,various patterns of driving events are described.Section 4 presents a driving style recognition system based on fuzzy logic,and finally,we conclude in Section 5.

    2 Data Collection

    In this section,the data collection mechanism using asmartphone as the platform is introduced.Meanwhile,the accelerometer sensor and GPS sensor are used for the data collection.

    i.Accelerometer:An accelerometer is a sensor used in mobile phones for measuring the tilting and orientation motion of the mobile phone.It is also used to measure the turning events(left turn and right turn) and acceleration events (acceleration and braking).It is an energyefficient sensor that consumes 1/10 the energy of other sensors in the mobile phone.It is an electromechanical device for measuring acceleration forces.Acceleration forces can be static or dynamic [20].Static acceleration forces can be measured by Z-axis,like a constant gravitational force.In contrast,dynamic acceleration forces are measured by X-and Y-axis,which are caused by moving or vibrating the accelerometer [21].Its unit ism/s2.Data is collected from the accelerometer sensor using the Android application “Accelerometer analyzer” in smartphone (shown in Fig.1).All the values (x,y,and z) of the accelerometer sensor are obtained from the smartphone’s internal hardware sensor.The sampling rate of data collection is five readings per second,i.e.,a time interval of 200 ms.

    To collect data,the smartphone is placed at a fixed location at the dashboard of a car in portrait mode.The orientation of the X-axis (points toward the right along the smaller side),Y-axis (points up along longer edge),and Z-axis (points towards the sky perpendicular to the plane of the front face of the screen) are shown in Fig.2.The raw values of the X-,Y-and Z-axis collected from the accelerometer sensorare stored in the smartphone memory in.txt format.

    Figure 1:The user interface of the data collection application “Accelerometer analyzer” [22]

    Figure 2:Orientation of smartphone axis

    ii.Global positioning system(GPS):It is a satellite-based navigation tracking sensor [23].GPS sensor gives us the value of longitude and latitude for determining the exact location on the map.It is also used in smartphones to determine the location,route to the destination,and speed of the vehicle.In the proposed driving style recognition model,only speed is taken as an input parameter of the GPS,and other parameters are determined by other sensors deployed in the mobile phone.GPS sensor data is collected from the Android application named “Speedometer GPS” [24],as shown in Fig.3.

    Figure 3:The user interface of data collection application “Speedometer GPS” [24]

    3 Pattern Analysis of Driving Events

    In this section,the pattern of various driving events such as left turn,right turn,forward acceleration,and braking are analyzed.

    i.Left Turn:It is determined by the X-axis of the accelerometer deployed in a smartphone.If there is a quick decrease in the magnitude of the X-axis in the negative direction,it indicates the occurrence of left-turn [6].The pattern observed in the accelerometer application for the left turn is shown in Fig.4.

    Figure 4:Left turn event pattern

    ii.Right Turn:It is also determined by the X-axis of the accelerometer deployed in a smartphone.If there is a quick increase in the magnitude of the X-axis in the positive direction,it indicates the occurrence of right-turn [6].The pattern observed in the accelerometer application for right-turn is shown in Fig.5.

    Figure 5:Right turn event pattern

    iii.Forward Acceleration:It is determined by the Y-axis of the accelerometer deployed in a smartphone.If there is aquick increase in the magnitude of the Y-axis in the positive direction,and correspondingly there is a little deflection in the X-and Z-axis,it indicates the occurrence of forward acceleration [6].The pattern observed in the accelerometer application is shown in Fig.6.

    iv.Braking:It is determined by the Y-axis of the accelerometer present in a smartphone.If there is a quick decrease in the magnitude of the Y-axis in the negative direction,and correspondingly there is a little deflection in the X-and Z-axis,it indicates the occurrence of braking events [6].The pattern observed in the accelerometer application is shown in Fig.7.

    Figure 6:Forward acceleration event pattern

    4 Fuzzy Logic Based Driving Style Recognition System

    In this section,a system for categorizing driving style using fuzzy logic is designed.The driving style can be divided into four categories:below mild,mild,reckless,and very reckless drivers.

