• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Energy Optimization in Multi-UAV-Assisted Edge Data Collection System

    2021-12-15 08:11:56BinXuLuZhangZipengXuYichuanLiuJinmingChaiSichongQinandYanfeiSun
    Computers Materials&Continua 2021年11期

    Bin Xu,Lu Zhang,Zipeng Xu,Yichuan Liu,Jinming Chai,Sichong Qin and Yanfei Sun,*

    1Nanjing University of Posts and Telecommunications,Nanjing,210003,China

    2Nanjing Pharmaceutical Co.,Ltd.,Nanjing,210012,China

    3Jiangsu Key Laboratory of Data Science and Smart Software,Jinling Institute of Technology,Nanjing,211169,China

    4Central Washington University,Ellensburg,98926,United States

    Abstract:In the IoT (Internet of Things) system,the introduction of UAV(Unmanned Aerial Vehicle) as a new data collection platform can solve the problem that IoT devices are unable to transmit data over long distances due to the limitation of their battery energy.However,the unreasonable distribution of UAVs will still lead to the problem of the high total energy consumption of the system.In this work,to deal with the problem,a deployment model of a mobile edge computing (MEC) system based on multi-UAV is proposed.The goal of the model is to minimize the energy consumption of the system in the process of data transmission by optimizing the deployment of UAVs.The DEVIPSK(differential evolution algorithm with variable population size based on a mutation strategy pool initialized by K-Means)is proposed to solve the model.In DEVIPSK,the population is initialized by K-Means to obtain better initial positions of UAVs.Besides,considering the limitation of the fixed mutation strategy in the traditional evolutionary algorithm,a mutation strategy pool is used to update the positions of UAVs.The experimental results show the superiority of the DEVIPSK and provide guidance for the deployment of UAVs in the field of edge data collection in the IoT system.

    Keywords:UAV;mobile edge computing;differential evolution algorithm;K-Means;edge data collection

    1 Introduction

    The Mobile Edge Computing (MEC) Model [1]was proposed to solve such problems as delay,high pressure on network bandwidth,high energy consumption,and insufficient caching capacity [2]caused by centralized data processing in cloud computing mode.In recent years,some studies on UAV (Unmanned Aerial Vehicle) in mobile edge computing environment have been carried out in academia.Kim et al.[3]proposed an optimal task-UAV-edge server matching algorithm that minimizes energy consumption and processing time.Du et al.[4]regarded a UAV as an edge cloud.They proposed an effective iterative algorithm to minimize the energy consumption of the UAV on the premise of meeting the quality of service (QoS) requirements of the IoT devices and the computing resources available to the UAV.A UAV communication system based on mobile edge computing was studied [5].Under the condition of resource constraints,the path and task allocation of the UAV,and the computing speed of the CPU are jointly optimized to minimize the energy consumption of the whole system.Yang et al.[6]designed a multi-UAV deployment scheme for MEC enhanced IoT architecture,which provides computing offloading services for ground IoT devices with limited local processing capacity.Then they proposed a multi-UAV deployment mechanism based on a differential evolution algorithm to balance the load of UAVs.Mozaffari et al.[7]considered a UAV-enabled MEC system and established a game model to achieve lower energy consumption.Alzenad et al.[8]researched the optimal deployment of UAVs to cover the maximum number of ground users with minimum transmission power,and then studied deployment operation optimization under different QoS requirements [9].Liu et al.[10]proposed a cooperative MEC network architecture that supports UAVs,in which UAV can help other UAVs to perform computing tasks.On this basis,a collaborative computing offloading scheme considering the interference suppression of UAVs to equipment was proposed.It should be noted that the positions and number of UAVs are not optimized or only the positions of UAVs are optimized in these papers.A variable population differential evolution algorithm was proposed [11],in which the positions and the number of UAVs are considered.In the whole optimization process,since the number of UAVs is a dynamic variable,a new coding mechanism [11]was introduced in the paper.So that each individual of the population is on behalf of a UAV,and the whole population represents the whole UAV group.That is,the size of the population represents the number of UAVs.Our paper makes some improvements to its model and algorithm on the basis of [11].

    In the scenario of IoT,terminal IoT devices are usually unable to transmit over long distances because of their own energy limitations.Therefore,as a new data collection platform,the UAV was introduced into the IoT scene.To use UAVs in a highly efficient way,we need to optimize the deployment of UAVs to provide reliable and energy-saving data acquisition solutions for IoT devices.In this paper,a differential evolution algorithm with variable population size based on a mutation strategy pool initialized by K-Means [12]is proposed (DEVIPSK).Meanwhile,the number and the positions of UAVs are optimized.

    The main contributions of this paper are as follows:

    (1) A differential evolution algorithm with variable population size based on a mutation strategy pool initialized by K-Means is proposed to optimize the deployment of UAVs.It adopts the K-Means clustering algorithm to initialize the population.In addition,a control mechanism is also designed to dynamically change the parameter scaling factorFand crossover probabilityCR,to balance local search and global search.It also adopts a mutation strategy pool to help find the optimal mutation strategy.

    (2) The results show that,compared with other algorithms on 8 different instances,DEVIPSK performs better.The experimental results indicate that DEVIPSK reduces effectively the energy consumption of the entire system while solving problems for its green characteristics.

