• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hydrodynamics and Sensitivity Analysis of a Williamson Fluid in Porous-Walled Wavy Channel

    2021-12-14 06:06:30ShahzadKhanGulDayyanandZubair
    Computers Materials&Continua 2021年9期

    A.Shahzad,W.A.Khan,R.Gul,B.Dayyan and M.Zubair

    1Department of Mathematics,COMSATS University Islamabad,Abbottabad Campus,22060,Pakistan

    2Department of Mechanical Engineering,College of Engineering Prince Mohammad Bin Fahd University,Al Khobar,31952,Kingdom of Saudi Arabia

    Abstract:In this work,a steady,incompressible Williamson fluid model is investigated in a porous wavy channel.This situation arises in the reabsorption of useful substances from the glomerular filtrate in the kidney.After 80%reabsorption,urine is left,which behaves like a thinning fluid.The laws of conservation of mass and momentum are used to model the physical problem.The analytical solution of the problem in terms of stream function is obtained by a regular perturbation expansion method.The asymptotic integration method for small wave amplitudes and the RK-Fehlberg method for pressure distribution has been used inside the channel.It is demonstrated that the forward flow becomes fast in the narrow region(at x=0.75),which dominates the upward flow inside the channel.To study the impact of model parameters on outputs,we applied normalized local sensitivity analysis and noticed that the most influential parameter for the longitudinal velocity profile is the dimensionless wave amplitude.The reabsorption parameter is sensitive for transverse velocity in the narrow region,and the Weissenberg number has a strong effect on the pressure inside the channel.Further,the least sensitive parameters for the velocity components and pressure have been identified.

    Keywords:Sensitivity analysis;Williamson fluid;regular perturbation method;asymptotic approximation;RK-Fehlberg method;kidney flow

    1 Introduction

    Hydrodynamic in porous ducts (channel/tube) has been receiving the attention of many researchers in recent years because of its significant applications in several biological systems,particularly reabsorption of useful substances in the kidney.The kidney is an organ responsible for maintaining fluid,filtering minerals and regulating the blood pressure inside the several living bodies.The overall fluid inside the bodies is maintained in the functional unit of the kidney known as nephrons.Blood is filtered from glomerular collieries and enters the Bowman’s capsule called glomerular filtrate (GF).This filtrate contains substances,like water,about 95%,and other constituents like sodium(1.17g/L),potassium(0.750g/L),and chloride(1.87g/L)[1].In normal (healthy) conditions,these substances are reabsorbed inside the body,and with the passage of time,GF reaches the end of the tubule behaving as a thin fluid called urine.The GF is considered the same as plasma of the blood without containing blood cells,but it comprises glucose,creatinine,proteins,urea,uric acid,and various ions.Water is assumed to be a Newtonian fluid in nature,obeying Newton’s law of viscosity [2].While blood,saliva,glomerular filtrate,and excreta are biological fluids behaving as a non-Newtonian fluid [3].

    In the literature,the flow of glomerular filtrate in the kidney has been discussed by several researchers.The pioneering work done by Macey [4]has been extended by several researchers assuming that GF behaves like a steady,creeping,incompressible and non-isothermal Newtonian fluid,while the geometry (shape) of the renal tubule is approximated with a straight or wavy channels/tubes [5-10].In the last few years,Muthu et al.[11-14]studied the hydrodynamics of Newtonian fluid in a wavy channel.They obtained the series solution by assuming a large wavelength and discussed the importance of slope factor on fluid properties.Recently,his work has been extended by Javaria et al.[15],Farooq et al.[16]with assuming slip and magnetic field effects.In previous articles,there is a lack of information regarding the non-Newtonian nature of the GF,and only the Newtonian fluid model was taken into account.

    The flow of GF inside the kidney is complex,and there are various non-Newtonian fluid models that are accepted as biological fluids.Williamson’s model is one in which the apparent viscosity varies gradually [17].This model is characterized by shear thinning property,and several researchers have studied this model in peristalsis flow.Peristalsis flow of the Williamson model in the symmetric or asymmetric channel was studied by Nadeem et al.[18],and they reported that for small Williamson parameters,flow behaves like a Newtonian fluid.Later on,Akbar et al.[19]also studied the peristaltic flow of a Williamson fluid in an inclined asymmetric channel with partial slip.They found that with the rise in the Williamson parameter,the pressure decreases inside the channel.His work was extended by Nadeem et al.[20]with partial slip and heat transfer.They found that temperature decreases with increasing the Williamson parameter.Vajravelu et al.[21]studied the peristaltic flow of a Williamson fluid in asymmetric channels with leaky walls.They noted that the size of the trapped bolus decreases and its symmetry disappears for large values of the permeability parameter.Williamson fluid flow model is also analyzed by Akbar et al.[22,23]in stenosed arteries with porous walls.They also discussed the chemical reaction and heat transfer rate of Williamson fluid through a tapered artery with stenosis.

