• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Assessing the Performance of Some Ranked Set Sampling Designs Using Hybrid Approach

    2021-12-14 06:06:04MohamedSabryEhabAlmetwallyHishamAlmongyandGamalIbrahim
    Computers Materials&Continua 2021年9期

    Mohamed.A.H.Sabry,Ehab M.Almetwally,Hisham M.Almongy and Gamal M.Ibrahim

    1Faculty of Graduate Studies for Statistical Research,Cairo University,Giza,12613,Egypt

    2Faculty of Business Administration,Delta University of Science and Technology,Mansoura,35511,Egypt

    3Department of Statistics,Delta University for Science and Technology,Mansoura,Egypt

    4High Institute for Management Sciences,Belqas,35511,Egypt

    Abstract:In this paper,a joint analysis consisting of goodness-of-fit tests and Markov chain Monte Carlo simulations are used to assess the performance of some ranked set sampling designs.The Markov chain Monte Carlo simulations are conducted when Bayesian methods with Jeffery’s priors of the unknown parameters of Weibull distribution are used,while the goodness of fit analysis is conducted when the likelihood estimators are used and the corresponding empirical distributions are obtained.The ranked set sampling designs considered in this research are the usual ranked set sampling,extreme ranked set sampling,median ranked set sampling,and neoteric ranked set sampling designs.An intensive Monte Carlo simulation study is conducted using Lindley’s approximation algorithm to compute the different designs’-based estimators.The study showed that the dependent design “neoteric ranked set sampling design”is superior to other ranked set designs and the total relative efficiency is higher than the other designs’total relative efficiency.

    Keywords:Goodness of fit;ranked set sampling;Weibull distribution;Bayesian estimation;Lindley’s approximation;neoteric;ranked set sampling design

    1 Introduction

    Ranked set sampling (RSS) designs were first established in [1],to find a more efficient method to estimate the mean pasture yields.Since then,several modifications were considered to provide more efficient estimators and to reduce the errors in the ranking,see [2],and subsequently it will be possible to have better fits to the data under consideration.Extreme ranked set sampling(ERSS) design was introduced in [3],as the first modification of RSS,while [4]introduced another modification called median ranked set sampling (MRSS) design.The moving extreme ranked set sampling (MERSS) design was proposed in [5],while [6]introduced the double ranked set sampling (DRSS) design and proved that the population mean estimated using DRSS samples is more accurate and precise than those estimated with RSS and simple random sampling (SRS)designs.Later on,[7]suggested the multistage ranked set sampling (MSRSS) design as a generalization of the DRSS design.In [8]Zamanzade investigated a new ranked set sampling design with a dependence structure called neoteric ranked set sampling (NRSS) design and showed that NRSS based estimators are superior to the independent RSS based estimators.Moreover,twostage NRSS designs were proposed in [9],where they showed that five different sampling designs based on NRSS outperform RSS and NRSS designs.The likelihood estimation of distribution parameters using DRSS,NRSS,and DNRSS designs were proposed by [10,11],and showed that the proposed likelihood estimators provide similar results as when estimating population means and variances using these designs.

    This paper aims to use goodness-of-fit (GOF) tests and indices together with Markov chain Monte Carlo (MCMC) simulations to assess the performance of four ranked set sampling designs,RSS,ERSS,MRSS,and NRSS designs.GOF analysis includes Kolmogorov-Sminarov test,the Akiki information criterion (AIC),the corrected Akiki criterion (CAIC),the Hanan Quatine information criterion (HQIC),and Schwarz Bayesian information criterion (BIC) indices.

    Goodness-of-fit (GOF) tests are utilized in many areas of research where they are used to verify the distance between the theoretical distribution and the empirical distribution of a given set of data.These tests determine how well the distribution under study fits the data set in use.They can be applied to test the simple hypothesis which completely specifies the model,and composite hypotheses where only the name of the model/distribution is stated but not its parameters as the parameters are estimated from the data.When testing GOF using SRS samples,tests based on the empirical distribution function (EDF) are usually used.These tests include the Kolmogorov-Smirnov (KS) and Cramer-Von Mises (CVM) GOF tests discussed in [12]who gave a practical guide to GOF tests using statistics based on EDF.A comprehensive survey of GOF tests based on SRS can be found in [13],while when using RSS samples,these tests can be obtained simply by replacing the SRS EDF with the unbiased RSS EDF see [14].GOF indices such as AIC,CAIC,HQIC,and BIC are used for model selection and provide fair comparisons between different distribution candidates.

    The rest of the paper is organized as follows:Section 2 is devoted to a simple introduction to the Weibull distribution,while Section 3 will introduce the four RSS designs used in the research.In Section 4,Bayesian analysis is considered for all designs including the SRS design,and in Section 5,the hybrid analysis and numerical study are investigated.Finally,the paper is concluded in Section 6.