    The rest of this paper is arranged as follows.The second chapter details the system model.The third chapter introduces the algorithm and its innovation.The fourth chapter carries on the simulation contrast experiment and data analysis.The last chapter summarizes the full paper.

    2 System Model

    An IoT system,as shown in Fig.1,contains a set of IoT devices deployed in a certain area,represented asN={1,2,...,n},and some fixed-location base stations.Because there may be a long transmission distance or the base station used as an auxiliary calculation is too far away in the process of data transmission,a group of rotary-wing UAVs is used to collect data from these ground-based IoT devices to MEC servers.Here,we hypothesis that the set of the number of UAVs can be expressed asK={1,2,...,k}.

    Figure 1:Scene diagram of multi-UAV-assisted Internet of Things

    The distance between the IoT deviceiand the UAVjis expressed as Eq.(1):

    where(xi,yi,0)is the position of the IoT devicei,(Xj,Yj,andH) is the position of the UAVj.In this model,the height of the UAV is set to a fixed valueH.The connection between the IoT deviceiand the UAVjis expressed as a binary variableai,j.Specifically,if there is a data exchange between the UAV and the IoT device,thenai,jequals 1;otherwiseai,jequals 0.To decrease energy,each IoT device always transmits data to the UAV closest to itself.Therefore,ai,jis set as Eq.(2):

    Moreover,the constraint ofai,jis Eq.(3):

    Each IoT device can only send data to one UAV.Moreover,taking into account the system bandwidth limitations,each UAV can receive data from up toMIoT devices at the same time.It can be expressed as Eq.(4):

    To ensure that all the IoT devices can be served,Eq.(5) should be satisfied:

    Each IoT device has a probability of establishing a line-of-sight relationship for a specific UAV.This probability depends on the environment of the IoT and the UAV,and the degree of elevation between the two.The probability of line-of-sight relationship [13]is Eq.(6):

    Among them,ψandβare the constants depending on environment types and carrier frequency.θis elevation angle,wheredi,jis the distance between the IoT deviceiand the UAVj.His the UAV’s height.

    From Eq.(6),it can be seen that the probability of establishing a line-of-sight relationship will be increased by increasing the degree of elevation or the height of the UAV.Reference [14]indicates that only whenPLoSis greater than a threshold,the two can be connected,soPLoS(θ)≥ε(εis close to 1).Eq.(7) is derived from

    From Eq.(7),it can be concluded that the maximum distance between a UAV and an IoT device is

    In this model,the channel gain between the IoT deviceiand the UAVj[15]is expressed as Eq.(8):

    According to Eq.(8),the shorter the distance between the IoT deviceiand the UAVj,the greater its channel gain.This coincides with Eq.(2) in which each IoT device always chooses the nearest UAV to send data.

    The rate at which the IoT device sends data to the UAV is Eq.(9):

    Among them,piis the transmission energy;h0indicates the channel power gain at reference distanced0=1m;σ2is the noise power of white Gaussian noise andBis the system bandwidth.While the IoT device sends data volumeDito the UAV,the time of transmitting is given by Eq.(10):

    Energy consumption is calculated using Eq.(11):

    Thus,energy consumption for all IoT devices is Eq.(12):

    The hover time of the UAVjis Eq.(13):

    Further,the hover energy consumption of the UAVjis Eq.(14):

    wherephrepresents the hover power of the UAV.

    The distance between two UAVs should meet certain conditions so that there will be no collision [16].The distance between the UAVj1 and the UAVj2 should be greater thandmin,as shown in Eq.(15):

    In the model in this paper,the UAV serves as the data transfer station,and the data of the IoT device is finally sent to the edge server for processing.The volume of data received by the UAVjis shown in Eq.(16):

    The timeTjof the UAVjsending data to the edge server is expressed as Eq.(17):

    According to Eq.(9),rjrepresents the rate at which the UAVjtransmits data to the edge server.

    The transmission energy of the UAVjis Eq.(18):

    wherepurepresents the UAV’s transmission power.

    The total energy consumption of the UAVs is Eq.(19):

    The energy consumption of the whole system consists of the energy consumption of the UAVs and the energy consumption of the IoT devices.Thus,the problem can be expressed as Eq.(20):

    whereφ≥0 is the weight of energy consumption of the IoT devices;di,jrepresents the distance between the IoT deviceiand the UAVj;dj1,j2represents the distance between the two UAVs,anddminis the shortest distance.XmaxandXminare the maximum and minimum values ofXj;YmaxandYminare the maximum and minimum values ofYj;kmaxandkminare the maximum and minimum values ofk;kminandkmaxareandnrespectively;nrepresents the size of IoT devices;Mrepresents the maximum size of IoT devices that a UAV can serve.

    3 Method

    DEVIPSK is proposed to optimize the deployment of UAVs,in which K-Means is used for population initialization,and a mutation strategy pool is proposed to help find the optimal mutation strategy.A control mechanism is also designed to dynamically change the parameter scaling factorFand crossover probabilityCR,to balance local search and global search.

    The overall frame of the deployment optimization algorithm for UAVs is shown in Tab.1.