    Figure 7:Braking event pattern

    4.1 Fuzzy Logic System

    The fuzzy logic system maps the input to the output through combination rules,which is not possible through classical binary logic.When there are no extreme boundaries,the need for representation through fuzzy logic arises.With fuzzy logic,it is possible to implement the rules of the form:if (A&B)?C,whereA,B,andCcan be represented in natural language [25].The following are the basic three steps in fuzzy logic [25]:

    · Fuzzification:In fuzzification,all input variables are converted into linguistic variables.Various functions,such as the triangular and trapezoidal membership functions,are used for fuzzification.

    · Fuzzy inference:In fuzzy inference,various inference rules are used to calculate the fuzzy output.

    · Defuzzification:It is a process for converting fuzzy output to crisp output.

    4.2 Fuzzy Logic Based System for Driving Style Recognition

    To ensure the safety of drivers,we designed a driving recognition system based on fuzzy logic.The selection of inputs and outputs is determined by performing various real-life experiments.The fuzzy-based driving style inference system is shown in Fig.8.

    Figure 8:The proposed driving style recognition system based on fuzzy logic

    Accelerometer sensor and GPS sensor data are used as inputs.The sampling rate of data is five readings per second,i.e.,atime interval of 200 ms.It is found that 800 ms is large enough to capture the inherent characteristics of aleft turn,right turn,braking detection,and forward acceleration detection because these events last only for a short period of time.From each of the 800 ms windows,the extracted pattern is used as input to the fuzzy inference system.The average acceleration value is taken as input for four windows,i.e.,800 ms,and we use the average value as a single data point.

    The accelerometer sensor provides the first input “acceleration” value.This value is used to determine straight driving,turns (left or right),and acceleration events (forward acceleration or braking).The lateral acceleration is used to determine turning events,and longitudinal acceleration is used to determine acceleration events.The corresponding membership values of acceleration events are defined as {straight,mild,reckless}.The value of lateral and longitudinal acceleration ranges from-1.5 to+6 g on X-axis and Y-axis.Fig.9 plots the acceleration events using the triangular membership function.

    Figure 9:Triangular membership function of accelerometer data

    GPS sensor provides the second input,i.e.,“speed” value.The corresponding membership values of speed events are defined as slow,normal,fast,very fast.The value of GPS speed ranges from 0 to 160 km/hr.Fig.10 plots the speed events using the triangular membership function.

    Figure 10:Triangular membership function of GPS data

    The output “Driving Style” is categorized into four classes defined as:{below mild driver,mild driver,reckless driver,very reckless driver}.The driving style rating ranges from 1 to 10,where 1 indicates the below mild driver and 10 indicates the very reckless driver.Fig.11 plots the driver’s driving style using the triangular membership function.

    Figure 11:Triangular membership function of the output variable “driving style”

    The fuzzy inference rules for predicting a driver’s driving style are described in Tab.1.In this model,all rules have been assigned the weight of 1.

    Table 1:Fuzzy inference rules for recognizing the driving style

    The whole mapping process for determining driving style by taking longitudinal/lateral acceleration and speed as input parameters after defuzzification is shown in Figs.12a and 12b.

