• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Segmentation of Brain Tumor Magnetic Resonance Images Using a Teaching-Learning Optimization Algorithm

    2021-12-14 06:07:14JayanthiKavithaJayasankarSagaiFrancisBrittoPrakashMohamedYacinSikkandarandBharathiraja
    Computers Materials&Continua 2021年9期

    J.Jayanthi,M.Kavitha,T.Jayasankar,A.Sagai Francis Britto,N.B.Prakash Mohamed Yacin Sikkandar and C.Bharathiraja

    1Department of Computer Science and Engineering,Sona College of Technology,Salem,636005,Tamilnadu,India

    2Department of Electronics and Communication Engineering,K.Ramakrishnan College of Technology,Trichy,621112,India

    3Department of Electronics and Communication Engineering,University College of Engineering,Anna University,Tiruchirappalli,620024,India

    4Department of Mechanical Engineering,Rohini College of Engineering and Technology,Palkulam,629401,India

    5Department of Electrical and Electronics Engineering,National Engineering College,Kovilpatti,628503,India

    6Department of Medical Equipment Technology,College of Applied Medical Sciences,Majmaah University,AlMajmaah,11952,Kingdom of Saudi Arabia

    7Department of Electrical and Electronics Engineering,SRM Institute of Science and Technology,Chennai,603203,India

    Abstract:Image recognition is considered to be the pre-eminent paradigm for the automatic detection of tumor diseases in this era.Among various cancers identified so far,glioma,a type of brain tumor,is one of the deadliest cancers,and it remains challenging to the medicinal world.The only consoling factor is that the survival rate of the patient is increased by remarkable percentage with the early diagnosis of the disease.Early diagnosis is attempted to be accomplished with the changes observed in the images of suspected parts of the brain captured in specific interval of time.From the captured image,the affected part of the brain is analyzed using magnetic resonance imaging (MRI) technique.Existence of different modalities in the captured MRI image demands the best automated model for the easy identification of malignant cells.Number of image processing techniques are available for processing the images to identify the affected area.This study concentrates and proposes to improve early diagnosis of glioma using a preprocessing boosted teaching and learning optimization(P-BTLBO)algorithm that automatically segments a brain tumor in an given MRI image.Preprocessing involves contrast enhancement and skull stripping procedures through contrast limited adaptive histogram equalization technique.The traditional TLBO algorithm that works with the perspective of teacher and the student is here improved by using a boosting mechanism.The results obtained using this P-BTLBO algorithm is compared on different benchmark images for the validation of its standard.The experimental findings show that P-BTLBO algorithm approach outperforms other existing algorithms of its kind.

    Keywords:Brain tumor;TLBO algorithm;skull stripping;preprocessing;segmentation

    1 Introduction

    Brain tumors are considered one of the most life-threatening conditions.A tumor in one area of the brain is normally activated and spreads to adjacent areas [1].The high morbidity and mortality rates of a glioma,a type of brain tumor,have been described in the literature.A tumor is considered a low-or high-grade glioma [2]based on its severity.New medical methods are used for initial diagnosis and validation screening.To identify the site and condition of a glioma can lead to effective treatment,which may include radiation therapy,chemotherapy,and surgery.Tumor development is limited by radiation and chemotherapy,and surgery is used to eliminate the whole affected section.Magnetic resonance imaging (MRI) is the best imaging tool for the detection of brain abnormalities as assessed in clinical trials.Advanced MRI equipment provides complete three-dimensional (3D) views of the internal parts of the brain.3D or cut MRI images are captured,and the location of the disease is determined on this basis.Image processing allows the assessment of the severity of the problem,and appropriate care can be sought.

    Various techniques used to identify abnormalities present in MRI images have been described in surveys of existing methods.They include neural network (NN)-based methods [3],watershed segmentation [4],clustering techniques,fuzzy c-means (FCM),edge detection,the adaptive neurofuzzy inference system (ANFIS),the Gaussian mixture method,cellular automation,multi-level thresholding,and heuristic techniques.A study showed that the hybridization of a few methods could have the highest possible segmentation accuracy [5].Brain tumor segmentation approaches,in addition to methods focused on neural networks [6],collect MRI images based on particular modalities.This approach is used to accurately segment and diagnose MRI datasets that have classified modalities,such as fluid-attenuated inversion recovery (FLAIR),spin-lattice relaxation(T1),enhanced T1-contrast (T1C),and spin relaxation (T2).This study proposes a technique to identify the tumor region and edema area in an MRI image using the FLAIR,T1C,and T2 methods,based on metaheuristic optimization.

    Numerous experiments have been conducted in medical image processing,including fundamental work on MRI imaging strategies such as grouping strategies,clustering techniques,and meta-heuristic techniques.A number of image segmentation techniques are used to process medical diagnostic images.Earlier studies [7]proposed FCM and k-means clustering,a flexible and simple technique to identify tumors.The k-means technique minimizes the time needed for analysis,but is not best suited for chronic tumor diseases,while FCM requires a noise-free image.KIFCM combines k-means and FCM to resolve the limitation of high iterations and improve the precision of classification,and is recommended for optimum results.A procedure that uses color transformation and k-means converts a grey image to a color image to define the exact malignant region,increasing the accuracy of the assessment of the precise size of a tumor [8].

