• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal Implementation of Photovoltaic and Battery Energy Storage in Distribution Networks

    2021-12-15 08:10:52HusseinAbdelMawgoudSalahKamelHegazyRezkTahirKhurshaidandSangBongRhee
    Computers Materials&Continua 2021年11期

    Hussein Abdel-Mawgoud,Salah Kamel,Hegazy Rezk,Tahir Khurshaid and Sang-Bong Rhee,*

    1Department of Electrical Engineering,Faculty of Engineering,Aswan University,81542 Aswan,Egypt

    2College of Engineering at Wadi Addawaser,Prince Sattam Bin Abdulaziz University,11911 Al-Kharj,Saudi Arabia

    3Electrical Engineering Department,Faculty of Engineering,Minia University,61517 Minia,Egypt

    4Department of Electrical Engineering,Yeungnam University,Gyeongsan,38541,Korea

    Abstract:Recently,implementation of Battery Energy Storage (BES) with photovoltaic(PV)array in distribution networks is becoming very popular in overall the world.Integrating PV alone in distribution networks generates variable output power during 24-hours as it depends on variable natural source.PV can be able to generate constant output power during 24-hours by installing BES with it.Therefore,this paper presents a new application of a recent metaheuristic algorithm,called Slime Mould Algorithm(SMA),to determine the best size,and location of photovoltaic alone or with battery energy storage in the radial distribution system (RDS).This algorithm is modeled from the behavior of SMA in nature.During the optimization process,the total active power loss during 24-hours is used as an objective function considering the equality and inequality constraints.In addition,the presented function is based on the probabilistic for PV output and different types of system load.The candidate buses for integrating PV and BES in the distribution network are determined by the real power loss sensitivity factor(PLSF).IEEE 69-bus RDS with different types of loads is used as a test system.The effectiveness of SMA is validated by comparing its results with those obtained by other well-known optimization algorithms.

    Keywords:Slime mould algorithm;optimization;distribution networks;renewable energy;uncertainty

    1 Introduction

    Most of electrical energy around the world are coming from fossil fuel to meet the required electrical demand [1].The utilization of fossil fuels harms the environment and lead to global warming and air pollution.Also,the electrical loads are increasing gradually due to world population growth and technology development that led to increasing in system power losses.These losses are occurred with percent 70% in the secondary and primary distribution system and with percent 30% in sub transmission and transmission lines [2].Therefore,integrating renewable sources (RSs) in distribution networks is the best solution for decreasing the system power loss and support power to the load with clean and sustainable energy compared to fossil fuel [3].Most types of RSs that are used in power system are hydropower,biomass,photovoltaic (PV) and wind turbine [4].

    PV converts solar energy into electrical energy in a silent way,so installing PV in distribution system has increased around the world [3].PV alone is non-dispatchable source as PV output depends on variable source (sun) [5,6].Therefore,BES should be inserted with PV to convert PV into dispatchable source [7].As long as PV output is low or zero during 24-hours,BES is capable of supplying active power to the system [8].Therefore,installing PV with BES in RDS decreases the system losses,increases the system capacity,and improves the system voltage.The best locations (buses) up to fifty percent of system buses for integration PV with BES in RDS are obtained using RLSF.The presented problem formulation is the real losses of the system as single objective function.

    SMA can be classified as one of recent metaheuristic algorithms that is created from the behaviors of slime moulds in nature [9].In SMA,there are weights are used to model the negative and positive feedback of slime mould when searching for food.SMA has an efficient exploration and exploitation phases to determine the best solution with minimum search agent.SMA has a feedback behavior which enhances the characteristic of SMA to avoid the local solutions and go to the global results so far.SMA is used to obtain the optimal allocation of PV with BES in RDS.Metaheuristic algorithms are more popular because of their effectively in solving difficult problems.Many types of metaheuristic algorithms are applied to determine the optimal planning of PV with BES in RDS such as Genetic algorithm (GA) which is used to determine the sizing of BES with sizeable PV in RDS to minimize the system power loss [10],Linear programming (LP)is used to determine the energy storage dispatch for PV with BES connected in a grid [11],whale optimization algorithm (WOA) for optimal planning of BES in RDS for loss reduction has been presented in [12],grey wolf optimizer algorithm (GWO) for optimal allocation of BES in RDS to minimize the total annual cost of the system has been presented in [13],Artificial Bee Colony(ABC) for optimal placement and sizing of PV and electric vehicle in RDS for loss minimization has been presented in [14].

    The main contributions of this work can be summarized in the following points:

    -A new application of a recent metaheuristic algorithm called Slime Mould Algorithm(SMA) is proposed to determine the best locations and sizes of PV and BES,considering the probabilistic of PV generation and different types of system load.

    -The optimal allocations of PV and BES are obtained with the aim of achieving the maximum reduction in the total active power losses.

    -The obtained results show that integration of PV and BES in RDS reduces the system power loss,enhances the system voltage,and increases the system capacity.

    -The simulation results also prove that integration of PV with BES gives better results than integration of PV alone in RDS.

    This paper can be divided into subsection as follows:The presented problem can be formulated in Section 2,modeling of load and PV with BES is offered in Section 3,the sensitivity is discussed in Section 4,Section 5 presents the presented algorithm,Section 6 discusses the obtained results,and Section 7 presents the conclusion.