    Fig.12a shows the driving style map,taking the longitudinal/lateral acceleration and speed as input parameters after defuzzification.The number of rows in Fig.12a shows the number of inference rules described in Tab.1.The first row of Fig.12a corresponds to the first row describing the inference rule in Tab.1.Similarly,the second row of Fig.12b corresponds to the second row describing the inference rule in Tab.1,and so on.The output variable DRIVERSTYLE shows how the rules are applied to the output variable.The bottom plot of the output variable DRIVERSTYLE shows how each rule’s output is combined to obtain the aggregate output of the defuzzified value.The red line in the bottom right plot defines the defuzzified value.In the MATLAB fuzzy toolbox,we can alter the red lines of the first two columns to change the input values and generate a new output response.Fig.12a shows that if the accelerometer value is 2.38 and the GPS speed is 80,then the driver style value is 6.5,which indicates the driver is reckless.Fig.12b describes the driving style’s surface map,taking the longitudinal/lateral acceleration and speed as input parameters to output the DRIVERSTYLE after defuzzification.Fig.12b shows a very high value for the DRIVERSTYLE output parameter if the acceleration values and GPS speed sensor values are very high (i.e.,it depicts that the driver’s driving style is very reckless).If the acceleration values and GPS speed sensor values are high,it indicates that the driver’s driving style is reckless.Fig.12b shows the average value for the DRIVERSTYLE output parameter if the acceleration values and GPS speed sensor values are averaged (i.e.,it corresponds to a mild driving style).If both parameters acceleration values and GPS speed sensor values are very low,it indicates that the driving style is below mild.

    Figure 12:(a) The mapping process for determining driving style by taking longitudinal/lateral acceleration and speed as input parameter after defuzzification.(b) The mapping process for determining driving style by taking longitudinal/lateral acceleration and speed as input parameter after defuzzification

    5 Conclusion

    In this paper,we exploit the data obtained from the accelerometer sensor and GPS sensor deployed in a smartphone for recognizing the driving and speeding events.Various driving event patterns have been analyzed,such as the left turn,right turn,acceleration,and braking.We have classified various driving styles and designed a driving style recognition system based on fuzzy logic,taking the longitudinal/lateral acceleration and speed as input parameters.The proposed model is implemented in MATLAB [26]and fuzzy logic is exploited to recognize the driving style.In contrast to previous research on driving style recognition,our system is implemented entirely on a mobile device without using external hardware.Our proposed system is also a system based on fuzzy logic rather than the one using crisp values.The experimental results show that our system can recognize various types of driving styles,including reckless driving.

    The limitation of our proposed approach is that this approach only works when the phone is placed at a fixed location on the dashboard of a vehicle in portrait mode.In the future,we will try to conduct a virtual reorientation of the mobile phone to matchthe phone’s axis.Future researches can also incorporate other sensors of mobile phones for better results.