    Table 1:DEVIPSK framework for UAVs’deployment

    The populationPis initialized according to Tab.2.In the whole process of evolution,the UAV deployment optimization algorithm is based on the mutation strategy pool.The mutation and crossover operations of dynamic parameters generate the progeny populationQ.Then the adaptive population size strategy in [11]is used to update the populationP.In this adaptive mechanism,a population update includes inserting,replacing,and deleting at most one individual,so as to ensure that the change of population size will not be too large.By comparing the fitness value of the population after inserting,replacing or deleting an individual,the population with the highest fitness value replaces the current populationP.If the fitness value of the three has not improved,and the fitness value of the population after deleting the individual is equal to the fitness value of the current populationP,then the current population will be replaced with the population after deleting the individual.For the mutation and crossover operation of the differential evolution algorithm,the method based on the mutation strategy pool and binomial crossover is adopted.

    3.1 Population Initialization

    Generally speaking,a UAV can serve multiple IoT devices.When the number of UAVs is initialized,it does not have to be directly set to the maximum value.The initial valuekof UAVs is set to a value betweento make the algorithm converge faster.

    Table 2:The process of population initialization

    We solve this problem by setting the number of UAVs to a cluster value.The K-Means is used to initialize the positions of the UAVs.The center of each cluster is the initial position of the UAV.As can be seen from Eq.(8),the shorter the distance between the IoT device and the UAV,the greater the channel gain.

    The effect diagram executed with the K-Means algorithm is shown in Fig.2,where the dots of different colors represent the positions of the IoT devices.The asterisk indicates the centroid of each cluster,which is the initial position of the UAVs.

    Figure 2:The distribution map of UAVs in the IoT devices through K-Means

    The process of population initialization is shown in Tab.2.

    In the process of initialization,the original data can be divided intoknon-intersecting clusters by using the clustering algorithm.That is,the position of the UAV is the center of each cluster,making the UAV the closest to each IoT device in the cluster.Then check whether the populationPsatisfies all the constraints of the model.If so,a feasible initial populationPis successfully generated.If not,repeat the operation.

    3.2 Update Population Based on Variation Pool Strategy and Dynamically Changing Parameters

    In this paper,a method of mutation strategy candidate pool is proposed,which includes several effective mutation strategies with different characteristics.In the process of evolution,for each individual in the current population,a probability will be selected according to previous experience to select a strategy from the candidate pool to perform the mutation operation.We have studied several effective mutation strategies commonly used in DE literature,and selected the following three strategies as a candidate pool for mutation strategies.

    (1) The “DE/rand/1” strategy converges slowly,but has a strong search ability.So it is suitable to solve multimodal problems,rather than relying on the optimal solution currently found.

    (2) The “DE/rand/2” strategy based on two difference vectors may produce better disturbance than the strategy based on one difference vector.Under the background of particle swarm optimization,Storn [17]proved that all statistical distributions based on two difference vectors are better perturbation modes.

    (3) “DE/current-to-rand/1” is a rotation invariant strategy,and it is mainly applied to solving multi-objective optimization problems.

    It is found that a control mechanism can be used to dynamically change the parameter scaling factorFand crossover probabilityCR,to make the evolution algorithm perform better.The whole process is described in detail below.

    According to the study by Brest et al.[18],the calculation method of scaling factorFis defined as Eq.(21),and the calculation method of crossover probabilityCRis defined as Eq.(22):

    whererandj,j∈{1,2,3,4} is the random number between [0,1].τ1andτ2are the probability to dynamically adjustFandCR.FlandFuare the range ofF,andare determined before the mutation operation.τ1,τ2,Fl,Fuare all preset values that are fixed throughout the operation.For different function problems,the appropriate control parameters are different.In our method,the change ofFandCRis controlled byτ1andτ2,so better control parameters will be used in the next iteration.

    The algorithm flowchart of the whole system is shown in Fig.3.

    Figure 3:The framework of DEVIPSK

    4 Simulation and Analysis

    In the experiments,all the IoT devices are randomly deployed in a square area,and the sizesis 1000 m×1000 m;the height of the UAVHis 200 m;the position of the edge server(x0,y0,0) is (2000,2000,0);the data volumeDi(i∈N) sent to the UAV by theith IoT device is randomly distributed in the range of [1,103]MB.A total of 8 examples are used to test the performance of our proposed algorithm,in which the number of IoT devices is n={50,100,200,300,400,500,600,700}.The specific parameters of the IoT scenario are shown in Tab.3.

    Table 3:The specific parameters of the IoT scenario

    To test the statistical significance of the proposed algorithm and other algorithms,the Wilcoxon test is performed when the significant level is 0.05.In this paper,“+” and “-” are used to indicate how good or bad the DEVIPK algorithm is compared with other algorithms respectively.

    4.1 The First Group of Experiments

    For the sake of verifying the significance of the initial population by K-Means in DEVIPSK,DEVIPSK and DEVIPSK-K are compared under the same conditions in the first group of experiments.DEVIPSK-K does not use K-Means when initializing the populationP.That is to say,DEVIPSK adds K-Means to initialize the populationPon the basis of DEVIPSK-K.

    As shown in Fig.4,we can clearly see that in each different example,DEVIPSK generally keeps better results in the whole evolution process compared with DEVIPSK-K.Since the position of the UAV is the center of each cluster,it can make the UAV have the closest distance to each IoT device in this cluster compared with randomly generating the position of the UAV.According to Eq.(8),the smaller the distance between the two devices,the greater the channel gain.When the channel gain increases,the performance will also improve.