    Extraction methods commonly used to classify the brain tumor area in an MRI image have been tested [9].The brain is highly complex,and it is challenging to highlight specific regions of it in MRI images.Hence the best image processing technique is needed.One such method employs multi functional Brownian motion and uses spatially complex multi-fractal highlights for classification.This model uses AdaBoost,which minimizes the exponential loss function,and this method helps to distribute the weight of the classifier to maximize its output.One such technique is used to preserve high-level information derived from the original image [10].The heterogeneous design of the PC-dependent classification technique is used to distinguish the edges between malignant cells in MRI images.FCM uses spatial data to segment MRI images.FCM and k-means were used in a method to remove tumor cells from a complicated MRI image by a histogram-directed installation technique [11].A deep learning algorithm was used to simplify the process of brain tumor segmentation [12].A thorough overview of the methods used to strip noise from tumor-affected brain images,including wavelet,curvelet,and filter templates,was published [13].

    A tool was developed to classify the types of histopathological photographs of brain tumors that should be predicted early [14].A vision technique using reverberation spectroscopy was employed to mechanically isolate brain tumors [15].An automatic detection model was used to segregate MRI brain images to determine tumor locations [16].This study proposes an automatic preprocessing boosted teaching and learning optimization (P-BTLBO) algorithm for brain tumor MRI image sections.Contrast enhancement and skull stripping procedures are accomplished through preprocessing.Conventional TLBO algorithms are strengthened by a boosting mechanism.Validation of the P-BTLBO algorithm is conducted using various benchmark picture sets,and results demonstrate its superiority.

    2 Proposed P-BTLBO Algorithm

    Fig.1 shows the mechanism of the proposed P-BTLBO model.Preprocessing through contrast enhancement and stripping of the skull is followed by development of the TLBO algorithm.

    Figure 1:Overview of proposed method

    2.1 Preprocessing

    2.1.1 Contrast Limited Adaptive Histogram Equalization

    Enhancement using contrast limited adaptive histogram equalization (CLAHE) prevents the distortion of the echo.The number of high-intensity histograms is determined using CLAHE [17].Each histogram reflects various regions of the image.Intensity values are marked on maps using a shared histogram [18].Low-contrast images are improved using CLAHE,as follows:

    · Derive total inputs:The input data are the number of rows and columns in the image.The number of bins of histograms is used to create the image mapping.Clip restrict is used to restrict the contrast (normalized from zero to one).

    · Preprocess inputs:The contrast rate is processed to determine the exact clip restrict if needed.The image is padded prior to segregation.

    · Process each contextual area to generate mappings with gray level:A small part of the image is taken;the histogram area is prepared using several bin calculations.The histogram is clipped using clip restrict,and the function is mapped for the particular area.

    · Interpolate gray level mappings to gather the last CLAHE image:Image regions are extracted from four clusters using the neighboring transformation function,and checked for partial overlaps of the transformation area.The pixels of the overlapped area are removed,and this process is repeated until all overlapping pixels are removed.

    2.1.2 Skull Stripping

    Stripping the skull is the first step in the segmentation of brain MRI images.This is necessary,as quantitative diagnosis requires extraction of the skull image from the background of the brain MRI.Skull stripping is accomplished with an image filter [19],which uses a masking technique to isolate parts of the image and differentiate pixels of equal intensity.The threshold value of a skull or bone MRI image will be greater than 200 compared to the tumor or other portion of the brain,and considering the threshold of the image being filtered.The skull picture is derived using the notion of solidity [20].

    2.2 BTLBO Algorithm

    2.2.1 TLBO Algorithm

    Teaching-learning is essential to the algorithm’s progress,and may be compared to individual learning.The TLBO algorithm uses two simple models:teaching as an instructor and learning as a student [21].The population refers to the set of students,and the problem of optimization is student usability.Optimal outcomes are referred to as instructors.The algorithm’s approach is defined from the perspectives of a teacher and student.

    Teacher Phase:This stage follows the learning process via the instructor,whose role is to convey knowledge to students and make an effort to increase the average score of the class.Letmbe the number of subjects thatnstudents have accessed (i.e.,population size,k=1,2,...,n).Mv,uis the mean performance of the students in a particular subjectv(v=1,2,...,m) in some order of the teaching-learning process.A nominee from the ideal community acts as an instructor,who should have experience and skills.It is assumed thatAtotal,kbest,uis the result of the optimal learner,assuming every subject is recognized as a teacher for that cycle.The instructor makes the greatest effort to increase the amount of data to cover the entire class.The final performance depends on the quality of the teacher’s delivery and a student’s learning capacity.The mean difference in the performance of the teacher and student in all subjects is

    whereAv,kbest,uis the teacher output (i.e.,the optimal student) in subjectv.THFis the teaching factor,which selects the mean value that must be changed,andruis an arbitrary count in [0,1].THFcan take the value 1 or 2,and is determined randomly as

    whererandis an arbitrary number in [0,1].THFis not related to the TLBO technique.