    Within this work,a steady,incompressible Williamson fluid model in a porous wavy channel is investigated/developed,and normalized sensitivity analysis is performed.In a normalized local sensitivity analysis,the impact of a single model parameter is studied at a time on all output variables.Several researchers used this analysis in different biological engineering problems [24-28].As mentioned in the previous paragraphs,that flow of GF inside the kidney is complex,and after the reabsorption of useful substances,its nature becomes thin to make the urine.Also,involved parameters in the model intended to simulate the uncertainty in the output.The main objective of this study is to investigate hydrodynamics and the impact of influential parameters on shearthinning fluid (Williamson fluid) flow in a porous wavy channel having relevance with the flow of urine in the kidney.It is believed that this work is not published so far,and it will provide a good foundation and specialist knowledge in the field of analyzing the flow characteristics in the kidneys.

    This paper is arranged as follows:Basic equations governing the flow of incompressible Williamson fluid inside the wavy porous walled channel are given in Section 2.Approximate solutions are obtained by using the Perturbation method in Section 3.Also,pressure distribution inside the channel is obtained by both asymptotic approximation of integration technique and numerically by the Runge-Kutta-Fehlberg method using MatLab.In Section 4,the effects of involved parameters are briefly discussed with the help of graphs and streamlines.A sensitivity analysis is performed in Section 5.Finally,the conclusion of the present study is presented in the last section.

    2 Mathematical Formulation

    Let us consider the flow of incompressible Williamson fluid in a porous walled wavy channel,with entrance flow rateQ0and entrance pressureP0.The flow rate decays exponentially along the channel.The geometry of the problem is described in Fig.1.The wall profile is defined as

    in whichdis half-height of the channel at the entrance region,εis the is amplitude andλis the wavelength.It is noticed that forε=din one wavelength(λ=1)can show narrow (blockage) atx=1/4.

    Figure 1:Geometry of the problem

    The equations governing the flow of a Williamson fluid in the wavy channel are

    where V is the velocity vector,ρis the density,represents the material derivative,S is the Cauchy stress tensor,f represents the body force and the extra stress tensor S for the Williamson fluid is defined as

    in which-pI is the spherical part of the stress due to constraint of incompressibility,is the extra stress tensor,μ0is the zero shear rate viscosity,μ∞is the infinite shear rate viscosity,Γis the time constant and ||is defined as

    HereΠis the second invariant strain tensor.In Eq.(5),we consider the case for whichμ∞=0 andΓ||<1,therefore,

    IfΓ=0,the Newtonian fluid model can be recovered.For the two dimensional flow in the wavy channel,the Eqs.(1) and (2) in components form can be written as

    whereuandvare the velocity components,pis hydrodynamics pressure andare the stress components.The boundary conditions of the problem are

    Eq.(11) shows the tangential velocity at the walls,while Eq.(13) shows the flow rate inside the channel,Q0is the flow rate atx=0,wis the width of the channel,andis reabsorption parameter [4].To solve the model,Eqs.(8)-(14),let us introduce the non-dimensional variables defined by

    and consideringu*=andv*=Eqs.(9) and (10) in terms of stream functionψ*after dropping the asterisk sign (*) become

    where the stress and strain tensors are defined by

    The boundary conditions are

    where,η=1+εsin(2πx).

    whereRe=i s Reynolds number,We=is Weissenberg numbers,γ=is ratio of length to width,η=is dimensionless wall profile,P0=is dimensionless entrance pressure,andε=is dimensionless amplitude,respectively.Using the assumptions of low Reynolds number and long wavelength and neglecting the terms of orderδand higher,Eqs.(15) and (16)take the form

    From Eq.(25),it is noticed that pressure depends onxonly.Eliminating the pressure term from Eqs.(24) and (25),yield

    and the boundary conditions are

    whereα=is reabsorption parameter which controls the reabsorption across the walls.Eq.(26) along with boundary conditions (27)-(29) show the physical model showing the flow of Williamson fluid flow in the wavy channel.The solution of the developed model is solved by the perturbation method [29,30].The solutions to the modeled problem are explained in the next section.

    3 Solution of the Problem

    Since Eq.(26) is a nonlinear partial differential equation,its exact solution is not possible;therefore,we chose the standard power series of the forms

    where the coefficient functionsψ0andψ1are independent ofWe.Substituting the above expressions in Eqs.(24) and (26) and boundary conditions (27) to (29),we get.

    3.1 System of Order We0

    The coefficients of zeroth order are equated on both sides of Eq.(26) to get

    and the boundary conditions

    The solution of Eqs.(31)-(33) is obtained as

    Using Eq.(36) in Eq.(33),we find

    Eqs.(36) and (37) contains the effects of flow rateQ(x)=γ e-αx.

    3.2 System of Order We1

    The first-order problem is obtained by equating the power ofWe1,we get

    with boundary conditions

    The solution of the Eq.(35) with boundary conditions (36),(37) is

    using Eqs.(36) and (42) in Eq.(39),we get

    Using Eqs.(36) and (42) in Eq.(30),the expression for stream function becomes

    The zeroth-order solution of Muthu et al.[11]can be retrieved whenWe→0.Using Eqs.(37)and (43) in Eq.(31),we get the pressure gradient in the following form

    To get the expression for pressure with boundary condition,

    an exact solution for pressure cannot be obtained.Approximate solutions of Eq.(45) with boundary condition (46) are obtained by asymptotic approximation of integration technique forε→0,[29,30],and numerically by Runge-Kutta-Fehlberg method using MATLAB software.