    Figure 4:Comparison of EC(J) obtained by DEVIPSK and DEVIPSK-K when n is 50,100,200,300,400,500,600,700,respectively

    4.2 The Second Group of Experiments

    In the second group of experiments,DEVIPSK was tested as a new variant of the differential evolution algorithm.We compared DEVIPSK with DEVIPSK-DE and DEVIPSK-jDE.

    (1) DEVIPSK-DE [19]is the traditional differential evolution algorithm adopting the mutation and crossover operation of “DE/rand/1”.

    (2) DEVIPSK-jDE [18]is a differential evolution algorithm with dynamically changing parameters,which can dynamically change mutation factorFand crossover factorCR,to make the algorithm perform better.

    (3) DEVIPSK adds a mutation strategy pool on the basis of DEVIPSK-jDE.

    Tab.4 shows the statistical test results.It represents the average and standard deviation of the energy of the whole system for 20 runs,and the percentage of performance improvement is shown in square brackets.Specifically,when n=200,the most improvement was made with an increase of 4.78%.Compared with the differential evolution algorithm with dynamically changing parameters,in 6 out of 8 different examples,DEVIPSK obtained better performance.When n=50,the most improvement was made,with an increase of 2.41%.But the differential evolution algorithm with dynamically changing parameters had better performance in the cases of n=200 and n=400.

    Table 4:Experimental results of DEVIPSK,DEVIPSK-DE and DEVIPSK-jDE

    4.3 The Third Group of Experiments

    DEVIPS [11],DEEM [20]and DEVPISM are compared with DEVIPSK in the third group experiments.The purpose is to reflect the superiority of DEVIPSK in energy consumption for the UAV model.The following is an introduction to three comparing algorithms.

    (1) The coding mechanism adopted by DEVIPS is similar to that in this paper,but the number ofkmaxof UAVs is randomly generated when the populationPis initialized.The mutation strategy pool and dynamic parameter mechanism are not used in DEVIPS.

    (2) The coding mechanism adopted by DEEM is similar to that of this paper,but the number of UAVs needs to be preset and does not change in the whole running process of the algorithm.The mutation strategy pool and dynamic parameter mechanism are not used in DEEM.

    (3) DEVPISM adopts the same coding mechanism as DEVIPSK and adopts the K-Means to initialize the population.The mutation strategy pool and dynamic parameter mechanism are used in the DEVPISM.But when updating the population,it performs replacement and removal to generate offspring population.

    Fig.5 shows that in each different example,the convergence rate of DEVIPSK and DEVPISM is better than that of DEVIPS and DEEM in the early stage,and keeps better results in the whole process of evolution.The position of the UAV is the center of each cluster.So compared with randomly generating the position of the UAV,the initialization of the K-Means can make the UAV have the closest distance to each IoT device in this cluster.According to Eq.(8),the smaller the distance between the two devices,the greater the channel gain,so the performance will be better.

    Figure 5:Comparison of EC(J) obtained by DEVIPSK,DEVPISM,DEVIPS,and DEEM when n is 50,100,200,300,400,500,600,700,respectively

    Since DEVIPSK adopts an adaptive mechanism to update the population,the energy consumption of DEVPISM and DEVIPSK in the process of evolution is very similar.In this adaptive mechanism,a population update includes inserting,replacing and deleting at most one individual.This can ensure that the change of population size will not be too large,so it will not have a great impact on the overall performance.

    The statistical test results of different algorithms are shown in Tab.5.It represents the average value and standard deviation of the energy consumption of the entire system for 20 runs,and the percentage of performance improvement in square brackets.

    It can be seen that the DEVIPSK has good performance on each different instance.Compared to DEEM,DEVIPSK has the biggest performance improvement.When n=600,DEEM consumed 9.4260e+06 J energy,whereas DEVIPSK consumed 5.9650e+06 J energy,which is 36.72% less.DEEM only randomly generates the positions of UAVs during initialization,and the number of UAVs remains the same throughout the process.Compared to DEVIPS,when n=600,the improvement of DEVIPSK is the most,increasing 21.13%.Since DEVIPS only randomly generates the position of the UAV during initialization,it is effective to introduce the K-Means clustering algorithm when initializing the population.Compared to DEVIPSM,DEVIPSK also improves the performance of the whole system to a certain extent,but the improvement is the least.When n=600,the performance improved the most,with a promotion of 4.40%.

    Table 5:Experimental results of four different evolution algorithms

    5 Conclusion

    Considering that the terminal IoT devices are usually unable to transmit over long distance due to the limitation of its battery energy,we try to solve this problem by combining multi-UAV deployment with mobile edge computing.Besides,a differential evolution algorithm with variable population size based on a mutation strategy pool initialized by K-Means is proposed to optimize the positions and number of UAVs.In a series of different examples,each instance has a different number of IoT devices.Through the comparison between DEVIPSK and other algorithms,the experimental results show the effectiveness of the algorithm.In the future,we will study the problem of task scheduling in a mobile edge computing system.