    The value ofTHFis not given as an input in this method and is randomly chosen using Eq.(2).

    The result based on theDifference_Meanv,u,in the teaching phase is

    where,is the modified value ofAv,k,u.is accepted when it gives the best function value.This can be a final function value of the teaching phase,and it becomes the input to the student phase.

    The TLBO technique acts based on the values ofru,which is an arbitrary number in [0,1],and the teaching factorTHF.These are generated randomly.(Separate crossover and mutation are possible in the genetic algorithm (GA),inertia weight and cognitive and social parameters are possible in particle swarm optimization (PSO),and colony size and limits are possible in the artificial bee colony (ABC) algorithm).Hence it is not necessary to adjustruandTHF[22-24].General parameters,such as the population size and number of generations,must be tuned and controlled.These are optimized for the entire population.

    Learner Phase:This phase is inspired by the learning of learners.This occurs when one learner has more information than another,and is accomplished through interaction and discussion [25,26].The learning process is as follows.

    Two studentsPandQare randomly selected so thatwhereandare the upgraded values ofAtot-P,uandAtot-Q,u,respectively,at the final stage of the teaching phase.

    The above equations are for maximization problems;the reverse is true for minimization problems.is accepted only when it satisfies the optimal fitness value.

    2.2.2 BTLBO with Boosted Learning

    The outcome of the TLBO algorithm is enhanced either by learning from the teacher or other learners.Learners can also be boosted by enhancing their information capacity.The BTLBO technique determines the boosting phase for managing the information [27],which explains the TLBO and BTLBO techniques and the results of the teacher and learner phases.Duplicate results are randomly changed at the duplicate removal stage.Thus,for the TLBO process,

    The total number of estimation functions={(2×population size×number of generations)+(function evaluations required for duplicate elimination)}.

    This study includes calculations of the total number of function estimations,using the above formula,for the TLBO and BTLBO techniques.

    The flowchart for the BTLBO algorithm is shown in Fig.2.The steps are as follows.

    Figure 2:Flowchart of BTLBO algorithm

    Step 1:Define the optimization problem as the minimization or maximization off (A),which is the value of the objective function,whereAis the design parameter vector.

    Step 2:Initiate and assess the population initiation (i.e.,learner,k=1,2,...,n,and subjects,v=1,2,...,m).

    Step 3:Select the best solution as the teacher,and ranked as first for the process (i.e.,f (A)best),

    (Ateacher)1=f (A)1where f (A)1=f (A)best.

    Step 4:Select the teacher according to the key rank,

    f (A)s=f (A)1-rand*f (A)1s=2,3,...,TH.

    (When the values are unequal,choose the value off (XA)sthat is nearest to the computed value.)

    (Ateacher)s=f (A)s,where s=2,3,...,TH.

    Step 5:Allocate learners to the teacher according to the fitness value:

    Fork=1:(n-s),

    Iff (A)1≥f (A)k>f (A)2,assign the learnerf (A)kto teacher 1 (i.e.,f (A)1).

    Iff (A)2≥f (A)k>f (A)3,

    allocate learnerf (A)kto teacher 2 (i.e.,f (A)2).

    If(A)TH-1≥f (A)k>f (A)TH,

    allocate learnerf (A)kto teacherTH-1 (i.e.,f (A)TH-1).

    Else,

    allocate learnerf (A)kto teacherTH.

    End

    Step 6:Maintain the best solution for each set of functions.

    Step 7:Determine the average result of the entire set of learners and subjects (i.e.,(Mv)s).

    Step 8:Determine the difference between the outcomes of teachers in every set of subjects through an adaptive teaching factor while keeping the respective average as a benchmark,(Difference_Meanv)s=

    s=1,2,...,TH,v=1,2,...,m.

    Step 9:Based on the knowledge of the teacher,enhance the knowledge of the learner in every set along with the factor of tutorial hours,

    wherehh/=k.

    Step 10:In the learner phase,update the knowledge of the learner along with other knowledge of learners if they are boosted,

    whereEF=exploration factor=round(1+rand).

    Step 11:Replace the existing poor solution with the obtained optimal solution.

    Step 12:Randomly eliminate redundant solutions.

    Step 13:Integrate all the sets.

    Step 14:Repeat Steps 3 to 13 until the termination criteria are satisfied.

    3 Experimental Validation

    Fig.3 shows sample visualization results from P-BTLBO.A sample set of test input images,contrast-enhanced images,skull stripped images,and segmented images are shown in Figs.3a-3d,respectively.

    Figure 3:Sample visualization results.(a) Original image;(b) Contrast enhanced image using CLAHE;(c) Skull stripped image;(d) Segmented image

    The mean squared errors (MSE) of different models for a collection of pictures are shown in Tab.1 and Fig.4.