    The expression for pressure in term of elementary functions,using an asymptotic approximation of integration technique forε→0 is

    where,

    which depends uponε,Weandα.

    4 Result and Discussion

    Graphical behavior of velocity components,pressure distribution,and stream function are observed for different Weissenberg numbersWe,reabsorption parameterα,and wave amplitudeε.In this studyx=0,andx=1 indicate the entrance,and exit regions of the rectangular crosssection of the wavy channel,respectively.

    In Figs.2 and 3,the effects ofWeon both the components of velocity,i.e.,longitudinal and transverse are studied at the entrancex=0 and exitx=1 of the channel.Fig.2a indicates that at the centerline,longitudinal velocity decreases by increasing the magnitude ofWe,while due to the wall friction,the opposite nature of fluid flow is noticed near the walls.Similarly,transverse velocity increases by increasingWenear the wall while near the centerline,it decreases due to the rise in pressure drop,see Fig.2b.

    At the exit region,both components of velocity have the same nature as that of the entrance region,see Figs.2 and 5.It is observed that the dimensionless velocity at the entrance (x=0) is higher as compared to the exit region of the channel.

    Figs.4 and 5 illustrate the variations of the reabsorption parameterαon components of velocity at the entrance and exit regions of the channel.Fig.4a depicts that no effect ofαis observed on the longitudinal velocity at the entrance region,while transverse velocity shows significant effects.Transverse velocity first increases from the centerline;then,it shows a downfall towards the walls of the channel.Also,increasingαits profile increases due to the seepage of the fluid across the wall of the channel and then decreases at the channel wall,Fig.4b.

    The variation ofαon longitudinal and transverse velocities inside the channel at the exit regions is displayed in Figs.5a and 5b.It is noticed that near the center of the channel,flow is maximum due to the pressure gradient,and near the walls,the fluid flow becomes stationary due to wall friction and fluid viscosity.With increasingαlongitudinal velocity decreases,while opposite behavior transverse velocity is controlled byα,see Fig.5b.For higherα,transverse velocity upturns with no reversal of fluid.At the exit region,longitudinal velocity shows low profile behavior due to an increase inα.While transverse velocity near the wall shows a higher velocity profile.

    Figure 2:Variation of We on (a) longitudinal velocity (b) transverse velocity inside the channel at the entrance,when γ=1,α=0.5 and ε=0.2

    Figure 3:Variation of We on (a) longitudinal velocity (b) transverse velocity inside the channel at the exit,when γ=1,α=0.5 and ε=0.2

    Figure 4:Variation of α on (a) longitudinal velocity (b) transverse velocity inside the channel at the entrance,when γ=1,We=0.05 and ε=0.2

    Figure 5:Variation of α on (a) longitudinal velocity (b) transverse velocity inside the channel at the exit region,when γ=1,We=0.05 and ε=0.2

    The variation ofεon longitudinal and transverse velocities inside the channel at the entrance and exit regions is presented in Figs.6 and 7.It is important to note that no appreciable effect ofεon the longitudinal velocity at the entrance and exit regions of the channel,see Figs.6a and 7a.However,due to higher values ofε,transverse velocity indicates reverse flow due to the narrowing of the walls 2.At the exit of the channel,the same behavior of fluid flow is noticed as that in the entrance region,see Figs.6b and 7b.The velocity profile at the entrance (x=0) is observed higher as compared to the exit region due to the fluid seepage across the walls of the channel.

    Figure 6:Variation of ε on (a) longitudinal velocity (b) transverse velocity inside the channel at the entrance region,when γ=1,We=0.05 and α=0.5

    Figure 7:Variation of (a) longitudinal velocity,and (b) transverse velocity with ε inside the channel at the exit region,when γ=1,We=0.05 and α=0.5

    Figs.8a-8c illustrate the variation ofWe,αandεon the pressure inside the channel.It is observed that pressure decreases from the entrance to the exit of the channel.With increasingWe,αandεpressure increases due to the leakage of the fluid across the channel walls.Further,the asymptotic solution of the complicated integral validates the numeric results.

    Finally,Figs.9-11 are plotted to examine the influence of the pertinent parameters such asWe,αandεon the streamline pattern inside the wavy channel.The streamlines represent a path followed by a fluid particle during its motion.In Fig.9,with increasingWe,maximum fluid for fixed values ofαandεgoes outside from the exit region of the channel.While for the fixed values ofWeandε,fluid leakage increases with increasingαacross the walls,see Fig.10.The geometry is controlled byε,see Fig.11 and with increasingεfluid before entering a narrow region shows significant changes.