    Funding Statement:This paper was supported in part by Project funded by China Postdoctoral Science Foundation under Grant 2020M671552,in part by Jiangsu Planned Projects for Postdoctoral Research Funds under Grant 2019K233,in part by NUPTSF (NY220060),in part by the Opening Project of Jiangsu Key Laboratory of Data Science and Smart Software (No.2020DS301),in part by Natural Science Foundation of Jiangsu Province of China under Grant BK20191381.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    麻豆精品久久久久久蜜桃| 亚洲真实伦在线观看| 亚州av有码| 久久6这里有精品| 韩国高清视频一区二区三区| 黄片无遮挡物在线观看| av一本久久久久| 在线 av 中文字幕| 免费人成在线观看视频色| 国产av码专区亚洲av| 精华霜和精华液先用哪个| 青春草亚洲视频在线观看| av女优亚洲男人天堂| 丝瓜视频免费看黄片| 国产成人freesex在线| 天天躁夜夜躁狠狠久久av| 免费不卡的大黄色大毛片视频在线观看| 亚洲国产精品一区三区| 免费看av在线观看网站| 国产在线视频一区二区| 精品久久久久久久久亚洲| 成人漫画全彩无遮挡| 97精品久久久久久久久久精品| 直男gayav资源| 国产一区二区三区综合在线观看 | 大片免费播放器 马上看| 蜜桃亚洲精品一区二区三区| 国产精品.久久久| 哪个播放器可以免费观看大片| 亚洲av电影在线观看一区二区三区| 精品人妻熟女av久视频| 国产精品国产av在线观看| 欧美精品一区二区大全| 免费av中文字幕在线| 成年人午夜在线观看视频| 亚洲av成人精品一区久久| 国产av码专区亚洲av| 少妇人妻久久综合中文| 亚洲欧美清纯卡通| 极品少妇高潮喷水抽搐| 三级国产精品欧美在线观看| 有码 亚洲区| 麻豆成人午夜福利视频| 国产伦精品一区二区三区四那| 我的老师免费观看完整版| 一本色道久久久久久精品综合| 97热精品久久久久久| 欧美高清性xxxxhd video| 国产成人精品福利久久| 久久久久久久久大av| 亚洲高清免费不卡视频| 久久久a久久爽久久v久久| 在线天堂最新版资源| 少妇人妻久久综合中文| 五月天丁香电影| 亚洲人成网站高清观看| 国产永久视频网站| 欧美另类一区| 免费看日本二区| 日韩,欧美,国产一区二区三区| 国产精品无大码| 18禁在线播放成人免费| 欧美极品一区二区三区四区| 成人亚洲欧美一区二区av| 菩萨蛮人人尽说江南好唐韦庄| 嫩草影院入口| 成人综合一区亚洲| 免费人妻精品一区二区三区视频| 啦啦啦中文免费视频观看日本| 嘟嘟电影网在线观看| 久久久久国产网址| 日本vs欧美在线观看视频 | 精品亚洲乱码少妇综合久久| 亚洲第一区二区三区不卡| 97超视频在线观看视频| 欧美xxxx性猛交bbbb| 80岁老熟妇乱子伦牲交| 欧美亚洲 丝袜 人妻 在线| 噜噜噜噜噜久久久久久91| 麻豆乱淫一区二区| 看免费成人av毛片| 国产精品一及| 日韩 亚洲 欧美在线| 国产在线男女| 一区在线观看完整版| 欧美一区二区亚洲| 蜜桃久久精品国产亚洲av| 黄色日韩在线| 各种免费的搞黄视频| 日本欧美国产在线视频| 赤兔流量卡办理| 午夜福利在线在线| 亚洲色图综合在线观看| 国产 一区 欧美 日韩| 精品熟女少妇av免费看| 激情五月婷婷亚洲| 欧美成人精品欧美一级黄| 亚洲中文av在线| 日本wwww免费看| 成人无遮挡网站| 丝袜喷水一区| 国产精品国产三级专区第一集| 丰满迷人的少妇在线观看| 嘟嘟电影网在线观看| 色综合色国产| 大片电影免费在线观看免费| 干丝袜人妻中文字幕| 国产欧美亚洲国产| 各种免费的搞黄视频| 中文乱码字字幕精品一区二区三区| 人妻 亚洲 视频| 国产精品国产三级专区第一集| 日本av手机在线免费观看| 亚洲精品国产av蜜桃| 亚洲经典国产精华液单| 午夜激情久久久久久久| 国产一级毛片在线| 国产精品久久久久久久电影| 伦理电影免费视频| 99热这里只有精品一区| 高清黄色对白视频在线免费看 | 久久精品夜色国产| 色综合色国产| 精品久久久久久久久av| 91精品国产九色| 三级经典国产精品| 一边亲一边摸免费视频| 美女视频免费永久观看网站| 亚洲欧美精品自产自拍| 久久人人爽av亚洲精品天堂 | 久久人人爽人人爽人人片va| 亚洲欧美日韩另类电影网站 | 噜噜噜噜噜久久久久久91| 国产一级毛片在线| 亚洲av日韩在线播放| 欧美国产精品一级二级三级 | 一个人看视频在线观看www免费| 国产国拍精品亚洲av在线观看| 最近2019中文字幕mv第一页| 国产精品.