    The P-BTLBO model achieved the best MSE of 11.87 for image 1,compared to 20.78 and 18.25,respectively,for GA and PSO.The PSO model yielded the minimum MSE,14.73,for image 2,while GA and PSO had values of 19.25 and 16.23,respectively.P-BTLBO produced the minimum,at 15.94,for image 3,and GA and PSO had values of 20.35 and 18.26,respectively.P-BTLBO had the smallest value,19.48,for image 4,while GA and PSO had values of 23.89 and 20.46,respectively.P-BTLBO achieved the smallest MSE,15.97,for image 5,and the MSE values using GA and PSO were 24.20 and 20.31,respectively.P-BTLBO had the smallest MSE,13.96,for image 6,while GA and PSO had values of 21.36 and 20.39,respectively.P-BTLBO generated an MSE of 15.42 for image 7,and GA and PSO returned values of 22.83 and 20.98,respectively.P-BTLBO had the smallest MSE,16.31,for image 8,while GA and PSO had values of 26.28 and 23.45,respectively.P-BTLBO had the minimum MSE of 15.90 for image 9,and GA and PSO had values of 22.37 and 20.13,respectively.P-BTLBO produced the smallest MSE,8.35,for image 10,and GA and PSO yielded values of 24.46 and 22.37,respectively.

    Table 1:MSE analysis of various models

    Figure 4:Comparative MSE analysis of different algorithms

    Peak signal-to-noise ratio (PSNR) tests of different models for a series of pictures are shown in Tab.2 and Fig.5.P-BTLBO achieved a maximum PSNR value of 37.386 on image 1,while GA and PSO had values of 34.954 and 35.517,respectively.P-BTLBO achieved the best PSNR values on the other images,with an average PSNR value of 36.421,while GA and PSO had average values of 34.612 and 35.124,respectively.

    Table 2:PSNR (dB) analysis of different algorithms

    Figure 5:Comparative PSNR analysis of different algorithms

    The findings from the study of the detection accuracy of various models are shown in Tab.3 and Fig.6.For image 1,the detection accuracy of P-BTLBO was best at 96.42,while GA and PSO produced values of 93.24 and 95.43,respectively.The DA value for image 2 using P-BTLBO was 97.29,and GA and PSO had values of 94.26 and 96.43,respectively.P-BTLBO had a DA value of 97.23 for image 3,while GA and PSO yielded values of 94.10 and 96.33,respectively.P-BTLBO provided a DA value of 96.85 for image 4,and GA and PSO had values of 93.58 and 95.24,respectively.P-BTLBO achieved a DA of 96.89 for image 5,while GA and PSO had values of 94.33 and 96.17,respectively.P-BTLBO achieved the best DA value,95.83,for image 6,while GA and PSO had values of 94.239 and 95.38,respectively.P-BTLBO had a DA value of 95.94 for image 7,while GA and PSO yielded values of 94.23 and 95.90,respectively.P-BTLBO had a DA value of 95.34 for image 8,while GA and PSO had values of 93.40 and 95.25,respectively.P-BTLBO had a DA value of 96.85 for image 9,and GA and PSO had values of 94.60 and 96.35,respectively.P-BTLBO had a DA value of 95.31 for image 10,and GA and PSO had values of 93.59 and 94.29,respectively.The proposed P-BTBO algorithm produced superior results on average,with a DA of 96.39.

    Table 3:Detection accuracy (DA) (%)

    Figure 6:Comparative DA of different algorithms

    4 Conclusion

    This study introduced the P-BTLBO algorithm for automatic brain tumor segmentation in MRI images.Two preprocessing techniques were used for contrast enhancement and skull stripping.The classic TLBO algorithm was improved using a boosting mechanism.The BTLBO algorithm was tested on different photos.The proposed model greatly outperformed other models in simulations.The P-BTLBO algorithm showed superior results in experiments,reaching the highest accuracy (96.39%),with an average PSNR value of 36.421dB.P-BTLBO algorithm showed more promising experimental results in automated segmentation than the GA and PSO algorithms.The model presented in this study may be extended in the future to the extraction and classification of features.