    2 Mathematical Problem

    Fig.1 represents a section of two nodes in RDS.

    Figure 1:Representation of two buses in main feeder with PV and BES

    Forward-backward sweep algorithm is presented to calculate the power flows of RDS [15].In backward direction,the reactive and real power can be obtained as follows:

    where,PuandPu+1represent the active power behind bus (u) and bus (u+1),respectively.Xu,u+1andRu,u+1represent the reactance and resistance of the branch among bus (u) and bus (u+1),respectively.QuandQu+1are the reactive power behind bus (u) and (u+1),respectively.QL,u+1andPL,u+1represent the reactive and active loads at bus (u+1),respectively.

    In forward direction,the voltage magnitude of bus (u+1) is obtained as follows:

    here,VuandVu+1represent the voltage values at bus (u) and bus (u+1),respectively.

    System power flows will be changed as PV with BES will inject active power to the distribution system.Consequently,system power flow equations is updated as shown in Eqs.(4) and (5).

    The presenting mathematical problem is defined as shown in Eq.(6).

    where,PLoss(t)is the total active power loss at time (t).

    This function is presented under equality and inequality constraints as shown next [16].

    2.1 Equality Constraints

    The power supplied by substation and PV with BES must be equal to the system loss and system load demand as follows:

    where,PoandPLare the active power injection from substation and active load demand,respectively.QoandQLare reactive power injection from substation and reactive load demand,respectively.PPV+BESis the power supplying by PV and BES andQLossis the reactive loss of the system.NBandNBrare the total number of buses and branches in RDS,respectively.Nis the total number PV with BES in RDS.

    2.2 Ineuality Constraints

    2.2.1 System Voltage Limits

    The bus voltage in RDS should be kept between the low and high operating voltage,as given in Eq.(9).

    where,VBis the voltage magnitude of bus B that should be obtained between minimum value ofVDand maximum value ofVU

    2.2.2 PV with BES Sizing Limits

    The sizing limits of PV and BES are given as follows:

    where,PPV,UandPPV,Drepresent the maximum and minimum magnitudes of PV output power,respectively.EBES,UandEBES,Drepresent the upper and lower magnitudes of energy stored in BES.

    2.2.3 Branches Limits

    Lines current should not exceed the limit values [17].

    where,IWandImax,Wrepresent the actual and limit value of current in branch (w),respectively.

    3 Modeling Uncertainty for Load and PV with BES

    3.1 Modeling Uncertainty for Load

    The uncertainties of system loads can be modeled as different load patterns (residential,industrial and commercial loads) during 24-hours daily,as shown in Fig.2 [18].This model is based on a time-varying during 24-hours and voltage-dependent load [19].Therefore,the system load modeling can be represented by Eqs.(14) and (15).

    where,QBandPBrepresent the reactive and active power injections at bus (B),QL,BandPL,Brepresent the reactive and active loads at bus (B),nacis the active load voltage exponent that equal to 0.18,1.51 and 0.92 for industrial,commercial and residential load modeling,respectively [19].

    Figure 2:Modeling uncertainty for system loads during 24-hours daily

    3.2 Modeling Uncertainty for PV Output

    PV generates electricity from solar irradiance during 24-hours.From Fig.3,the modeling uncertainty for PV output is created by PDF [20].The standard deviation and mean of solar radiation are given by [21].

    where,FB(r)represents the the function of Beta distribution for solar radiation (r).φandφrepresent the variables ofFB(r);e and a are the standard and mean deviation of (r).

    Figure 3:Modeling uncertainty for PV output during 24-hours daily

    The output of PV depends on the solar irradiance and air temperature,so the specification of PV panel are given by [21].The maximum power of PV can be determined by Eq.(18).

    where,KvoandKcuare the voltage and current temperature coefficient in voltage per Celsius and ampere per Celsius,respectively.TambandTcellare the air and cell temperature in Celsius,respectively.nandnoare the total number of PV modules and the nominal temperature of cell in Celsius,respectively.IscandVopand are the short circuit current and the open-circuit voltage,respectively.Pmax(r)is the upper value of PV output at solar radiation (r).The average power of PV (PPV,g) for a period (h) is then calculated as follows:

    3.3 Battery Energy Storage Modeling

    PV alone can be considered as non-dispatchable source,so BES is installed with PV to convert PV into a dispatchable source.BES is charged when PV output is more than the required output power and is discharged when PV output is zero during night or less than the required output power.The energy that is stored in BES at bus (B) during 24-hours can be determined by Eqs.(23)and (24) [20].

    where,andare the discharging and charging power of BES,respectively.ηdcandηcare the discharging and charging efficiencies of BES,respectively.ΔhandηBESare the time period and the efficiency of battery and the time duration,respectively.

    3.4 Sizing of BES with PV

    The locations and sizes of PV with BES are obtained by the presented algorithm.The installation bus of BES is identical to the bus of PV.The discharging/charging energies of BES during a time (h) is determined by Eqs.(26) and (27) [21].