    Acknowledgement:We appreciate the linguistic assistance provided by TopEdit (www.topeditsci.com) during the preparation of this manuscript.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    少妇的逼水好多| 99久久精品国产国产毛片| 777米奇影视久久| 日本wwww免费看| 国产男人的电影天堂91| 亚洲av福利一区| 丰满人妻一区二区三区视频av| 亚洲天堂av无毛| 午夜福利在线在线| 天天躁夜夜躁狠狠久久av| 成人亚洲精品一区在线观看 | 欧美高清成人免费视频www| 男人添女人高潮全过程视频| 午夜免费男女啪啪视频观看| 久久精品人妻少妇| 男女国产视频网站| 少妇熟女欧美另类| 小蜜桃在线观看免费完整版高清| 国产永久视频网站| 丰满人妻一区二区三区视频av| 亚洲成人手机| 亚洲精品乱码久久久v下载方式| 午夜免费观看性视频| 亚洲电影在线观看av| 亚洲欧洲国产日韩| 久久国产亚洲av麻豆专区| 99热全是精品| 日日摸夜夜添夜夜添av毛片| 街头女战士在线观看网站| 麻豆国产97在线/欧美| 日本欧美国产在线视频| 亚洲三级黄色毛片| 国产永久视频网站| 亚洲av电影在线观看一区二区三区| 亚洲国产精品成人久久小说| 美女中出高潮动态图| 欧美日韩一区二区视频在线观看视频在线| 亚洲自偷自拍三级| 国产淫片久久久久久久久| 国产成人a区在线观看| 亚洲成人av在线免费| 少妇丰满av| 嫩草影院新地址| 国产精品一二三区在线看| 国产成人午夜福利电影在线观看| 免费高清在线观看视频在线观看| 一级毛片电影观看| 国产精品一二三区在线看| 亚洲欧美成人精品一区二区| 国产精品福利在线免费观看| 校园人妻丝袜中文字幕| 久热久热在线精品观看| 五月开心婷婷网| av国产免费在线观看| 欧美日韩视频高清一区二区三区二| 三级国产精品片| 国产精品国产av在线观看| 久久久久久九九精品二区国产| 国产男人的电影天堂91| 一本一本综合久久| 久久久欧美国产精品| 亚洲欧美精品自产自拍| 多毛熟女@视频| 亚洲欧美中文字幕日韩二区| 国产色婷婷99| 男女边摸边吃奶| 国国产精品蜜臀av免费| 熟女人妻精品中文字幕| 久久久久久久久久成人| 国产一区二区三区av在线| 成人漫画全彩无遮挡| 亚洲精品成人av观看孕妇| 国产av一区二区精品久久 | 啦啦啦中文免费视频观看日本| 香蕉精品网在线| 99re6热这里在线精品视频| 亚洲精品,欧美精品| 国产精品女同一区二区软件| 如何舔出高潮| 人人妻人人澡人人爽人人夜夜| 精品国产三级普通话版| 少妇猛男粗大的猛烈进出视频| 欧美极品一区二区三区四区| 精品国产露脸久久av麻豆| 亚洲精品乱久久久久久| 日韩 亚洲 欧美在线| 久热这里只有精品99| 亚洲av欧美aⅴ国产| 有码 亚洲区| 亚洲人与动物交配视频| 欧美激情国产日韩精品一区| 亚洲美女视频黄频| 最后的刺客免费高清国语| 中文在线观看免费www的网站| 老司机影院毛片| 99热网站在线观看| 日本欧美国产在线视频| 色5月婷婷丁香| 国产一区二区三区av在线| 久久97久久精品| 亚洲国产成人一精品久久久| 午夜福利在线观看免费完整高清在| xxx大片免费视频| 五月天丁香电影| 免费人成在线观看视频色| 91久久精品电影网| 青青草视频在线视频观看| 国产精品伦人一区二区| 欧美日韩综合久久久久久| 一本色道久久久久久精品综合| 欧美高清性xxxxhd