    Figure 8:Variation of pressure inside the channel with (a) We when α=0.5,ε=0.2,(b) α when We=0.05,ε=0.2 and (c) ε when α=0.5,We=0.05 for γ=1

    Figure 9:Streamline pattern inside the channel for (a) We=0.01 and (b) We=0.05 with fixed α=0.5,γ=1 and ε=0.2

    The foregoing discussion reveals that the parametersWe,α,δandεaffect the velocity components and pressure inside the channel.As mentioned earlier,that sensitivity analysis is necessary to examine the impact of input parametersWe,α,δandεon outputs like velocity components (u,v) and pressurep.This analysis will be helpful for the researcher during the experimental validation of GF in the kidney.

    Figure 10:Streamline pattern inside the channel for (a) α=0.5 and (b) α=1 with fixed ε=0.2,γ=1 and We=0.05

    Figure 11:Streamline pattern inside the channel for (a) ε=0.5 and (b) ε=0.8 with fixed α=0.5,γ=1 and We=0.05

    5 Sensitivity Analysis(SA)

    Sensitivity analysis is the method in which we study the impact of model parameters (input quantities of interest,QoI) on output variables (output quantities of interest,QoI).In this study,the input QoI areWe,α,εandδ,while output QoI are the velocity components(u,v)and pressurep.All input parameters are perturbed 0.2%,1% and 2% from their nominal values one by one,and their impacts are quantified on output QoI.For the sake of simplicity,here we only presented the impact of 2% change of each input QoI on output QoI using the following relationship:

    Table 1:Sensitivity analysis of crucial parameters in the narrow region of the channel

    Figure 12:Sensitivity analysis results of (a) longitudinal velocity,(b) transverse velocity in the narrow region,and (c) pressure inside the channel

    whereSijis the sensitivity indices forith model outputs with respect to jth input parameters,nis the mesh size andNis the magnitude of sensitivity.Tab.1 shows the results of the sensitivity of longitudinal velocity for the fixed values ofα,δandε,while a 2% change inWe,α,εandδis considered.It is noticed thatεis the most influential parameter for the longitudinal velocity at the narrow region of the channel,while,Weis the least critical parameter in this region.For comparison,Fig.12a shows thatδis even more important thanWeandα.Also,the major impact ofεis found on the channel wall.In Fig.12b,it is observed thatαis the most influential parameter for the transverse components of velocity in the narrow region andWehas no effects in this region.Again the significant impact ofαis noticed at the wall of the channel.The effects of input parameters on the pressure inside the channel is also analyzed and displayed in Fig.12c.It is observed thatWebecomes the most crucial parameter as compared toα,εandδ.

    6 Conclusions

    A mathematical model has been developed for the flow and sensitivity analysis of Williamson fluid in a porous wavy channel.The nonlinear PDEs are reduced by using the stream function and are solved by a regular perturbation method.An asymptotic integral method for small wave amplitude has been used to get the pressure in terms of elementary function.In contrast,the RK-Fehlberg method is used to get the numerical solution for the pressure in the channel.The sensitivity analysis is used to quantify the effects of input parameters on model outputs,such as velocity components and pressure inside the channel.The essential conclusions of this study are summarized below:

    1.The flow becomes fast in the narrow region,which dominates the upward flow.

    2.The pressure decays along the channel.

    3.The velocity profile is higher at the entrance as compared to the exit region of the channel.

    4.For longitudinal velocity in the narrow region,the dimensionless amplitude is the most influential parameter,and the Weissenberg number is the least essential parameter.

    5.The reabsorption parameter is sensitive to the transverse velocity at the narrow region of the channel.

    6.In case of pressure,the Weissenberg number is the most influential parameter,while the reabsorption parameter shows less sensitivity.

    7.The significant impact of velocity components is found at the wall of the channel.