久久久| av免费在线看不卡| 青春草国产在线视频| 久久鲁丝午夜福利片| 亚洲国产精品专区欧美| 人妻少妇偷人精品九色| 99热这里只有是精品50| 日韩av在线免费看完整版不卡| 大码成人一级视频| 毛片女人毛片| 免费看光身美女| 少妇丰满av| 亚洲va在线va天堂va国产| 国产精品麻豆人妻色哟哟久久| 91久久精品电影网| 国精品久久久久久国模美| 丝袜喷水一区| 一区在线观看完整版| 一级毛片我不卡| 男女无遮挡免费网站观看| 国产精品成人在线| 中文字幕精品免费在线观看视频 | 18禁在线播放成人免费| 成人美女网站在线观看视频| 2022亚洲国产成人精品| 亚洲aⅴ乱码一区二区在线播放| 老师上课跳d突然被开到最大视频| 交换朋友夫妻互换小说| 少妇猛男粗大的猛烈进出视频| 一级爰片在线观看| 26uuu在线亚洲综合色| 男人和女人高潮做爰伦理| kizo精华| 各种免费的搞黄视频| 麻豆乱淫一区二区| 国产精品久久久久久久电影| 在线观看美女被高潮喷水网站| 97在线人人人人妻| av在线观看视频网站免费| 国产成人a∨麻豆精品| 男女无遮挡免费网站观看| 亚洲欧美日韩无卡精品| 国产老妇伦熟女老妇高清| 91狼人影院| 少妇人妻久久综合中文| 亚洲精品中文字幕在线视频 | 中文字幕av成人在线电影| 啦啦啦中文免费视频观看日本| 久久久久久久亚洲中文字幕| av国产免费在线观看| 2021少妇久久久久久久久久久| 日韩成人伦理影院| 五月玫瑰六月丁香| 内地一区二区视频在线| 亚洲精品aⅴ在线观看| 精品少妇久久久久久888优播| 国产 一区 欧美 日韩| 久久99精品国语久久久| 中文乱码字字幕精品一区二区三区| 欧美激情国产日韩精品一区| 精品久久久久久久久av| 中文字幕人妻熟人妻熟丝袜美| 91午夜精品亚洲一区二区三区| 美女福利国产在线 | 色吧在线观看| 蜜桃亚洲精品一区二区三区| 日韩一本色道免费dvd| 午夜福利视频精品| 久久久久久久久久成人| 97在线视频观看| 纯流量卡能插随身wifi吗| 男女免费视频国产| 色视频在线一区二区三区| 免费黄频网站在线观看国产| 看非洲黑人一级黄片| 亚洲欧美中文字幕日韩二区| 最近中文字幕2019免费版| 国产高清国产精品国产三级 | a级毛片免费高清观看在线播放| 18禁动态无遮挡网站| 午夜福利网站1000一区二区三区| 国产免费一区二区三区四区乱码| 91狼人影院| 日韩三级伦理在线观看| 蜜桃久久精品国产亚洲av| 国产乱人视频| 久久久色成人| 美女脱内裤让男人舔精品视频| 青春草亚洲视频在线观看| 精品亚洲成国产av| av免费观看日本| 亚洲欧美中文字幕日韩二区| 国产精品久久久久久久电影| 久久99热这里只频精品6学生| 联通29元200g的流量卡| 久久久久久久久大av| 天堂俺去俺来也www色官网| 欧美日韩一区二区视频在线观看视频在线| 久久 成人 亚洲| 小蜜桃在线观看免费完整版高清| 亚洲精品乱久久久久久| 亚洲av在线观看美女高潮| 男人舔奶头视频| 国模一区二区三区四区视频| 精品酒店卫生间| 国产精品三级大全| 黄色欧美视频在线观看| 少妇人妻 视频| 免费黄色在线免费观看| 男女免费视频国产| 午夜福利影视在线免费观看| 看十八女毛片水多多多| 啦啦啦中文免费视频观看日本| 日韩一区二区视频免费看| 少妇人妻久久综合中文| 99热这里只有精品一区| av免费观看日本| 日韩 亚洲 欧美在线| 最近中文字幕2019免费版| 视频中文字幕在线观看| av视频免费观看在线观看| 亚洲av男天堂| 亚洲人成网站在线播| 天天躁夜夜躁狠狠久久av| 美女内射精品一级片tv| 五月开心婷婷网| 国产亚洲最大av| 亚洲人成网站高清观看| 一级毛片 在线播放| 国产69精品久久久久777片| 国产成人精品久久久久久| 啦啦啦视频在线资源免费观看| 小蜜桃在线观看免费完整版高清| 免费久久久久久久精品成人欧美视频 | 成年女人在线观看亚洲视频| 18禁裸乳无遮挡动漫免费视频| 蜜桃亚洲精品一区二区三区| 91午夜精品亚洲一区二区三区| 免费观看的影片在线观看| 岛国毛片在线播放| 啦啦啦中文免费视频观看日本| 午夜免费男女啪啪视频观看| 黑人猛操日本美女一级片| 精品亚洲成国产av| 26uuu在线亚洲综合色| a级毛色黄片| 