video| 久久久久久久久久久免费av| 亚洲国产精品专区欧美| 一本久久精品| 久久毛片免费看一区二区三区| 国产黄频视频在线观看| 精品久久久精品久久久| 18+在线观看网站| 国产精品福利在线免费观看| 性色avwww在线观看| 久久久久久久亚洲中文字幕| 蜜臀久久99精品久久宅男| 综合色丁香网| 精品亚洲成国产av| 国产黄色免费在线视频| 91精品国产国语对白视频| 亚洲不卡免费看| 国产av码专区亚洲av| 一本色道久久久久久精品综合| 下体分泌物呈黄色| 日本黄色日本黄色录像| 久久久久视频综合| 啦啦啦啦在线视频资源| 国产成人精品福利久久| 国产男女内射视频| 欧美 日韩 精品 国产| 黑丝袜美女国产一区| 一级片'在线观看视频| 国产成人aa在线观看| 日韩成人伦理影院| 久久久久久伊人网av| 五月天丁香电影| 欧美日本视频| 久久久久久伊人网av| 亚洲国产精品成人久久小说| 亚洲中文av在线| 少妇人妻久久综合中文| 最近2019中文字幕mv第一页| 人妻制服诱惑在线中文字幕| 最近最新中文字幕免费大全7| 水蜜桃什么品种好| 免费av不卡在线播放| 亚洲精品乱久久久久久| 免费在线观看成人毛片| 欧美日韩综合久久久久久| 国产国拍精品亚洲av在线观看| 建设人人有责人人尽责人人享有的 | 香蕉精品网在线| 欧美最新免费一区二区三区| 国国产精品蜜臀av免费| 天堂俺去俺来也www色官网| 少妇精品久久久久久久| 国产一区二区三区av在线| 激情五月婷婷亚洲| 少妇 在线观看| 欧美+日韩+精品| 最黄视频免费看| 午夜福利视频精品| 日韩欧美一区视频在线观看 | 亚洲精品国产色婷婷电影| 国产一级毛片在线| 亚洲欧美精品自产自拍| 美女xxoo啪啪120秒动态图| 香蕉精品网在线| 你懂的网址亚洲精品在线观看| 高清av免费在线| 秋霞在线观看毛片| 肉色欧美久久久久久久蜜桃| 一级二级三级毛片免费看| 亚洲av不卡在线观看| 国产熟女欧美一区二区| 成人漫画全彩无遮挡| 九九爱精品视频在线观看| 人体艺术视频欧美日本| 观看美女的网站| 久久久久久久久久久丰满| 国内少妇人妻偷人精品xxx网站| 观看美女的网站| 又爽又黄a免费视频| 国产免费一级a男人的天堂| 亚洲精品国产色婷婷电影| 内地一区二区视频在线| 亚洲激情五月婷婷啪啪| 少妇猛男粗大的猛烈进出视频| 夜夜爽夜夜爽视频| 日本午夜av视频| 亚洲综合精品二区| 免费看不卡的av| 国产精品秋霞免费鲁丝片| 五月天丁香电影| 麻豆成人av视频| 草草在线视频免费看| 老司机影院成人| 亚洲国产精品999| 高清日韩中文字幕在线| 国产v大片淫在线免费观看| 色网站视频免费| 亚洲欧洲日产国产| 新久久久久国产一级毛片| 国产永久视频网站| 夜夜骑夜夜射夜夜干| 久久久欧美国产精品| 国产精品秋霞免费鲁丝片| 国产精品99久久99久久久不卡 | 成人午夜精彩视频在线观看| 日本wwww免费看| 少妇 在线观看| 久久女婷五月综合色啪小说| 久久影院123| videos熟女内射| 日产精品乱码卡一卡2卡三| 亚洲欧美日韩卡通动漫| 亚洲丝袜综合中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 国产人妻一区二区三区在| 十八禁网站网址无遮挡 | 大香蕉97超碰在线| 国产伦理片在线播放av一区| 欧美精品国产亚洲| 亚洲精品乱码久久久v下载方式| 国内少妇人妻偷人精品xxx网站| 亚洲aⅴ乱码一区二区在线播放| 久久国产精品男人的天堂亚洲 | 亚洲人成网站在线播| 亚洲av日韩在线播放| 在线观看美女被高潮喷水网站| tube8黄色片| 