    The combined energy of PV with BESE(PV+BES),uand the energy of PVEPV,uat bus (u)can be evaluated as follows:

    where,andare the discharging and charging energies of BES andis the injected energy from PV to the grid.Also,the discharging energy of BES can be determined using its charging energy and round-trip efficiency as shown in Eq.(30).

    Consequently,Eq.(29) can be updated as follows:

    where,nrepresents the PV module unit.

    The high value of PV can be evaluated by Eq.(34).

    where,EnPVandPnPVare the energy from PV and the maximum power of PV,respectively.

    The BES energy is determined by Eq.(35).

    4 Real Power Loss Sensitivity Factor(PLSF)

    PLSF measures the sensitivity of all system buses to the active power injection and its effects on the active power loss.Therefore,this paper determines the best buses for installing PV with BES up to 50% of system buses by Eq.(36) [22].The best bus are 57,58,7,6,61,60,10,59,55,56,12,13,14,54,15,53,8,64,49,11,9,17,65,16,5,48,21,19,41,63,68,34,20 and 62 as shown in Fig.4.

    5 Slime Mould Algorithm(SMA)

    SMA can be classified as one of recent metaheuristic algorithms that is created from the behaviors of slime moulds in nature [9].Slime mould searches for quality food through the odor in the air.The behavior mechanism of slime mould is based on contraction mode.Slime mould consists of venous tissues and the width of vein will be increased as long as this vein is closer to the higher concentration of quality food.When a vein reaches to the higher concentration of food,the biological oscillator generates waves to change the cytoplasmic flow to this vein and its width will be increased.The steps of SMA for determining the best position and size of PV with BES considering uncertainty in RDS is explained in the following steps.

    Step 1:Read system data,number of search agents (N) and maximum iteration (T).

    Step 2:Generate initial population of slime mould between the lower (lo) and upper (up)controlled variables by Eq.(37).

    where,Qis the number of control variables (dimensions) andr andrepresents a random value between value of 0 and 1.

    Step 3:the produced population represents the slime mould position that can be formulated as follows:

    where,Jis the position of slime mould.

    Step 4:Evaluate the fitness for all locations of slime mould in all swarms and obtain the best and worst fitness and the best position of slime mould.

    Step 5:Calculate the weight (w) of each position of slime mould as follows:

    where,S(i) is the fitness each position of slime mould for search agents and condition refer to that S(i) ranks first half of search agents

    Step 6:Update the position of slime mould as follows:

    whereJAandJBare the position of slime mould that are selected randomly from the search agents.DF is the best fitness andzis a parameter that equal to 0.03.eand E represent the current iteration and the final iteration,respectively vb represents a value which oscillates between (-a) and (a) and reaches to zero at the maximum iteration.vcis a value that oscillates between (-1) and (1) and reaches to zero at the maximum iteration.

    Step 7:Back to step 4 until the final iteration is reached.

    Step 8:Obtain the best location of slime mould (sizes and positions of PV alone or with BES).

    6 Results and Discussion

    IEEE 69-bus RDS consists of sixty nine buses with reactive load of 2694.6 kvar and active load of 3801.5 kw as shown in Fig.5 [23].In this paper,the simulation results are obtained under base values of 10 MVA and 12.66 kv.The system constraints and the used parameter algorithm are given in Tab.1.

    Table 1:The used parameters

    Without integration PV alone or with BES in RDS,the power loss is 1867.8 kw with minimum voltage of 0.9110 pu at bus 65 during 24-hours as shown in Fig.6.The system power loss is reduced to 1521.2 kw by integrating one PV in RDS with size of 1288.164 kw at bus 61 as shown in Fig.7.From Fig.8,the system power loss is reduced to 1481.7 kw by integrating two PV alone in RDS with sizes of 1216.7 kw at bus 61 and 416.3 kw at bus 17.From Fig.9,integrating three PV alone reduces the system power loss to 1474.5 kw with sizes of 1168.9 kw,302.2 kw and 398.5 kw at buses 61,17 and 11,respectively.From obtained results,the reduction in real power loss by installing one,two and three PV alone in RDS are 18.6%,20.7% and 21.1%,respectively.From Tab.2,the total injection energies from one,two and three PV to the system are 9695.3 kwh,12290.9 kwh and 14070.8 kwh,respectively.Installing PV with BES achieves better results than integrating PV alone in RDS as shown in Tabs.2 and Tab.3.Integrating one,two and three PV with BES minimize the system losses to 712.025 kw,615.13 kw and 596.661 kw,respectively.From obtained results,the reduction in real power loss by installing one,two and three PVwith BES in RDS are 61.9%,67.1% and 68.1%,respectively.From Figs.10 and 11,the sizes of PV and BES for installing one PV with BES in RDS are 3797.574 kw and 2772.178 kw at bus 61,respectively.From Tab.3,integrating one PV with BES,the total energy of PV is 28582.25 kwh and the total injection energy from PV to the grid is 10780.55 kwh.Also,the charging and discharging energies of BES by integrating one PV with BES in RDS are 17801.71 kwh and 13676.68 kwh,respectively.