欧美精品一区二区大全| 五月天丁香电影| 最近中文字幕2019免费版| av在线播放精品| 亚洲人成网站在线观看播放| 夫妻午夜视频| 免费少妇av软件| 日本vs欧美在线观看视频 | 国产欧美亚洲国产| 国产亚洲最大av| 大香蕉久久网| 91在线精品国自产拍蜜月| 国产又色又爽无遮挡免| 黑人高潮一二区| 熟妇人妻不卡中文字幕| 少妇人妻一区二区三区视频| 免费在线观看成人毛片| 国产乱人视频| 久久精品夜色国产| 亚洲av中文av极速乱| 老司机影院成人| 99精国产麻豆久久婷婷| 97热精品久久久久久| 国产在线免费精品| 久久精品久久精品一区二区三区| 亚洲在久久综合| 久久久精品94久久精品| 大又大粗又爽又黄少妇毛片口| www.色视频.com| 欧美 日韩 精品 国产| 国产极品天堂在线| 建设人人有责人人尽责人人享有的 | 18禁裸乳无遮挡动漫免费视频| 亚洲精品乱码久久久v下载方式| 哪个播放器可以免费观看大片| a级毛色黄片| 亚洲激情五月婷婷啪啪| 最近的中文字幕免费完整| 亚洲经典国产精华液单| 一级毛片 在线播放| 国产黄色免费在线视频| 亚洲国产精品一区三区| 国产无遮挡羞羞视频在线观看| 波野结衣二区三区在线| 亚洲精品色激情综合| 国产精品久久久久成人av| 色5月婷婷丁香| 一本色道久久久久久精品综合| 国产在线一区二区三区精| 精品国产乱码久久久久久小说| 建设人人有责人人尽责人人享有的 | 国产精品成人在线| 免费看av在线观看网站| 免费观看a级毛片全部| 欧美丝袜亚洲另类| av在线观看视频网站免费| 最近的中文字幕免费完整| 成人毛片a级毛片在线播放| 国产亚洲精品久久久com| 国产高清不卡午夜福利| 亚洲精品国产av成人精品| 老司机影院毛片| 91精品伊人久久大香线蕉| 黄色一级大片看看| 六月丁香七月| av天堂中文字幕网| 一区二区三区乱码不卡18| 人人妻人人澡人人爽人人夜夜| 啦啦啦视频在线资源免费观看| 亚洲国产日韩一区二区| 美女福利国产在线 | 深爱激情五月婷婷| 人人妻人人爽人人添夜夜欢视频 | 精品久久久久久久末码| 亚洲av二区三区四区| 久久6这里有精品| www.av在线官网国产| 一区二区三区四区激情视频| 网址你懂的国产日韩在线| 啦啦啦视频在线资源免费观看| 久久久久国产网址| 18禁在线无遮挡免费观看视频| 色综合色国产| 97热精品久久久久久| 国产av精品麻豆| 国语对白做爰xxxⅹ性视频网站| 最近中文字幕2019免费版| 丰满少妇做爰视频| 亚洲欧美精品自产自拍| 国产精品一区www在线观看| 国内少妇人妻偷人精品xxx网站| 成年人午夜在线观看视频| 纵有疾风起免费观看全集完整版| 少妇 在线观看| 91午夜精品亚洲一区二区三区| 51国产日韩欧美| 亚洲av中文av极速乱| 人妻系列 视频| 亚洲精品久久久久久婷婷小说| 免费在线观看成人毛片| 亚洲精品日韩av片在线观看| 亚洲精品国产av蜜桃| 成人国产麻豆网| 老熟女久久久| av免费在线看不卡| 联通29元200g的流量卡| 久久ye,这里只有精品| 91精品一卡2卡3卡4卡| 欧美性感艳星| 国产欧美亚洲国产| 丰满少妇做爰视频| 我的老师免费观看完整版| 国产 精品1| 日韩av不卡免费在线播放| 久久久久性生活片| 亚洲精品,欧美精品| 欧美3d第一页| 又大又黄又爽视频免费| 高清在线视频一区二区三区| 18禁裸乳无遮挡动漫免费视频| 精品久久久噜噜| 一级a做视频免费观看| 久久毛片免费看一区二区三区| 在线观看国产h片| 99国产精品免费福利视频| 国精品久久久久久国模美| 成人亚洲精品一区在线观看 | 国产在线免费精品| 国语对白做爰xxxⅹ性视频网站| 精品熟女少妇av免费看| 最近2019中文字幕mv第一页| 国产精品无大码| 国产91av在线免费观看| 国产精品一及| 久久这里有精品视频免费| 搡老乐熟女国产| 国产成人一区二区在线| 高清不卡的av网站| 在线精品无人区一区二区三 | 久久av网站| 嫩草影院新地址| 免费少妇av软件| 99久久精品热视频| 国产色婷婷99| 我要看日韩黄色一级片| 亚洲欧美日韩东京热| 国产精品久久久久久av不卡| 寂寞人妻少妇视频99o| 国产成人aa在线观看| 国产黄频视频在线观看| 国产爽快片一区二区三区| 国产成人免费观看mmmm| 99久久精品一区二区三区| 舔av片在线| 久久久久国产网址| 春色校园在线视频观看| 亚洲一区二区三区欧美精品| 晚上一个人看的免费电影| 九九久久精品国产亚洲av麻豆| 最近最新中文字幕大全电影3| 亚洲内射少妇av| 日日摸夜夜添夜夜添av毛片| 91精品国产国语对白视频| 大陆偷拍与自拍| 国内精品宾馆在线| freevideosex欧美| 免费黄网站久久成人精品| 18禁裸乳无遮挡动漫免费视频| 在线观看免费视频网站a站| 亚洲av电影在线观看一区二区三区| 一本—道久久a久久精品蜜桃钙片| 国产 一区 欧美 日韩| 一边亲一边摸免费视频| 亚洲,欧美,日韩| 毛片一级片免费看久久久久| av.