欧美日韩视频精品一区| 水蜜桃什么品种好| 成年美女黄网站色视频大全免费 | 有码 亚洲区| 亚洲精品乱码久久久v下载方式| 亚洲激情五月婷婷啪啪| 国产精品嫩草影院av在线观看| 国产成人一区二区在线| 国产精品欧美亚洲77777| 亚洲精品国产av蜜桃| 国产女主播在线喷水免费视频网站| 女人十人毛片免费观看3o分钟| 国产欧美日韩精品一区二区| 久久久久视频综合| 日日啪夜夜爽| av国产免费在线观看| 日韩视频在线欧美| 亚洲美女视频黄频| 国产无遮挡羞羞视频在线观看| 欧美日韩一区二区视频在线观看视频在线| 啦啦啦视频在线资源免费观看| 国产伦精品一区二区三区四那| 亚洲怡红院男人天堂| 久久久久性生活片| 日本黄大片高清| 欧美一区二区亚洲| 国产伦精品一区二区三区四那| 精品久久久久久电影网| 国产一级毛片在线| 天天躁夜夜躁狠狠久久av| videossex国产| 人妻一区二区av| 黑人高潮一二区| 久久久久久久国产电影| 日本av免费视频播放| 高清不卡的av网站| 国产在线一区二区三区精| 赤兔流量卡办理| 91久久精品国产一区二区成人| 久久青草综合色| 一区二区三区免费毛片| 日韩欧美精品免费久久| 精品久久久精品久久久| 丝袜脚勾引网站| 啦啦啦啦在线视频资源| av线在线观看网站| 夜夜爽夜夜爽视频| 欧美人与善性xxx| 欧美日韩综合久久久久久| 亚洲av欧美aⅴ国产| 看非洲黑人一级黄片| av免费在线看不卡| 久久久精品94久久精品| 欧美成人a在线观看| 久久精品夜色国产| 亚洲精品一区蜜桃| 午夜福利在线观看免费完整高清在| 国产精品爽爽va在线观看网站| tube8黄色片| 一区二区av电影网| av线在线观看网站| 日韩制服骚丝袜av| 成年av动漫网址| av在线观看视频网站免费| 男人和女人高潮做爰伦理| 亚洲中文av在线| 少妇裸体淫交视频免费看高清| 日本欧美视频一区| 中国三级夫妇交换| 最近最新中文字幕大全电影3| 99热国产这里只有精品6| 欧美丝袜亚洲另类| 亚洲av欧美aⅴ国产| 久久国内精品自在自线图片| 女性生殖器流出的白浆| 一区二区三区四区激情视频| 人妻制服诱惑在线中文字幕| 亚洲色图综合在线观看| 一个人看视频在线观看www免费| 久久ye,这里只有精品| 免费人成在线观看视频色| 亚洲一级一片aⅴ在线观看| 99热这里只有精品一区| 黄片wwwwww| 亚洲av综合色区一区| 男女边摸边吃奶| 成年人午夜在线观看视频| 色网站视频免费| 毛片一级片免费看久久久久| 国产精品一区二区在线观看99| 久久97久久精品| 99re6热这里在线精品视频| 日韩强制内射视频| 国产精品国产av在线观看| 一级a做视频免费观看| 久久国产精品男人的天堂亚洲 | 欧美日韩亚洲高清精品| 亚洲熟女精品中文字幕| 欧美成人精品欧美一级黄| 国产亚洲5aaaaa淫片| a 毛片基地| 国产精品久久久久久久电影| 国语对白做爰xxxⅹ性视频网站| 国产精品一区二区三区四区免费观看| 校园人妻丝袜中文字幕| 久久久久国产网址| 午夜福利视频精品| 久久国产精品大桥未久av | 九九爱精品视频在线观看| 日韩中字成人| 欧美高清性xxxxhd video| 日韩中字成人| 欧美高清性xxxxhd video| 日韩中字成人| 亚洲不卡免费看| 日韩精品有码人妻一区| 成年av动漫网址| 99热国产这里只有精品6| 欧美日韩亚洲高清精品| 少妇人妻 视频| 国产91av在线免费观看| 观看av在线不卡| 欧美3d第一页| 欧美日韩精品成人综合77777| 一级av片app| 欧美日韩视频精品一区| 久久久久久久国产电影| 