    Figure 6:System voltage without integrating PV and BES in distribution network

    Figure 7:Output of integrating 1-PV alone in distribution network

    Figure 8:Output of integrating 2-PV alone in distribution network

    Figure 9:Output of integrating 3-PV alone in distribution network

    Table 2:Simulation results of SMA algorithm for integrating PV alone in distribution network

    Table 3:Simulation results of SMA algorithm for installing PV with BES in distribution network

    Figure 10:Output of PV for integrating 1-PV with 1-BES in distribution network

    Figure 11:Output of BES for integrating 1-PV with 1-BES in distribution network

    From Fig.12,the sizes of PV for two PV with BES are 3620.606 kw and 1037.043 kw at buses of 61 and 17,respectively.From Figs.13 and 14,the sizes of BES for two PV with BES are 2667.004 kw and 690.4277 kw at buses of 61 and 17,respectively.From Tab.3,the charging energies of BES for two PV with BES are17021.39 kwh and 4535.169 kwh at buses 61 and 17,respectively.The discharging energies of BES for two PV with BES are13077.18 kwh and 3474.439 kwh at buses 61 and 17,respectively.The energies of PV by installing two PV with BES are 27059.54 kw and 7805.258 kw and the injection energies from PV to the grid are 10038.15 kw and 3270.089 kw at buses of 61 and 17,respectively.From Fig.15,the sizes of PV for three PV with BES are 3499.238 kw,745.5597 kw and 1016.864 kw at buses 61,17 and 11,respectively.From Figs.16-18,the sizes of BES for three PV with BES are 2602.622 kw,499.0399 kw and 668.2362 kw at buses 61,17 and 11,respectively.By installing three PV with BES,the energies of PV are 26336.85 kwh,5611.419 kwh and 7653.377 kwh at buses 61,17 and 11,respectively.Also,the injection energies from PV to the grid for three PV with BES are 9852.457 kwh,2361.514 kwh and 3171.519 kwh at buses 61,17 and 11,respectively.The charging energies of BES for three PV with BES are 16484.39 kw,3249.905 kw and 4481.858 kw at buses 61,17 and 11,respectively.From Tab.3,the discharging energies of BES for three PV with BES are 12664.61 kw,2489.786 kw and 3433.598 kw at buses 61,17 and 11,respectively.The size and energy of a combination of PV and BES are greater than the size and energy of PV alone as shown in Tabs.2 and 3.In this paper,the comparative study is presented to determine the effectivness of SMA to minimize the system losses as objective function without uncertainty.From Tab.4,SMA is able to obtain the best results compared with other algorithms.Without uncertainty,integration of one,two and three PV alone in RDS reduces the system losses to 83.2224 kw,71.6745 kw and 69,4255 kw,respectively.The size of one PV is 1872.7 kw at bus 61 and the sizes of two PV are 1781.6 kw at bus 61 and 531.6 kw at bus 17.From Tab.4,the best result is obtained by integrating three PV with sizes of 1718.9 kw at bus 61,527.1 kw at bus 11 and 380.5 kw at bus 18.

    Figure 12:Output of PV for integrating 2-PV with 2-BES in distribution network

    Figure 13:Output of BES1 for integrating 2-PV with 2-BES in distribution network

    Figure 14:Output of BES2 for integrating 2-PV with 2-BES in distribution network

    Figure 15:Output of PV for integrating 3-PV with 3-BES in distribution network

    Figure 16:Output of BES1 for integrating 3-PV with 3-BES in distribution network

    Figure 17:Output of BES2 for integrating 3-PV with 3-BES in distribution network

    Figure 18:Output of BES3 for integrating 3-PV with 3-BES in distribution network

    Table 4:Simulation results of SMA algorithm for installing PV alone without uncertainty in RDS

    7 Conclusion

    This paper has proposed a new application of Slime Mould Algorithm to deetermine the optimal allocation of PV alone or with BES considering uncertainty in distribution network.The simulation results proved that SMA has an effective feedback to avoid the local solution and go to the global solution so far.BES is installed with PV to convert PV from non-dispatchable source into dispatchable source.Therefore,BES is used to inject energy to the grid when PV output is low or during the night.The total active power loss during 24-hours is used as single objective function under uncertainty for PV output and system load.The system load is modeled for three types of load that can be defined as residential,industrial and commercial loads.PLSF is used to determine the best buses for installing PV and BES in RDS.From obtained results,the reduction in real power loss by installing one,two and three PV alone in RDS are 18.6%,20.7% and 21.1%,respectively.Also,the reduction in real power loss by installing one,two and three PVwith BES in RDS are 61.9%,67.1% and 68.1%,respectively.From simulation results,installing multiple PV alone or with BES achieves superiorsolutions than installing one PV alone or with BES in RDS.Also,integration of PV with BES achieves superior solutions than installing PV alone in distribution network.Integration of PV and BES reduces the system power loss,increases the system capacity and enhances the system voltage.