在线天堂| 乱系列少妇在线播放| 国产精品无大码| 久久久久久久久久久丰满| 日韩中文字幕视频在线看片 | 亚洲aⅴ乱码一区二区在线播放| 熟女电影av网| 亚洲欧美日韩另类电影网站 | 青春草国产在线视频| 久久久久精品久久久久真实原创| 国产日韩欧美在线精品| 一级二级三级毛片免费看| 国产在线免费精品| 色婷婷久久久亚洲欧美| av在线观看视频网站免费| 九九爱精品视频在线观看| 在线观看三级黄色| 久久av网站| 亚洲婷婷狠狠爱综合网| 精品人妻偷拍中文字幕| 亚洲欧洲国产日韩| 日韩电影二区| 国产黄片视频在线免费观看| 精品熟女少妇av免费看| 国产亚洲一区二区精品| 99热网站在线观看| 另类亚洲欧美激情| 91精品伊人久久大香线蕉| 国产精品一区二区性色av| 国产亚洲一区二区精品| 国产成人免费观看mmmm| 国产精品人妻久久久久久| 卡戴珊不雅视频在线播放| 精品熟女少妇av免费看| 久久精品久久久久久久性| 日本vs欧美在线观看视频 | 婷婷色麻豆天堂久久| 亚洲av不卡在线观看| 五月玫瑰六月丁香| 在线精品无人区一区二区三 | 国产黄色免费在线视频| av线在线观看网站| 久久久精品94久久精品| h日本视频在线播放| 大香蕉97超碰在线| 国产精品偷伦视频观看了| 亚洲精品一区蜜桃| 91久久精品国产一区二区三区| 女人久久www免费人成看片| 国产片特级美女逼逼视频| 深夜a级毛片| 涩涩av久久男人的天堂| 在线观看国产h片| 国产男女超爽视频在线观看| 最近的中文字幕免费完整| 99热国产这里只有精品6| 男人添女人高潮全过程视频| av国产精品久久久久影院| 国产成人精品久久久久久| 干丝袜人妻中文字幕| 18禁裸乳无遮挡动漫免费视频| 欧美日本视频| 97热精品久久久久久| 婷婷色麻豆天堂久久| 久久久久久久久久久丰满| 大片电影免费在线观看免费| 看免费成人av毛片| 简卡轻食公司| 日韩不卡一区二区三区视频在线| 日韩欧美一区视频在线观看 | 亚洲不卡免费看| 国产男女内射视频| 亚洲色图av天堂| 乱系列少妇在线播放| 又大又黄又爽视频免费| av视频免费观看在线观看| 亚洲成人手机| 91午夜精品亚洲一区二区三区| 亚洲精品乱码久久久v下载方式| 欧美国产精品一级二级三级 | 高清日韩中文字幕在线| 日韩成人伦理影院| 国产精品久久久久成人av| 国产一区二区三区av在线| tube8黄色片| 午夜免费鲁丝| 制服丝袜香蕉在线| 女的被弄到高潮叫床怎么办| 日本猛色少妇xxxxx猛交久久| 亚洲中文av在线| 国产美女午夜福利| 少妇人妻久久综合中文| 国产伦理片在线播放av一区| 大香蕉97超碰在线| 美女主播在线视频| a级一级毛片免费在线观看| 91精品国产国语对白视频| 日韩av不卡免费在线播放| 亚洲国产精品国产精品| 激情 狠狠 欧美| 国产精品久久久久久久电影| 亚洲精品中文字幕在线视频 | 综合色丁香网| 身体一侧抽搐| 亚洲人成网站在线播| 91久久精品国产一区二区三区| 精品国产一区二区三区久久久樱花 | 97超碰精品成人国产| 亚洲欧美清纯卡通| 五月伊人婷婷丁香| 国产av一区二区精品久久 | 欧美激情极品国产一区二区三区 | 日韩中字成人| 国产在线男女| 插阴视频在线观看视频| 少妇人妻一区二区三区视频| 一级毛片aaaaaa免费看小| 99久久综合免费| 亚洲精品,欧美精品| 国产免费又黄又爽又色| 在线观看免费高清a一片| freevideosex欧美| 亚洲av成人精品一区久久| 日日摸夜夜添夜夜爱| 午夜日本视频在线| 国产深夜福利视频在线观看| 欧美性感艳星| 国产女主播在线喷水免费视频网站| 欧美成人午夜免费资源| 搡老乐熟女国产| 国产成人精品久久久久久| 久久久久久人妻| 亚洲av电影在线观看一区二区三区| 永久网站在线| 国产91av在线免费观看| 中国国产av一级| 国产精品一区二区性色av| 欧美成人午夜免费资源| 深爱激情五月婷婷| 交换朋友夫妻互换小说| 97在线人人人人妻| 免费观看性生交大片5| 亚洲精品乱码久久久久久按摩| 老女人水多毛片| 免费观看无遮挡的男女| 国产精品国产三级专区第一集| 久久国产精品男人的天堂亚洲 | av网站免费在线观看视频| 伊人久久国产一区二区| 亚洲精品久久午夜乱码| 中文字幕av成人在线电影| tube8黄色片| 午夜福利视频精品| 国产午夜精品久久久久久一区二区三区| 成人一区二区视频在线观看|