精品一区二区免费观看| 极品少妇高潮喷水抽搐| 中国三级夫妇交换| 中文字幕久久专区| 成人特级av手机在线观看| av视频免费观看在线观看| 日韩av免费高清视频| 久久婷婷青草| 久久ye,这里只有精品| 国产成人午夜福利电影在线观看| 偷拍熟女少妇极品色| 亚洲欧美成人精品一区二区| 黄色怎么调成土黄色| 麻豆成人av视频| 天美传媒精品一区二区| 国产欧美亚洲国产| 男男h啪啪无遮挡| 精品酒店卫生间| 卡戴珊不雅视频在线播放| 女人久久www免费人成看片| 国产av国产精品国产| 久久精品国产亚洲av涩爱| 天堂8中文在线网| 人人妻人人爽人人添夜夜欢视频 | 欧美日韩国产mv在线观看视频 | 日韩一区二区三区影片| 欧美日韩视频精品一区| 高清毛片免费看| 成人国产麻豆网| 精品亚洲乱码少妇综合久久| 丰满人妻一区二区三区视频av| av在线老鸭窝| 一级片'在线观看视频| 在线观看免费视频网站a站| 国产精品欧美亚洲77777| 人人妻人人看人人澡| 丰满迷人的少妇在线观看| 欧美人与善性xxx| 啦啦啦中文免费视频观看日本| 国产成人精品福利久久| 一区二区三区乱码不卡18| 熟女电影av网| 国产人妻一区二区三区在| 亚洲激情五月婷婷啪啪| 免费看av在线观看网站| 日韩不卡一区二区三区视频在线| 极品少妇高潮喷水抽搐| 国产国拍精品亚洲av在线观看| 日韩欧美一区视频在线观看 | 99热这里只有是精品在线观看| 欧美日韩在线观看h| 国产精品久久久久久精品古装| 国产黄频视频在线观看| a 毛片基地| 欧美激情国产日韩精品一区| 国产在线免费精品| 精品一区在线观看国产| tube8黄色片| 国产黄频视频在线观看| 亚洲欧美一区二区三区国产| 高清欧美精品videossex| 99国产精品免费福利视频| 精品久久久久久久久av| 蜜桃久久精品国产亚洲av| 国产精品成人在线| 亚洲成人手机| 国产精品不卡视频一区二区| 日本vs欧美在线观看视频 | 大片免费播放器 马上看| av黄色大香蕉| 亚洲精品,欧美精品| 亚洲欧美中文字幕日韩二区| 大陆偷拍与自拍| 免费观看性生交大片5| 赤兔流量卡办理| 97超视频在线观看视频| 免费黄网站久久成人精品| 自拍偷自拍亚洲精品老妇| 日韩亚洲欧美综合| 五月开心婷婷网| 观看美女的网站| kizo精华| 少妇的逼好多水| 一个人免费看片子| 26uuu在线亚洲综合色| 国产亚洲一区二区精品| 91午夜精品亚洲一区二区三区| 免费观看的影片在线观看| 黑丝袜美女国产一区| 久久国产亚洲av麻豆专区| 在线精品无人区一区二区三 | h视频一区二区三区| 大码成人一级视频| 久久久久久久国产电影| 国产精品偷伦视频观看了| 少妇被粗大猛烈的视频| 美女福利国产在线 | 久久精品熟女亚洲av麻豆精品| 搡女人真爽免费视频火全软件| 国产精品国产三级国产专区5o| 亚洲欧美一区二区三区黑人 | 国产黄频视频在线观看| 亚洲精品中文字幕在线视频 | 亚州av有码| 秋霞伦理黄片| av在线播放精品| 熟女电影av网| 免费在线观看成人毛片| 日韩不卡一区二区三区视频在线| 成人综合一区亚洲| 成人漫画全彩无遮挡| 性高湖久久久久久久久免费观看| 亚洲精品日本国产第一区| 只有这里有精品99| 日日啪夜夜爽| a级毛片免费高清观看在线播放| 伦精品一区二区三区| 少妇猛男粗大的猛烈进出视频| 午夜福利在线观看免费完整高清在| 秋霞在线观看毛片| 日本wwww免费看| 免费人成在线观看视频色| 丰满乱子伦码专区| 国产在线男女| 亚洲精品国产色婷婷电影| 中国美白少妇内射xxxbb| 一级毛片久久久久久久久女| 