    Acknowledgement:We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

    Funding Statement:The author(s) received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    久99久视频精品免费| 欧美在线黄色| 成年版毛片免费区| 精品国产国语对白av| 热re99久久国产66热| 成人三级做爰电影| 国产精品秋霞免费鲁丝片| 青草久久国产| 亚洲黑人精品在线| 久久人妻熟女aⅴ| 欧美日本中文国产一区发布| 在线观看一区二区三区| 麻豆久久精品国产亚洲av | 久久国产乱子伦精品免费另类| 老汉色∧v一级毛片| 水蜜桃什么品种好| a级毛片黄视频| 国产亚洲精品综合一区在线观看 | 一级毛片精品| 色尼玛亚洲综合影院| 91麻豆av在线| 久久久精品国产亚洲av高清涩受| 国产色视频综合| 十八禁人妻一区二区| 亚洲一码二码三码区别大吗| 中文字幕另类日韩欧美亚洲嫩草| 一二三四社区在线视频社区8| 午夜免费观看网址| 午夜免费观看网址| 国产精品香港三级国产av潘金莲| 日本免费一区二区三区高清不卡 | 精品福利观看| 热99国产精品久久久久久7| 中文字幕av电影在线播放| av天堂久久9| 老司机午夜福利在线观看视频| 99久久精品国产亚洲精品| 99在线视频只有这里精品首页| 久久精品成人免费网站| 电影成人av| 亚洲精华国产精华精| 天堂中文最新版在线下载| 丝袜美腿诱惑在线| 精品国产乱码久久久久久男人| 极品教师在线免费播放| 午夜福利免费观看在线| 国产一区二区三区在线臀色熟女 | 免费在线观看日本一区| 亚洲欧美日韩高清在线视频| 免费观看人在逋| 国产精品久久久久久人妻精品电影| av国产精品久久久久影院| 午夜福利在线观看吧| 亚洲一码二码三码区别大吗| 久久中文字幕一级| 99国产综合亚洲精品| 俄罗斯特黄特色一大片| 丝袜美腿诱惑在线| 嫩草影院精品99| 亚洲人成77777在线视频| 黄频高清免费视频| а√天堂www在线а√下载| 日韩欧美免费精品| 99精国产麻豆久久婷婷| 久久中文字幕人妻熟女| 欧美激情极品国产一区二区三区| 男女床上黄色一级片免费看| 日韩欧美三级三区| 两个人免费观看高清视频| 天天影视国产精品| 搡老岳熟女国产| av在线播放免费不卡| 国产又爽黄色视频| 国产真人三级小视频在线观看| 国产野战对白在线观看| 新久久久久国产一级毛片| 免费看a级黄色片| 91字幕亚洲| 天天躁夜夜躁狠狠躁躁| 亚洲国产欧美日韩在线播放| 麻豆久久精品国产亚洲av | 中文字幕人妻丝袜制服| 91av网站免费观看| 少妇裸体淫交视频免费看高清 | av中文乱码字幕在线| 成人国产一区最新在线观看| 亚洲专区中文字幕在线| 纯流量卡能插随身wifi吗| 午夜精品国产一区二区电影| 亚洲国产精品999在线| 成人三级黄色视频| 精品电影一区二区在线| 天天躁夜夜躁狠狠躁躁| 国产精品综合久久久久久久免费 | 丰满人妻熟妇乱又伦精品不卡| 日韩欧美在线二视频| 亚洲第一欧美日韩一区二区三区| 国产单亲对白刺激| 老司机福利观看| 在线播放国产精品三级| 亚洲欧美日韩高清在线视频| 真人做人爱边吃奶动态| 色播在线永久视频| 热re99久久国产66热| 免费在线观看视频国产中文字幕亚洲| 亚洲精品一卡2卡三卡4卡5卡| 9热在线视频观看99| 国产乱人伦免费视频| 夜夜看夜夜爽夜夜摸 | 男女下面进入的视频免费午夜 | 亚洲一卡2卡3卡4卡5卡精品中文| 精品熟女少妇八av免费久了| 在线观看日韩欧美| 国产极品粉嫩免费观看在线| 一进一出抽搐动态| 成人亚洲精品av一区二区 | 亚洲国产看品久久| 久久国产精品男人的天堂亚洲| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产看品久久| 亚洲av成人av| 成在线人永久免费视频| 精品免费久久久久久久清纯| 性色av乱码一区二区三区2| 色精品久久人妻99蜜桃| 午夜精品久久久久久毛片777| aaaaa片日本免费| av网站在线播放免费| 级片在线观看| 亚洲精品av麻豆狂野| 香蕉久久夜色| 变态另类成人亚洲欧美熟女 | 少妇粗大呻吟视频| 99久久人妻综合| 精品国产一区二区三区四区第35| 午夜福利一区二区在线看| 天堂动漫精品| 午夜福利在线免费观看网站| 精品国产乱码久久久久久男人| 19禁男女啪啪无遮挡网站| 国产有黄有色有爽视频| 嫁个100分男人电影在线观看| 免费在线观看黄色视频的| 老司机福利观看| 