    Funding Statement:This work was supported by “Development of Modular Green Substation and Operation Technology” of the Korea Electric Power Corporation (KEPCO).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    热re99久久精品国产66热6| 国产爽快片一区二区三区| 高清欧美精品videossex| 亚洲国产最新在线播放| 亚洲欧美一区二区三区国产| 最近的中文字幕免费完整| 三上悠亚av全集在线观看| 久久久久久久大尺度免费视频| 在线观看www视频免费| 18禁动态无遮挡网站| 国产精品久久久久久久久免| 免费黄网站久久成人精品| 国产亚洲av片在线观看秒播厂| 欧美+日韩+精品| 成人毛片60女人毛片免费| 亚洲美女视频黄频| 一级毛片电影观看| 国产日韩一区二区三区精品不卡 | 国产乱人偷精品视频| 熟女av电影| 午夜免费观看性视频| av有码第一页| 全区人妻精品视频| 亚洲中文av在线| 日韩av在线免费看完整版不卡| 国产黄频视频在线观看| 天堂中文最新版在线下载| 亚洲精品日韩av片在线观看| 视频区图区小说| 一级片'在线观看视频| 亚洲成人手机| 毛片一级片免费看久久久久| 久久精品久久久久久久性| av黄色大香蕉| 久久久久国产网址| 一区二区三区精品91| 自拍欧美九色日韩亚洲蝌蚪91| 91久久精品国产一区二区成人| 丝袜脚勾引网站| 国产无遮挡羞羞视频在线观看| 久久久久久久亚洲中文字幕| 久久这里有精品视频免费| 久久国内精品自在自线图片| 飞空精品影院首页| 国产色婷婷99| 欧美日韩综合久久久久久| av免费观看日本| 欧美精品国产亚洲| 综合色丁香网| 天堂8中文在线网| 中文字幕av电影在线播放| 我要看黄色一级片免费的| 少妇人妻精品综合一区二区| 999精品在线视频| av在线app专区| 两个人免费观看高清视频| 尾随美女入室| 国产男女超爽视频在线观看| 男的添女的下面高潮视频| 男人操女人黄网站| 成人国语在线视频| 亚洲精品国产色婷婷电影| 亚洲欧美清纯卡通| videos熟女内射| 高清午夜精品一区二区三区| 免费久久久久久久精品成人欧美视频 | 精品久久蜜臀av无| 狂野欧美白嫩少妇大欣赏| 人妻 亚洲 视频| 永久网站在线| 国产片内射在线| 午夜激情福利司机影院| 国产探花极品一区二区| 少妇人妻久久综合中文| 国产精品嫩草影院av在线观看| 亚洲av成人精品一区久久| 免费观看av网站的网址| 九色成人免费人妻av| 在线 av 中文字幕| 欧美97在线视频| 人成视频在线观看免费观看| 欧美国产精品一级二级三级| 国产精品久久久久久久久免| 高清午夜精品一区二区三区| 国产亚洲最大av| 亚洲精品成人av观看孕妇| 欧美老熟妇乱子伦牲交| 亚洲色图 男人天堂 中文字幕 | 一本久久精品| 亚洲第一av免费看| 日韩av不卡免费在线播放| a级毛片免费高清观看在线播放| 九色亚洲精品在线播放| 亚洲在久久综合| 免费观看a级毛片全部| av在线播放精品| 三上悠亚av全集在线观看| 免费av不卡在线播放| 女人精品久久久久毛片| 曰老女人黄片| 国产探花极品一区二区| 九九久久精品国产亚洲av麻豆| 国模一区二区三区四区视频| 在线观看免费视频网站a站| 视频在线观看一区二区三区| 亚洲欧美日韩卡通动漫| 黑人巨大精品欧美一区二区蜜桃 | 久久久久视频综合| 男人爽女人下面视频在线观看| 亚洲精品久久成人aⅴ小说 | 欧美日韩av久久| 久久毛片免费看一区二区三区| 精品国产一区二区三区久久久樱花| 超色免费av| 自线自在国产av| 久久狼人影院| 欧美日韩综合久久久久久| 蜜臀久久99精品久久宅男| 日本午夜av视频| 99久久人妻综合| 久久精品人人爽人人爽视色| 午夜av观看不卡| 女人久久www免费人成看片| 日韩熟女老妇一区二区性免费视频| 看非洲黑人一级黄片| 国产综合精华液| 国产精品久久久久成人av| 三上悠亚av全集在线观看| 国产探花极品一区二区| 久久精品国产自在天天线| 日韩成人av中文字幕在线观看| 欧美xxxx性猛交bbbb| 青春草视频在线免费观看| 亚洲在久久综合| a级毛片在线看网站| 各种免费的搞黄视频| 久久 成人 亚洲| 国产精品99久久99久久久不卡 | 亚洲精品久久成人aⅴ小说 | 亚洲av.av天堂| 