    Funding Statement:The author(s) received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    五月开心婷婷网| 亚洲一区中文字幕在线| 欧美另类亚洲清纯唯美| 性色av乱码一区二区三区2| 欧美激情 高清一区二区三区| 一级黄色大片毛片| 亚洲色图综合在线观看| 久久九九热精品免费| 成人亚洲精品一区在线观看| 国产xxxxx性猛交| 成人av一区二区三区在线看 | 97人妻天天添夜夜摸| 午夜成年电影在线免费观看| 人成视频在线观看免费观看| 新久久久久国产一级毛片| 久久久久国产精品人妻一区二区| 国精品久久久久久国模美| 亚洲国产欧美在线一区| 黄色 视频免费看| 极品人妻少妇av视频| 久久天躁狠狠躁夜夜2o2o| 女人久久www免费人成看片| 亚洲精品久久成人aⅴ小说| 妹子高潮喷水视频| 黄色毛片三级朝国网站| 成人三级做爰电影| 亚洲人成电影免费在线| 又大又爽又粗| 大片电影免费在线观看免费| 国产一区二区激情短视频 | 香蕉国产在线看| 满18在线观看网站| 久久亚洲国产成人精品v| 久久久国产欧美日韩av| 黑人巨大精品欧美一区二区mp4| 在线观看舔阴道视频| 青春草亚洲视频在线观看| 桃花免费在线播放| 18在线观看网站| 久久av网站| 80岁老熟妇乱子伦牲交| www.自偷自拍.com| 国产精品99久久99久久久不卡| 久久99热这里只频精品6学生| 久久久久国产一级毛片高清牌| 操出白浆在线播放| 欧美在线一区亚洲| 国产精品亚洲av一区麻豆| 亚洲欧美色中文字幕在线| 欧美 日韩 精品 国产| 欧美 亚洲 国产 日韩一| 黄色毛片三级朝国网站| 久久青草综合色| 免费av中文字幕在线| 少妇人妻久久综合中文| 青草久久国产| 国产成人精品无人区| 日韩三级视频一区二区三区| 啦啦啦免费观看视频1| 飞空精品影院首页| 亚洲精品一卡2卡三卡4卡5卡 | 下体分泌物呈黄色| 亚洲自偷自拍图片 自拍| 久久影院123| 狂野欧美激情性xxxx| 18禁黄网站禁片午夜丰满| 午夜福利在线免费观看网站| kizo精华| 欧美精品高潮呻吟av久久| 国产高清视频在线播放一区 | 捣出白浆h1v1| 久久av网站| 亚洲,欧美精品.| a级片在线免费高清观看视频| 无遮挡黄片免费观看| 亚洲精品中文字幕在线视频| 国产亚洲av高清不卡| 精品少妇内射三级| 午夜久久久在线观看| 99精品久久久久人妻精品| 欧美亚洲 丝袜 人妻 在线| 狠狠狠狠99中文字幕| 亚洲人成77777在线视频| 欧美变态另类bdsm刘玥| 无遮挡黄片免费观看| 亚洲精品国产av蜜桃| 麻豆乱淫一区二区| 五月天丁香电影| 一本综合久久免费| 亚洲欧美激情在线| av在线老鸭窝| 午夜福利,免费看| 黄色视频不卡| 久久精品人人爽人人爽视色| 少妇猛男粗大的猛烈进出视频| 在线观看舔阴道视频| 久久久久国产精品人妻一区二区| 韩国高清视频一区二区三区| 亚洲精品国产区一区二| 亚洲全国av大片| 国产主播在线观看一区二区| 搡老岳熟女国产| 国产主播在线观看一区二区| 少妇精品久久久久久久| 亚洲av成人不卡在线观看播放网 | 精品久久久久久久毛片微露脸 | 免费观看av网站的网址| av有码第一页| 黄片小视频在线播放| 国产主播在线观看一区二区| 美女午夜性视频免费| 免费黄频网站在线观看国产| 亚洲少妇的诱惑av| 欧美+亚洲+日韩+国产| 亚洲av成人不卡在线观看播放网 | 18在线观看网站| 欧美精品一区二区大全| 久久性视频一级片| 最新在线观看一区二区三区| 久久精品人人爽人人爽视色| 成年人免费黄色播放视频| 亚洲精品美女久久久久99蜜臀| 中文字幕人妻丝袜一区二区| 亚洲成av片中文字幕在线观看| 久久中文看片网| 人妻一区二区av| 在线精品无人区一区二区三| 日本精品一区二区三区蜜桃| 女人久久www免费人成看片| 大香蕉久久网| 久久女婷五月综合色啪小说| 国产精品九九99| 黄色视频不卡| 亚洲精品粉嫩美女一区| 在线精品无人区一区二区三| 宅男免费午夜| 国产av一区二区精品久久| 性高湖久久久久久久久免费观看| 叶爱在线成人免费视频播放| 久久人妻福利社区极品人妻图片| av又黄又爽大尺度在线免费看| 99热网站在线观看| 国产成人欧美在线观看 | 亚洲欧美日韩另类电影网站| 亚洲国产成人一精品久久久| 极品少妇高潮喷水抽搐| 男女无遮挡免费网站观看| 欧美老熟妇乱子伦牲交| 日韩视频一区二区在线观看| 性高湖久久久久久久久免费观看| 精品国产乱码久久久久久男人| 