精品国内亚洲2022精品成人| 在线国产一区二区在线| 老司机深夜福利视频在线观看| 精品一区二区三区视频在线观看免费 | 免费久久久久久久精品成人欧美视频| 国产精品一区二区在线不卡| 成人精品一区二区免费| 曰老女人黄片| 中文亚洲av片在线观看爽| 人人妻,人人澡人人爽秒播| 黄色女人牲交| 久久香蕉国产精品| 18禁美女被吸乳视频| 69精品国产乱码久久久| 可以免费在线观看a视频的电影网站| 日本三级黄在线观看| 色播在线永久视频| 在线观看66精品国产| 纯流量卡能插随身wifi吗| 1024香蕉在线观看| 久久久精品欧美日韩精品| av超薄肉色丝袜交足视频| 99久久国产精品久久久| 国产成人啪精品午夜网站| 窝窝影院91人妻| 国产精品久久久久成人av| 亚洲精品在线美女| av中文乱码字幕在线| 88av欧美| 久久人妻福利社区极品人妻图片| 久久性视频一级片| 女人精品久久久久毛片| 91老司机精品| 欧美精品啪啪一区二区三区| 国产一区二区三区视频了| 韩国精品一区二区三区| 国产精品国产av在线观看| 亚洲性夜色夜夜综合| 久久天躁狠狠躁夜夜2o2o| 精品无人区乱码1区二区| 亚洲avbb在线观看| 看片在线看免费视频| 手机成人av网站| 久久久久亚洲av毛片大全| 一进一出好大好爽视频| 精品久久久久久久毛片微露脸| 亚洲精品国产精品久久久不卡| 亚洲aⅴ乱码一区二区在线播放 | 久久欧美精品欧美久久欧美| 色在线成人网| 亚洲精品美女久久久久99蜜臀| 久久精品人人爽人人爽视色| www.www免费av| 桃色一区二区三区在线观看| 看免费av毛片| 亚洲五月色婷婷综合| 新久久久久国产一级毛片| www.999成人在线观看| 中国美女看黄片| 桃色一区二区三区在线观看| 日日夜夜操网爽| 亚洲五月色婷婷综合| 美女大奶头视频| 亚洲男人天堂网一区| 久久人妻熟女aⅴ| 中文字幕人妻熟女乱码| 色尼玛亚洲综合影院| 女性被躁到高潮视频| 成人国产一区最新在线观看| 精品国产美女av久久久久小说| 亚洲九九香蕉| av福利片在线| 中文字幕最新亚洲高清| 高清欧美精品videossex| 天天躁夜夜躁狠狠躁躁| 国产91精品成人一区二区三区| 90打野战视频偷拍视频| 国产精品成人在线| 欧洲精品卡2卡3卡4卡5卡区| 黑人操中国人逼视频| 免费在线观看影片大全网站| 一区福利在线观看| 天天添夜夜摸| 午夜精品久久久久久毛片777| 精品一区二区三区av网在线观看| 水蜜桃什么品种好| 国产在线观看jvid| 天堂√8在线中文| 久久久久国内视频| 高清av免费在线| 91九色精品人成在线观看| 在线观看www视频免费| 亚洲精品久久成人aⅴ小说| 男女之事视频高清在线观看| 老司机午夜十八禁免费视频| 亚洲 欧美一区二区三区| 日韩中文字幕欧美一区二区| 日韩 欧美 亚洲 中文字幕| 变态另类成人亚洲欧美熟女 | 美国免费a级毛片| 精品电影一区二区在线| 国产三级黄色录像| 国产精品成人在线| 国内久久婷婷六月综合欲色啪| 亚洲一区中文字幕在线| 村上凉子中文字幕在线| 宅男免费午夜| 日韩人妻精品一区2区三区| 十分钟在线观看高清视频www| 亚洲午夜理论影院| 天天躁夜夜躁狠狠躁躁| 老汉色av国产亚洲站长工具| 日韩高清综合在线| 免费久久久久久久精品成人欧美视频| 一边摸一边抽搐一进一出视频| 女人高潮潮喷娇喘18禁视频| 露出奶头的视频| 一进一出抽搐动态| 亚洲色图综合在线观看| 精品国产亚洲在线| 日韩欧美一区二区三区在线观看| 亚洲黑人精品在线| 欧洲精品卡2卡3卡4卡5卡区| 韩国av一区二区三区四区| 久久人人97超碰香蕉20202| 免费在线观看完整版高清| 母亲3免费完整高清在线观看| 亚洲精品国产一区二区精华液| 欧美性长视频在线观看| 精品人妻1区二区| 香蕉丝袜av| 美女 人体艺术 gogo| 热re99久久国产66热| 自线自在国产av| 日本黄色日本黄色录像| 亚洲五月婷婷丁香| 美女扒开内裤让男人捅视频| 色老头精品视频在线观看| 久久国产精品男人的天堂亚洲| 久久中文字幕一级| 两人在一起打扑克的视频| 国产日韩一区二区三区精品不卡| 国产亚洲av高清不卡| 亚洲精品一二三| 亚洲五月婷婷丁香| 黄色丝袜av网址大全| 一二三四在线观看免费中文在| 亚洲国产精品999在线| 日本免费a在线| 亚洲免费av在线视频| 黑人操中国人逼视频| av天堂在线播放| 国产免费现黄频在线看| 无人区码免费观看不卡| 国产99久久九九免费精品| 麻豆久久精品国产亚洲av | 久久久久精品国产欧美久久久| 午夜两性在线视频| 亚洲片人在线观看| 满18在线观看网站| 亚洲欧美精品综合久久99| 