一区二区三区四区激情视频| 99热6这里只有精品| 日本欧美视频一区| 人体艺术视频欧美日本| 一区在线观看完整版| 亚洲精品国产色婷婷电影| 中文乱码字字幕精品一区二区三区| av黄色大香蕉| 亚洲经典国产精华液单| 亚洲国产av新网站| 在线观看美女被高潮喷水网站| 欧美精品亚洲一区二区| 久久国产精品男人的天堂亚洲 | 精品少妇黑人巨大在线播放| 十八禁高潮呻吟视频| 日日摸夜夜添夜夜添av毛片| 男女免费视频国产| 国产国语露脸激情在线看| 国产高清国产精品国产三级| 亚洲国产色片| 97在线人人人人妻| 少妇高潮的动态图| 黄片无遮挡物在线观看| 欧美国产精品一级二级三级| 亚洲国产色片| 在线观看一区二区三区激情| 精品人妻偷拍中文字幕| 日本猛色少妇xxxxx猛交久久| 日日摸夜夜添夜夜爱| 成人手机av| 一本—道久久a久久精品蜜桃钙片| 久久人人爽av亚洲精品天堂| 国产在视频线精品| 18禁动态无遮挡网站| 国产精品国产av在线观看| 欧美三级亚洲精品| 日韩制服骚丝袜av| 久久久久久久精品精品| 性色av一级| 免费看不卡的av| 国产成人精品无人区| 女人精品久久久久毛片| 好男人视频免费观看在线| 久热久热在线精品观看| 欧美激情 高清一区二区三区| 亚洲精品日韩在线中文字幕| 色婷婷av一区二区三区视频| 天美传媒精品一区二区| 热99国产精品久久久久久7| 国产精品蜜桃在线观看| 久久久欧美国产精品| 91久久精品电影网| 最近最新中文字幕免费大全7| 在线观看免费高清a一片| 妹子高潮喷水视频| 久久久欧美国产精品| 欧美精品人与动牲交sv欧美| 日韩大片免费观看网站| 插阴视频在线观看视频| 久久久久久久久久久丰满| 人人妻人人爽人人添夜夜欢视频| 这个男人来自地球电影免费观看 | 久久午夜综合久久蜜桃| 亚洲五月色婷婷综合| 极品少妇高潮喷水抽搐| 下体分泌物呈黄色| 内地一区二区视频在线| 在线播放无遮挡| 国产欧美日韩一区二区三区在线 | 国产国语露脸激情在线看| 亚洲情色 制服丝袜| 97精品久久久久久久久久精品| 黄色欧美视频在线观看| 性高湖久久久久久久久免费观看| 欧美日韩视频精品一区| 国产精品一区二区在线不卡| 人妻少妇偷人精品九色| 男人添女人高潮全过程视频| 久久99一区二区三区| 大码成人一级视频| 一本一本综合久久| 国产成人精品一,二区| 免费观看在线日韩| 成人国产av品久久久| 十八禁网站网址无遮挡| 国产亚洲欧美精品永久| 国产精品蜜桃在线观看| 只有这里有精品99| 最近2019中文字幕mv第一页| 久久女婷五月综合色啪小说| 黄片播放在线免费| 久久精品熟女亚洲av麻豆精品| av播播在线观看一区| 2021少妇久久久久久久久久久| 亚洲精品美女久久av网站| 欧美精品国产亚洲| 国产爽快片一区二区三区| 久久久久久久久久久久大奶| 99九九在线精品视频| 欧美老熟妇乱子伦牲交| 亚洲av福利一区| 如何舔出高潮| 日本与韩国留学比较| 久久国内精品自在自线图片| 夫妻性生交免费视频一级片| 啦啦啦视频在线资源免费观看| 人妻 亚洲 视频| 美女国产视频在线观看| 免费黄网站久久成人精品| 婷婷色麻豆天堂久久| 高清欧美精品videossex| 91精品三级在线观看| 一级片'在线观看视频| 三上悠亚av全集在线观看| 亚洲av欧美aⅴ国产| 美女福利国产在线| 伦精品一区二区三区| 高清av免费在线| 国产精品久久久久久久久免| 人成视频在线观看免费观看| 婷婷色综合www| 十八禁网站网址无遮挡| 美女xxoo啪啪120秒动态图| 午夜影院在线不卡| 精品国产一区二区久久| 三级国产精品片| av.在线天堂| 在线观看美女被高潮喷水网站| 黄色欧美视频在线观看| 国产一区二区在线观看日韩| 在线观看www视频免费| 纵有疾风起免费观看全集完整版| 婷婷色综合www| 亚洲国产日韩一区二区| 国产亚洲最大av| 新久久久久国产一级毛片| 成人黄色视频免费在线看| 简卡轻食公司| 久久99一区二区三区| 精品国产国语对白av| 亚洲久久久国产精品| 一级毛片电影观看| 日韩欧美一区视频在线观看| 精品午夜福利在线看| 熟妇人妻不卡中文字幕| 久久精品国产自在天天线| 国产乱来视频区| 精品熟女少妇av免费看| 春色校园在线视频观看| 亚洲成人av在线免费| 国产有黄有色有爽视频| 久久青草综合色| 欧美变态另类bdsm刘玥| 国产精品三级大全| 国产淫语在线视频| 中文精品一卡2卡3卡4更新| 亚洲av在线观看美女高潮| 欧美精品一区二区免费开放| 