久久99一区二区三区| 亚洲精华国产精华精| 成年人黄色毛片网站| 日本撒尿小便嘘嘘汇集6| 亚洲国产中文字幕在线视频| 日本av手机在线免费观看| 久久国产亚洲av麻豆专区| 两性午夜刺激爽爽歪歪视频在线观看 | 男男h啪啪无遮挡| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精品美女久久久久99蜜臀| 日韩视频一区二区在线观看| 国产伦人伦偷精品视频| 国产免费福利视频在线观看| a级毛片在线看网站| 99精品久久久久人妻精品| 国产国语露脸激情在线看| 99久久精品国产亚洲精品| 一本色道久久久久久精品综合| 精品一区二区三区av网在线观看 | 免费看十八禁软件| 日韩有码中文字幕| 中文精品一卡2卡3卡4更新| 国产精品欧美亚洲77777| 国产免费一区二区三区四区乱码| 男男h啪啪无遮挡| 少妇猛男粗大的猛烈进出视频| 亚洲av片天天在线观看| 欧美国产精品va在线观看不卡| 久久精品熟女亚洲av麻豆精品| 考比视频在线观看| 久久狼人影院| 亚洲精品粉嫩美女一区| 国产av精品麻豆| 十八禁人妻一区二区| 国产一区二区在线观看av| 欧美中文综合在线视频| 搡老熟女国产l中国老女人| 青春草亚洲视频在线观看| 男男h啪啪无遮挡| 欧美国产精品va在线观看不卡| 不卡av一区二区三区| 女性被躁到高潮视频| 欧美精品亚洲一区二区| 久久国产精品影院| 精品国产超薄肉色丝袜足j| 久久久久久久大尺度免费视频| 丝袜喷水一区| 国产精品久久久人人做人人爽| 91精品三级在线观看| 国产免费现黄频在线看| 俄罗斯特黄特色一大片| 国产免费福利视频在线观看| 亚洲激情五月婷婷啪啪| 91国产中文字幕| 国产成人啪精品午夜网站| 我要看黄色一级片免费的| 亚洲中文字幕日韩| 手机成人av网站| 韩国高清视频一区二区三区| 亚洲精品国产av蜜桃| 欧美精品高潮呻吟av久久| av欧美777| 久久av网站| 90打野战视频偷拍视频| 亚洲欧美一区二区三区黑人| 久久久久国内视频| 久9热在线精品视频| 国产欧美日韩综合在线一区二区| 久久久久久亚洲精品国产蜜桃av| 大片电影免费在线观看免费| 免费在线观看日本一区| 亚洲专区字幕在线| 亚洲专区国产一区二区| 超碰97精品在线观看| videos熟女内射| 亚洲男人天堂网一区| 人人妻人人澡人人爽人人夜夜| 亚洲欧美一区二区三区黑人| 免费人妻精品一区二区三区视频| 18禁黄网站禁片午夜丰满| 久久久国产一区二区| 午夜免费鲁丝| 搡老熟女国产l中国老女人| 国产精品免费视频内射| 久久人人97超碰香蕉20202| 青春草视频在线免费观看| 99精品欧美一区二区三区四区| 日韩熟女老妇一区二区性免费视频| 国产伦人伦偷精品视频| 午夜福利在线观看吧| 久久这里只有精品19| 夫妻午夜视频| 啦啦啦在线免费观看视频4| 国产精品熟女久久久久浪| 不卡一级毛片| 免费少妇av软件| 秋霞在线观看毛片| 日韩欧美国产一区二区入口| 一区二区日韩欧美中文字幕| 精品少妇黑人巨大在线播放| 日韩欧美免费精品| 国产一区二区三区av在线| 亚洲第一欧美日韩一区二区三区 | 国产成人精品在线电影| 亚洲精品日韩在线中文字幕| 亚洲免费av在线视频| 人人澡人人妻人| 丝袜人妻中文字幕| 国产欧美日韩综合在线一区二区| 亚洲国产中文字幕在线视频| 91精品国产国语对白视频| 国产精品99久久99久久久不卡| 老司机靠b影院| 久久精品熟女亚洲av麻豆精品| 日韩欧美免费精品| 亚洲一卡2卡3卡4卡5卡精品中文| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕av电影在线播放| 老司机在亚洲福利影院| av在线app专区| 成年人免费黄色播放视频| 一级,二级,三级黄色视频| 日韩一卡2卡3卡4卡2021年| 国产精品免费大片| 一本大道久久a久久精品| 亚洲国产欧美日韩在线播放| 国产淫语在线视频| 亚洲第一av免费看| 久久亚洲国产成人精品v| 天堂中文最新版在线下载| 人人妻人人澡人人看| 国产成人av激情在线播放| 一二三四在线观看免费中文在| 免费少妇av软件| 国产av精品麻豆| 99热国产这里只有精品6| 国产精品 欧美亚洲| 女人爽到高潮嗷嗷叫在线视频| 国产精品99久久99久久久不卡| 久久久精品区二区三区| 黑人巨大精品欧美一区二区蜜桃| 欧美精品高潮呻吟av久久| 91成年电影在线观看| 如日韩欧美国产精品一区二区三区| 色综合欧美亚洲国产小说| 国产免费一区二区三区四区乱码| 国产亚洲一区二区精品| 