91在线观看av| av中文乱码字幕在线| 叶爱在线成人免费视频播放| 免费不卡黄色视频| 亚洲av片天天在线观看| 人人妻,人人澡人人爽秒播| 99精国产麻豆久久婷婷| 老司机午夜十八禁免费视频| 免费在线观看日本一区| 日本免费一区二区三区高清不卡 | 久久精品影院6| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品av麻豆狂野| 老司机靠b影院| 国产精品二区激情视频| 欧美色视频一区免费| 久久国产亚洲av麻豆专区| 97碰自拍视频| 大陆偷拍与自拍| 成年女人毛片免费观看观看9| av电影中文网址| 亚洲欧美日韩无卡精品| 亚洲一码二码三码区别大吗| 亚洲成国产人片在线观看| 欧美日韩国产mv在线观看视频| 国产成人系列免费观看| 久久久久久久久久久久大奶| 日韩欧美在线二视频| 亚洲欧美激情在线| 欧美黄色片欧美黄色片| 如日韩欧美国产精品一区二区三区| 日韩大尺度精品在线看网址 | 亚洲精品在线美女| 80岁老熟妇乱子伦牲交| 亚洲人成电影观看| 国产aⅴ精品一区二区三区波| 国产一区二区三区视频了| 琪琪午夜伦伦电影理论片6080| 亚洲一区高清亚洲精品| 中文字幕精品免费在线观看视频| 日韩 欧美 亚洲 中文字幕| 国产黄色免费在线视频| 人人妻人人添人人爽欧美一区卜| 老熟妇仑乱视频hdxx| 中文字幕另类日韩欧美亚洲嫩草| 色综合欧美亚洲国产小说| 精品福利观看| 欧美黑人欧美精品刺激| 久久午夜亚洲精品久久| 怎么达到女性高潮| 精品电影一区二区在线| 黑丝袜美女国产一区| 两人在一起打扑克的视频| 亚洲专区字幕在线| 精品人妻在线不人妻| 波多野结衣一区麻豆| 脱女人内裤的视频| 女人高潮潮喷娇喘18禁视频| 亚洲国产精品一区二区三区在线| 色尼玛亚洲综合影院| 麻豆久久精品国产亚洲av | 精品国产乱子伦一区二区三区| 国产av在哪里看| 亚洲aⅴ乱码一区二区在线播放 | 欧美日韩乱码在线| 欧美中文综合在线视频| 夜夜看夜夜爽夜夜摸 | www.www免费av| 亚洲国产欧美网| 日本 av在线| 久久午夜亚洲精品久久| 在线国产一区二区在线| 国产xxxxx性猛交| 日韩高清综合在线| 在线国产一区二区在线| 亚洲精品一区av在线观看| 国产成人精品无人区| 国产av一区在线观看免费| 在线观看www视频免费| 亚洲中文av在线| 成年女人毛片免费观看观看9| 变态另类成人亚洲欧美熟女 | 黄色视频不卡| 久久久久久亚洲精品国产蜜桃av| 国产精品一区二区精品视频观看| 91精品三级在线观看| 一进一出抽搐动态| 国产精品乱码一区二三区的特点 | 国产精品国产av在线观看| 成人手机av| 女人爽到高潮嗷嗷叫在线视频| av欧美777| 在线观看日韩欧美| 高清欧美精品videossex| 黄片小视频在线播放| 女警被强在线播放| www日本在线高清视频| 亚洲熟妇熟女久久| 人妻久久中文字幕网| 亚洲精品中文字幕在线视频| 国产一区二区三区在线臀色熟女 | 国产亚洲精品第一综合不卡| 亚洲精华国产精华精| 亚洲中文日韩欧美视频| 一区福利在线观看| 精品熟女少妇八av免费久了| 成年版毛片免费区| 成人免费观看视频高清| 熟女少妇亚洲综合色aaa.| 国产无遮挡羞羞视频在线观看| 天堂中文最新版在线下载| 久久 成人 亚洲| 久久亚洲精品不卡| 国产精品美女特级片免费视频播放器 | 午夜福利,免费看| 人妻久久中文字幕网| 18禁观看日本| 日韩人妻精品一区2区三区| 精品卡一卡二卡四卡免费| 国产一卡二卡三卡精品| 国产精品亚洲av一区麻豆| 999久久久精品免费观看国产| 久久人妻福利社区极品人妻图片| 午夜免费鲁丝| 男女下面进入的视频免费午夜 | 在线播放国产精品三级| 自线自在国产av| 久久久久九九精品影院| 日韩国内少妇激情av| 女生性感内裤真人,穿戴方法视频| 国产精品久久电影中文字幕| av中文乱码字幕在线| 久久午夜亚洲精品久久| 一边摸一边抽搐一进一出视频| 久久精品人人爽人人爽视色| 久久久久精品国产欧美久久久| 亚洲自拍偷在线| 在线观看免费午夜福利视频| 成年版毛片免费区| 久久中文字幕人妻熟女| 亚洲 欧美一区二区三区| 午夜福利一区二区在线看| 性欧美人与动物交配| 久久中文字幕一级| 久久久精品国产亚洲av高清涩受| 777久久人妻少妇嫩草av网站| 亚洲av电影在线进入| 国产成人av激情在线播放| 免费少妇av软件| 精品国产一区二区久久| 欧美精品亚洲一区二区| 十八禁网站免费在线| 黄色片一级片一级黄色片| 午夜两性在线视频| 久久久久亚洲av毛片大全| 亚洲一区二区三区欧美精品| 99国产精品99久久久久| 