亚洲欧美日韩另类电影网站| 老司机影院毛片| 97在线视频观看| 国产精品女同一区二区软件| 午夜激情久久久久久久| 秋霞在线观看毛片| 性高湖久久久久久久久免费观看| 777米奇影视久久| 亚洲精品国产av蜜桃| 亚洲成色77777| 国产亚洲午夜精品一区二区久久| 18禁观看日本| 国产成人精品无人区| 久久影院123| 如何舔出高潮| 大陆偷拍与自拍| 2018国产大陆天天弄谢| 如何舔出高潮| 老司机影院毛片| 有码 亚洲区| 嘟嘟电影网在线观看| 最近中文字幕2019免费版| 自拍欧美九色日韩亚洲蝌蚪91| 午夜激情福利司机影院| 岛国毛片在线播放| 我的女老师完整版在线观看| 九色亚洲精品在线播放| 人妻制服诱惑在线中文字幕| 大码成人一级视频| 韩国高清视频一区二区三区| 看免费成人av毛片| 色吧在线观看| 欧美精品亚洲一区二区| 十八禁网站网址无遮挡| av免费在线看不卡| 国产精品一区www在线观看| 日韩,欧美,国产一区二区三区| 国产精品秋霞免费鲁丝片| 国产片特级美女逼逼视频| 国产午夜精品一二区理论片| 亚洲一区二区三区欧美精品| av国产久精品久网站免费入址| 80岁老熟妇乱子伦牲交| 草草在线视频免费看| 下体分泌物呈黄色| 人妻一区二区av| www.色视频.com| 精品一区二区三区视频在线| 国产成人一区二区在线| 欧美日韩在线观看h| 亚洲国产最新在线播放| av专区在线播放| 69精品国产乱码久久久| 国产精品久久久久成人av| 中国美白少妇内射xxxbb| 七月丁香在线播放| 麻豆乱淫一区二区| 老司机影院毛片| 日韩强制内射视频| 亚洲不卡免费看| 母亲3免费完整高清在线观看 | 精品视频人人做人人爽| 多毛熟女@视频| 午夜免费观看性视频| 有码 亚洲区| 精品一品国产午夜福利视频| 精品一区在线观看国产| 亚洲性久久影院| 美女xxoo啪啪120秒动态图| 欧美老熟妇乱子伦牲交| 精品少妇久久久久久888优播| 久久精品国产亚洲av涩爱| 人人妻人人添人人爽欧美一区卜| 欧美日本中文国产一区发布| 男男h啪啪无遮挡| 五月开心婷婷网| 日日爽夜夜爽网站| 国产高清不卡午夜福利| 久久国内精品自在自线图片| 天天操日日干夜夜撸| 曰老女人黄片| 汤姆久久久久久久影院中文字幕| 韩国高清视频一区二区三区| 美女主播在线视频| 精品亚洲乱码少妇综合久久| av又黄又爽大尺度在线免费看| 夜夜爽夜夜爽视频| 男女边吃奶边做爰视频| 日日摸夜夜添夜夜添av毛片| 久久精品久久精品一区二区三区| 亚洲中文av在线| 亚洲高清免费不卡视频| 精品国产一区二区三区久久久樱花| 一级毛片我不卡| 夜夜看夜夜爽夜夜摸| av不卡在线播放| 国产免费福利视频在线观看| 欧美日韩av久久| 亚洲精品乱码久久久久久按摩| 亚洲欧美日韩另类电影网站| 亚洲精品日韩av片在线观看| 国产深夜福利视频在线观看| 亚洲精品色激情综合| 午夜影院在线不卡| 激情五月婷婷亚洲| 久久av网站| 青青草视频在线视频观看| 日韩,欧美,国产一区二区三区| 久久国产亚洲av麻豆专区| 夫妻性生交免费视频一级片| 老司机亚洲免费影院| 伊人亚洲综合成人网| 亚洲精品第二区| 黄片无遮挡物在线观看| 蜜桃久久精品国产亚洲av| 国产一区二区在线观看av| 极品少妇高潮喷水抽搐| 日韩av免费高清视频| av专区在线播放| 成人影院久久| 日本黄色日本黄色录像| 日韩欧美精品免费久久| 人成视频在线观看免费观看| 丰满饥渴人妻一区二区三| 婷婷色综合大香蕉| 亚洲精品一区蜜桃| xxx大片免费视频| 一区二区日韩欧美中文字幕 | 91精品伊人久久大香线蕉| 黑丝袜美女国产一区| 国内精品宾馆在线| freevideosex欧美| 在线亚洲精品国产二区图片欧美 | 久久精品熟女亚洲av麻豆精品| 国产片内射在线| 欧美人与善性xxx| 卡戴珊不雅视频在线播放| 波野结衣二区三区在线| 成年人午夜在线观看视频| 视频在线观看一区二区三区| 欧美日韩亚洲高清精品| 亚洲一级一片aⅴ在线观看| 青春草视频在线免费观看| 伦理电影免费视频| 国产在线免费精品| 99久久精品国产国产毛片| 精品人妻偷拍中文字幕| 丝袜在线中文字幕| 国产成人免费观看mmmm| 秋霞伦理黄片| 日本爱情动作片www.在线观看| 国产精品一区二区在线观看99| 中文字幕精品免费在线观看视频 | 少妇的逼好多水| 日韩在线高清观看一区二区三区| 91久久精品国产一区二区成人| 美女xxoo啪啪120秒动态图| 亚洲,欧美,日韩| 毛片一级片免费看久久久久| 亚洲av日韩在线播放| 少妇熟女欧美另类| 国产极品粉嫩免费观看在线 | 久久久久精品久久久久真实原创| 亚洲av成人精品一区久久| 午夜免费观看性视频| 欧美日韩视频高清一区二区三区二| 国产精品.