两个人免费观看高清视频| 国产精品久久久久久人妻精品电影 | 在线观看免费视频网站a站| 男女免费视频国产| av网站在线播放免费| 欧美日韩av久久| 亚洲国产看品久久| 久久人妻福利社区极品人妻图片| 国产麻豆69| 国产亚洲精品一区二区www | 各种免费的搞黄视频| 国产精品 欧美亚洲| 97人妻天天添夜夜摸| 精品视频人人做人人爽| 男女免费视频国产| 亚洲精品乱久久久久久| 国产成+人综合+亚洲专区| 国产日韩欧美在线精品| 天堂中文最新版在线下载| 91麻豆av在线| 不卡av一区二区三区| 日韩视频在线欧美| 欧美在线一区亚洲| 大片电影免费在线观看免费| 色婷婷久久久亚洲欧美| 丝袜喷水一区| 日韩欧美免费精品| 大片电影免费在线观看免费| av免费在线观看网站| a级片在线免费高清观看视频| 又大又爽又粗| 91老司机精品| 亚洲精品中文字幕在线视频| 久久精品人人爽人人爽视色| 欧美人与性动交α欧美精品济南到| 国产人伦9x9x在线观看| 国产精品1区2区在线观看. | 久久女婷五月综合色啪小说| 麻豆国产av国片精品| 久久国产精品人妻蜜桃| 一级a爱视频在线免费观看| 国产真人三级小视频在线观看| 亚洲七黄色美女视频| 亚洲国产欧美在线一区| 搡老熟女国产l中国老女人| 99久久人妻综合| 黄频高清免费视频| 超碰成人久久| 亚洲精品一区蜜桃| 99精品欧美一区二区三区四区| 亚洲色图 男人天堂 中文字幕| 一级毛片电影观看| 免费日韩欧美在线观看| av视频免费观看在线观看| 精品国产乱码久久久久久小说| 丝袜脚勾引网站| 日韩欧美一区视频在线观看| 欧美激情极品国产一区二区三区| av又黄又爽大尺度在线免费看| 99热全是精品| av有码第一页| 久久久久国产一级毛片高清牌| 在线观看www视频免费| 亚洲精品国产精品久久久不卡| 熟女少妇亚洲综合色aaa.| 建设人人有责人人尽责人人享有的| 亚洲精品美女久久久久99蜜臀| 99久久国产精品久久久| 夜夜骑夜夜射夜夜干| 精品人妻1区二区| 日本精品一区二区三区蜜桃| 精品国产一区二区久久| 亚洲国产精品成人久久小说| 国产精品久久久av美女十八| 啪啪无遮挡十八禁网站| 久久久久精品国产欧美久久久 | 国产精品麻豆人妻色哟哟久久| 亚洲黑人精品在线| 久久久精品94久久精品| 婷婷色av中文字幕| 女人久久www免费人成看片| 最新在线观看一区二区三区| 亚洲va日本ⅴa欧美va伊人久久 | 51午夜福利影视在线观看| 亚洲avbb在线观看| 一边摸一边做爽爽视频免费| 一二三四社区在线视频社区8| 欧美日韩一级在线毛片| 亚洲欧美一区二区三区久久| 乱人伦中国视频| 国产成人精品久久二区二区91| av一本久久久久| 欧美 日韩 精品 国产| 国产精品九九99| 久久久久国产一级毛片高清牌| 激情视频va一区二区三区| 国产av精品麻豆| 国产精品 欧美亚洲| 女人被躁到高潮嗷嗷叫费观| 99国产精品一区二区蜜桃av | 婷婷成人精品国产| 99国产精品免费福利视频| 亚洲av男天堂| www日本在线高清视频| 国产伦理片在线播放av一区| av网站免费在线观看视频| 一级毛片精品| 免费少妇av软件| 成人手机av| 一本综合久久免费| 欧美变态另类bdsm刘玥| 日韩制服骚丝袜av| 国产精品99久久99久久久不卡| 黄色视频不卡| 老司机福利观看| 婷婷成人精品国产| 亚洲欧美精品自产自拍| 欧美精品av麻豆av| 人人妻,人人澡人人爽秒播| a在线观看视频网站| 国产成人精品久久二区二区免费| 日韩视频在线欧美| 欧美日韩视频精品一区| 男人爽女人下面视频在线观看| 国产一区二区激情短视频 | 免费在线观看视频国产中文字幕亚洲 | 精品人妻熟女毛片av久久网站| 色婷婷av一区二区三区视频| 一边摸一边做爽爽视频免费| 国产av一区二区精品久久| 日本wwww免费看| 老熟妇乱子伦视频在线观看 | 亚洲一区二区三区欧美精品| 黑人猛操日本美女一级片| 亚洲精品中文字幕一二三四区 | 亚洲成人免费电影在线观看| 蜜桃在线观看..