亚洲欧美成人精品一区二区| 搡老乐熟女国产| 欧美激情国产日韩精品一区| 国产在视频线精品| 免费高清在线观看视频在线观看| av线在线观看网站| 欧美国产精品一级二级三级 | 亚洲欧美成人综合另类久久久| 日韩视频在线欧美| 视频中文字幕在线观看| 免费观看av网站的网址| 麻豆乱淫一区二区| 欧美日韩精品成人综合77777| 久久久久久久亚洲中文字幕| 久久综合国产亚洲精品| 高清午夜精品一区二区三区| 亚洲精品成人av观看孕妇| 亚洲欧洲国产日韩| 午夜免费观看性视频| av在线播放精品| 国产成人精品久久久久久| 性色av一级| 亚洲伊人久久精品综合| 人妻 亚洲 视频| 国产成人免费无遮挡视频| 国产免费一级a男人的天堂| 国产亚洲一区二区精品| 中国三级夫妇交换| 欧美+日韩+精品| 高清欧美精品videossex| 自拍偷自拍亚洲精品老妇| videos熟女内射| 在线观看国产h片| 大陆偷拍与自拍| 少妇熟女欧美另类| 亚洲av.av天堂| 国产精品人妻久久久久久| 91精品国产国语对白视频| 亚洲av欧美aⅴ国产| 在线亚洲精品国产二区图片欧美 | 亚洲av.av天堂| 日韩在线高清观看一区二区三区| av国产久精品久网站免费入址| 国产爱豆传媒在线观看| 丝瓜视频免费看黄片| 麻豆国产97在线/欧美| 女人久久www免费人成看片| 人妻少妇偷人精品九色| 26uuu在线亚洲综合色| 在线观看免费视频网站a站| 亚洲aⅴ乱码一区二区在线播放| 欧美精品一区二区大全| 亚洲av不卡在线观看| 免费久久久久久久精品成人欧美视频 | 亚洲精品久久久久久婷婷小说| 尤物成人国产欧美一区二区三区| av一本久久久久| 成人亚洲欧美一区二区av| 97精品久久久久久久久久精品| 日韩精品有码人妻一区| 另类亚洲欧美激情| 国语对白做爰xxxⅹ性视频网站| 在线观看免费日韩欧美大片 | 中文字幕免费在线视频6| 国产精品三级大全| 网址你懂的国产日韩在线| 国产精品一区www在线观看| 精品国产三级普通话版| 免费看不卡的av| 日韩免费高清中文字幕av| 国产一区二区三区av在线| 夜夜爽夜夜爽视频| 少妇猛男粗大的猛烈进出视频| 亚洲精品乱码久久久久久按摩| 精品人妻一区二区三区麻豆| 舔av片在线| 免费观看在线日韩| 国产精品久久久久久精品古装| 国产成人精品婷婷| 三级经典国产精品| 亚洲精品第二区| 日韩大片免费观看网站| 国产伦在线观看视频一区| 在现免费观看毛片| 五月伊人婷婷丁香| 赤兔流量卡办理| 日韩免费高清中文字幕av| 成人黄色视频免费在线看| 国产欧美日韩精品一区二区| 欧美xxxx黑人xx丫x性爽| 国产极品天堂在线| 国产日韩欧美在线精品| 国产免费视频播放在线视频| freevideosex欧美| 久久久久久久亚洲中文字幕| 免费观看无遮挡的男女| 这个男人来自地球电影免费观看 | 高清毛片免费看| 在线观看国产h片| 亚洲欧美一区二区三区黑人 | 亚洲成人av在线免费| 免费看av在线观看网站| 亚洲内射少妇av| 亚洲成人av在线免费| 男人狂女人下面高潮的视频| 国产亚洲午夜精品一区二区久久| 精品国产一区二区三区久久久樱花 | 在线播放无遮挡| 亚洲av免费高清在线观看| 欧美日韩精品成人综合77777| 午夜视频国产福利| 日韩欧美精品免费久久| av国产免费在线观看| 午夜免费男女啪啪视频观看| 大香蕉97超碰在线| 亚洲欧洲国产日韩| 国产精品国产三级国产专区5o| 精品午夜福利在线看| 一个人看的www免费观看视频| 日本黄色片子视频| 麻豆国产97在线/欧美| 国产av精品麻豆| 久久久久久久大尺度免费视频| 日韩强制内射视频|