久久久| 国产亚洲精品久久久com| 亚洲激情五月婷婷啪啪| 久久久久久久大尺度免费视频| 一级毛片 在线播放| 日韩视频在线欧美| 欧美日韩视频高清一区二区三区二| 亚洲成色77777| 国产老妇伦熟女老妇高清| 欧美亚洲 丝袜 人妻 在线| 特大巨黑吊av在线直播| 亚洲精品色激情综合| 免费看不卡的av| 久久 成人 亚洲| 亚洲欧美精品自产自拍| 丰满饥渴人妻一区二区三| 亚洲美女视频黄频| 秋霞伦理黄片| 日日爽夜夜爽网站| 在线看a的网站| 久久久精品区二区三区| 亚洲av.av天堂| 欧美变态另类bdsm刘玥| 少妇猛男粗大的猛烈进出视频| 在线天堂最新版资源| a级毛片黄视频| 亚洲精品视频女| 精品99又大又爽又粗少妇毛片| 99热网站在线观看| 80岁老熟妇乱子伦牲交| 91精品国产国语对白视频| 亚洲av日韩在线播放| 在线观看www视频免费| 国产国语露脸激情在线看| 久久久a久久爽久久v久久| 夫妻午夜视频| 黄色一级大片看看| 中文乱码字字幕精品一区二区三区| 久久99蜜桃精品久久| 亚洲国产精品国产精品| 伦理电影免费视频| 欧美最新免费一区二区三区| av女优亚洲男人天堂| 亚洲天堂av无毛| 国产一区有黄有色的免费视频| 亚洲精品国产色婷婷电影| 看十八女毛片水多多多| 国产精品99久久99久久久不卡 | 国产亚洲精品第一综合不卡 | 精品人妻熟女av久视频| av免费观看日本| 午夜福利视频在线观看免费| 狂野欧美激情性xxxx在线观看| 亚洲在久久综合| 丰满少妇做爰视频| 日韩av在线免费看完整版不卡| 熟妇人妻不卡中文字幕| 多毛熟女@视频| 看免费成人av毛片| 成年人午夜在线观看视频| 国产黄色免费在线视频| 免费黄网站久久成人精品| 黑人高潮一二区| 中国美白少妇内射xxxbb| 精品久久久精品久久久| 国产黄色免费在线视频| av黄色大香蕉| 丰满迷人的少妇在线观看| 黑丝袜美女国产一区| 久久人人爽人人片av| www.色视频.com| 蜜桃在线观看..| 能在线免费看毛片的网站| 日产精品乱码卡一卡2卡三| 亚洲少妇的诱惑av| 18禁在线播放成人免费| 99视频精品全部免费 在线| 简卡轻食公司| 亚洲欧洲国产日韩| h视频一区二区三区| 啦啦啦视频在线资源免费观看| 91久久精品电影网| 高清毛片免费看| 国产片内射在线| 亚洲成人av在线免费| 国产视频内射| 我的女老师完整版在线观看| 人人妻人人爽人人添夜夜欢视频| 久久国内精品自在自线图片| 国产 一区精品| 免费少妇av软件| av国产精品久久久久影院| 91久久精品电影网| 久久精品久久久久久久性| 久久精品国产自在天天线| 欧美xxxx性猛交bbbb| 乱码一卡2卡4卡精品| 日韩伦理黄色片| 精品人妻一区二区三区麻豆| 日本猛色少妇xxxxx猛交久久| 欧美激情 高清一区二区三区| 91精品国产国语对白视频| 黑丝袜美女国产一区| 午夜福利影视在线免费观看| 午夜福利在线观看免费完整高清在| 18禁在线无遮挡免费观看视频| 精品国产露脸久久av麻豆| 国产精品久久久久成人av| 纵有疾风起免费观看全集完整版| 51国产日韩欧美| 亚洲美女黄色视频免费看| 熟妇人妻不卡中文字幕| 日韩大片免费观看网站| 日韩电影二区| 久久ye,这里只有精品| 日本黄色日本黄色录像| 午夜91福利影院| 午夜福利在线观看免费完整高清在| 国产片特级美女逼逼视频| 午夜福利网站1000一区二区三区| 亚洲欧美中文字幕日韩二区| 亚洲精品久久久久久婷婷小说| 国产精品久久久久久精品古装| 制服诱惑二区| 特大巨黑吊av在线直播| www.色视频.com| h视频一区二区三区| 视频中文字幕在线观看| 久久精品人人爽人人爽视色| 日本欧美国产在线视频| 亚洲精品乱码久久久久久按摩| 香蕉精品网在线| 我的女老师完整版在线观看| 一级毛片aaaaaa免费看小| 日韩av免费高清视频| 欧美激情极品国产一区二区三区 | 内地一区二区视频在线| 亚洲国产精品一区三区| 我的老师免费观看完整版| 乱人伦中国视频| 在线观看美女被高潮喷水网站| 永久免费av网站大全| 日日啪夜夜爽| 国产黄片视频在线免费观看| av网站免费在线观看视频| 伊人久久国产一区二区| 最近中文字幕高清免费大全6| 亚洲精品自拍成人| 免费少妇av软件| 亚洲婷婷狠狠爱综合网| 亚洲熟女精品中文字幕|