免费看a级黄色片| 久久精品影院6| 最新在线观看一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 日本 av在线| 久9热在线精品视频| 亚洲午夜精品一区,二区,三区| 日本黄色日本黄色录像| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美日韩国产mv在线观看视频| 国产真人三级小视频在线观看| 久久精品91无色码中文字幕| 91在线观看av| 免费av毛片视频| 操美女的视频在线观看| 色婷婷久久久亚洲欧美| av视频免费观看在线观看| 久久午夜亚洲精品久久| 免费日韩欧美在线观看| 视频区欧美日本亚洲| 色尼玛亚洲综合影院| 热re99久久精品国产66热6| 色综合站精品国产| 久久久久精品国产欧美久久久| 国产精品1区2区在线观看.| 五月开心婷婷网| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产精品999在线| 在线观看免费日韩欧美大片| 成人永久免费在线观看视频| 十八禁网站免费在线| 久久精品国产99精品国产亚洲性色 | 一级,二级,三级黄色视频| 国产97色在线日韩免费| 色哟哟哟哟哟哟| 午夜亚洲福利在线播放| 一级毛片高清免费大全| 免费少妇av软件| 久久这里只有精品19| 亚洲精品成人av观看孕妇| а√天堂www在线а√下载| 美女扒开内裤让男人捅视频| 涩涩av久久男人的天堂| 国产熟女午夜一区二区三区| 亚洲一区二区三区不卡视频| 欧美激情极品国产一区二区三区| 久久这里只有精品19| 成人av一区二区三区在线看| 天天添夜夜摸| 免费在线观看日本一区| 亚洲成人免费av在线播放| 在线观看免费午夜福利视频| 国产免费男女视频| 日本 av在线| 国产精品久久电影中文字幕| av天堂在线播放| bbb黄色大片| 亚洲av五月六月丁香网| 少妇裸体淫交视频免费看高清 | 国产单亲对白刺激| 久久久久久久久中文| 久久国产精品影院| 亚洲国产精品999在线| а√天堂www在线а√下载| 99香蕉大伊视频| 国产在线精品亚洲第一网站| 国产亚洲精品久久久久久毛片| 亚洲狠狠婷婷综合久久图片| 亚洲成国产人片在线观看| 每晚都被弄得嗷嗷叫到高潮| 91国产中文字幕| 久热爱精品视频在线9| 黄频高清免费视频| 亚洲色图综合在线观看| 亚洲激情在线av| 美女扒开内裤让男人捅视频| 91字幕亚洲| 欧美乱妇无乱码| 欧美国产精品va在线观看不卡| 久久中文看片网| 最新美女视频免费是黄的| 亚洲国产精品sss在线观看 | 两性夫妻黄色片| 欧美精品亚洲一区二区| cao死你这个sao货| 9191精品国产免费久久| 亚洲精品美女久久av网站| 欧洲精品卡2卡3卡4卡5卡区| 男女午夜视频在线观看| 日本一区二区免费在线视频| 成人av一区二区三区在线看| a在线观看视频网站| 欧美日韩瑟瑟在线播放| 叶爱在线成人免费视频播放| 国产熟女xx| 欧美激情极品国产一区二区三区| 免费av中文字幕在线| 国产精品久久久人人做人人爽| 精品久久蜜臀av无| 国产三级在线视频| 99久久国产精品久久久| 亚洲一区二区三区不卡视频| 免费av毛片视频| 成人亚洲精品av一区二区 | 欧美日韩视频精品一区| 亚洲色图av天堂| 午夜福利免费观看在线| 黑人欧美特级aaaaaa片| 亚洲自拍偷在线| 嫁个100分男人电影在线观看| 夜夜看夜夜爽夜夜摸 | x7x7x7水蜜桃| 侵犯人妻中文字幕一二三四区| 最近最新免费中文字幕在线| 日韩国内少妇激情av| 久久中文字幕一级| 成人永久免费在线观看视频| 欧美激情极品国产一区二区三区| 成人18禁高潮啪啪吃奶动态图| 亚洲视频免费观看视频| 日本vs欧美在线观看视频| 91字幕亚洲| 日本撒尿小便嘘嘘汇集6| 欧美亚洲日本最大视频资源| 久久久久九九精品影院| 久久香蕉精品热| 日韩av在线大香蕉| 亚洲国产欧美网| 天堂√8在线中文| 日日夜夜操网爽| 啦啦啦免费观看视频1| 99精品久久久久人妻精品| 999久久久精品免费观看国产| 在线观看免费日韩欧美大片| 欧美精品亚洲一区二区| av超薄肉色丝袜交足视频| 欧美精品亚洲一区二区| 高清黄色对白视频在线免费看| 久久精品亚洲精品国产色婷小说| 亚洲七黄色美女视频| 看黄色毛片网站| 精品久久久久久久毛片微露脸| 精品高清国产在线一区| 欧美日本中文国产一区发布| 黄色怎么调成土黄色| 国产黄a三级三级三级人| 怎么达到女性高潮| 国产蜜桃级精品一区二区三区| 成人18禁在线播放| 久久狼人影院| 久久草成人影院| 久久亚洲精品不卡| 99久久综合精品五月天人人|