| 在线观看免费日韩欧美大片| 王馨瑶露胸无遮挡在线观看| 免费少妇av软件| 久久性视频一级片| 一本大道久久a久久精品| 亚洲精品久久成人aⅴ小说| 亚洲一卡2卡3卡4卡5卡精品中文| 色老头精品视频在线观看| 日本精品一区二区三区蜜桃| 亚洲成国产人片在线观看| 麻豆乱淫一区二区| 亚洲精品国产精品久久久不卡| 国产一区二区在线观看av| 97人妻天天添夜夜摸| 国产精品九九99| 国产精品免费大片| 久久久久久久国产电影| 大陆偷拍与自拍| 欧美中文综合在线视频| 欧美日韩黄片免| 久久人妻熟女aⅴ| 成人18禁高潮啪啪吃奶动态图| videos熟女内射| 91国产中文字幕| 欧美激情久久久久久爽电影 | 欧美另类亚洲清纯唯美| 不卡一级毛片| 亚洲国产精品一区二区三区在线| 亚洲情色 制服丝袜| 12—13女人毛片做爰片一| 男女之事视频高清在线观看| 欧美中文综合在线视频| 日韩欧美国产一区二区入口| 丝袜人妻中文字幕| 欧美乱码精品一区二区三区| 18禁国产床啪视频网站| 少妇人妻久久综合中文| 一级黄色大片毛片| 深夜精品福利| 亚洲avbb在线观看| 丝瓜视频免费看黄片| 亚洲五月婷婷丁香| 成年人午夜在线观看视频| 亚洲精品美女久久久久99蜜臀| 国产精品免费大片| 中文字幕制服av| 亚洲激情五月婷婷啪啪| 少妇猛男粗大的猛烈进出视频| 他把我摸到了高潮在线观看 | 黄色片一级片一级黄色片| 亚洲精品一卡2卡三卡4卡5卡 | 制服诱惑二区| 老熟妇乱子伦视频在线观看 | 波多野结衣一区麻豆| a 毛片基地| 最近中文字幕2019免费版| 黄色怎么调成土黄色| av欧美777| 一区二区av电影网| 国产亚洲一区二区精品| 欧美xxⅹ黑人| 日日爽夜夜爽网站| 一区二区日韩欧美中文字幕| 99热网站在线观看| 97精品久久久久久久久久精品| 视频区欧美日本亚洲| 久久久国产一区二区| 人人妻,人人澡人人爽秒播| 18在线观看网站| 国产精品一区二区精品视频观看| 黄频高清免费视频| 精品少妇内射三级| 亚洲第一青青草原| 国产男女内射视频| 丝袜喷水一区| 久久这里只有精品19| 亚洲五月色婷婷综合| 成年美女黄网站色视频大全免费| 亚洲国产欧美网| www.av在线官网国产| 9色porny在线观看| 久久天堂一区二区三区四区| 在线av久久热| 久久久久久人人人人人| 国产精品偷伦视频观看了| 亚洲精品一卡2卡三卡4卡5卡 | 久久性视频一级片| 亚洲午夜精品一区,二区,三区| 国产有黄有色有爽视频| 国产精品国产av在线观看| e午夜精品久久久久久久| 欧美+亚洲+日韩+国产| 日本av免费视频播放| 亚洲中文字幕日韩| 最新的欧美精品一区二区| 一本大道久久a久久精品| 久久精品人人爽人人爽视色| 亚洲色图综合在线观看| 他把我摸到了高潮在线观看 | 狂野欧美激情性xxxx| 日韩欧美国产一区二区入口| 69精品国产乱码久久久| 97精品久久久久久久久久精品| 最近最新中文字幕大全免费视频| 91九色精品人成在线观看| av有码第一页| 国产av国产精品国产| 91精品三级在线观看| 正在播放国产对白刺激| 一区福利在线观看| av片东京热男人的天堂| 丝瓜视频免费看黄片| 欧美人与性动交α欧美精品济南到| 欧美成人午夜精品| 狠狠狠狠99中文字幕| 我要看黄色一级片免费的| 黑丝袜美女国产一区| 看免费av毛片| 国产精品二区激情视频| 热re99久久国产66热| 久久精品人人爽人人爽视色| 高清欧美精品videossex| 国产成人精品无人区| 777久久人妻少妇嫩草av网站| 久久久久久久久久久久大奶| 啦啦啦啦在线视频资源| 国产国语露脸激情在线看| 国产深夜福利视频在线观看| 最新在线观看一区二区三区| 无遮挡黄片免费观看| 亚洲国产欧美在线一区| 日本91视频免费播放| 自拍欧美九色日韩亚洲蝌蚪91| 午夜免费观看性视频| 两个人看的免费小视频| 岛国毛片在线播放| 搡老熟女国产l中国老女人| 成在线人永久免费视频| 午夜福利影视在线免费观看| 黄频高清免费视频| 高清欧美精品videossex| 中亚洲国语对白在线视频| 久久久久国产精品人妻一区二区| 麻豆av在线久日| 亚洲欧美精品综合一区二区三区| 美女大奶头黄色视频| 99热全是精品| 精品国产乱码久久久久久小说| 久久久国产欧美日韩av| 国产高清videossex| 91精品三级在线观看| 精品国内亚洲2022精品成人 | 国产三级黄色录像| 亚洲 欧美一区二区三区| www.999成人在线观看| 久久影院123| 亚洲第一青青草原| 青春草亚洲视频在线观看| 亚洲第一青青草原| 黄片播放在线免费| 国产欧美日韩精品亚洲av| 亚洲国产欧美网| 欧美日韩亚洲综合一区二区三区_| 又黄又粗又硬又大视频| 国产伦人伦偷精品视频| 热99国产精品久久久久久7| 日本a在线网址| 9热在线视频观看99| 麻豆av在线久日| 国产亚洲一区二区精品| 免费在线观看黄色视频的| 久久久国产欧美日韩av| svipshipincom国产片| 午夜福利,免费看| 一级毛片精品| 国产成人精品在线电影| 欧美国产精品va在线观看不卡| 国产成人精品无人区| 一边摸一边抽搐一进一出视频|