    2 The Weibull Distribution

    The Weibull distribution,which is considered one of the widely used lifetime distributions in reliability engineering,was introduced in [15].It is a flexible distribution that can take on the characteristics of other types of distributions,based on the value of the shape parameter.The cdf,pdf,and the quantile functions of the Weibull distribution are given by respectively,wherex>0,α>0,β>0 and 0<u<1.Fig.1 shows some pdf structures for the Weibull distribution at selected values of the scale and shape parameters.

    Figure 1:Weibull probability density function for several shape parameter values

    3 Different Ranked Set Sampling Designs

    In this section,we will discuss the ranked set sampling designs considered in this research,and we will assume for simplicity purposes that the derivations and computations needed are made in one cycle(c=1).

    3.1 RSS Design

    The RSS algorithm according to [16]is described as (i) selectm2units randomly from the target population with cumulative distribution function (cdf)F(x;θ)and probability density function (pdf)f(x;θ).(ii) Allocate them2selected units as randomly as possible intomsets,each of sizem.(iii) Rank the units within each set without yet knowing any values for the variable of interest.The ranking can be based on personal or professional judgment or done on a concomitant variable correlated with a variable of interest.(iv) Choose a sample for actual quantification by including the smallest ranked unit in the first set,the second smallest ranked unit in the second set,the process continues in this way until the largest ranked unit is selected from the last set.(v) Repeat Steps (i) through (iv) forccycles to obtain a sample of sizen=mc.

    3.2 ERSS Design

    The first RSS modification proposed in [3]was used to estimate the population’s mean only using the maximum or minimum ranked units from each set.The process of selecting an ERSS sample is as follows:(a) Repeat steps (i) through (iii) in RSS design.(b) According to the set size,if it is even or odd,the selection method may be changed.If the set sizemis even,select the lowest-ranked unit of each set from the firstsets and select the largest ranked unit of each set from the othersets.If the set size is odd,select the lowest-ranked unit from the firstsets,the median unit of theset,and the largest ranked unit from the remainingsets.(c) Repeat the above stepsrtimes to obtain a sample of sizen=mr.

    3.3 MRSS Design

    It was introduced by [4]to estimate the population mean effectively.It was shown that the MRSS provides an efficient and unbiased mean estimator when the underlying distribution is symmetric.The scheme of MRSS is first as the usual RSS.The process is as follows,(a) repeat steps (i) through (iii) in RSS design.(b) If the set sizemis odd,select the median element of the set;otherwise,select theranked unit from the firstsets and the from the remainingsets select theranked unit.(c) Repeat the above stepsrtimes to obtain a sample of sizen=mr.

    3.4 NRSS Design

    The following process describes the NRSS design proposed by [8]:(a) Selectm2random units from the target population and rank them2sample units based on some preestablished ordering criterion.(b) Select the sample unit ranked in position [(i-1)m+l]th for the final sample fori=1,...,m,where ifmis odd,l=,and ifmis even,l=for oddiandl=m/2 for eveni.(c) Steps (a) and (b) can be repeatedrtimes to obtain a final sample of sizen=mr.

    4 Bayesian Estimation

    In this section,Bayes estimators of Weibull distribution parametersαandβare obtained under the assumption thatαandβare independent random variables distributed with Jeffery’s prior distributions as non-informative priors with densities given,respectively,by

    and

    It is to be noticed that in the current study,we will use the squared error loss function to derive the Bayesian estimators of bothαandβ.

    4.1 Estimation Based on SRS Design

    Assume that {xi,i=1,2,...,m}is a random sample (SRS) drawn from Weibull(α,β).The likelihood function for Weibull data is given by

    The joint posterior distribution ofαandβis given as

    Substituting Eqs.(4) and (5) into Eq.(6),the posterior distribution ofαandβbecomes

    The Bayesian estimators ofαandβbased on the squared error loss function are,respectively,given by

    and

    4.2 Estimation Based on RSS Design

    Let {x(i),i=1,2,...,m,wherex(i)≡x(ii)and-∞<x(i)<∞}be a ranked set sample drawn from a distribution with pdff(x;θ)and cdfF(x;θ),wheremis the set size andθis the parameter space.The likelihood function associated with this design is as:

    The Likelihood function of RSS samples drawn from Weibull(α,β)is given by

    After substituting Eqs.(4),(5) and (10) into Eq.(11),the posterior distribution ofαandβcan be derived directly as follows

    The Bayes estimators ofαandβare the expected values based on their marginal posterior distributions and are,respectively,given by

    4.3 Estimation Based on ERSS Design

    Let {y(i),i=1,2,...,m} be a ranked set sample (RSS) drawn from a distribution with pdff(y;θ)and cdfF(y;θ),wheremis the set size andθis the parameter space.The likelihood function of the ERSS sample drawn from Weibull(α,β)is given by

    Case I:modd

    Case II:meven

    By substituting Eqs.(4),(5),and (14) into Eq.(16) in case of odd set size and Eqs.(4),(5)and (15) into Eq.(17) in the case of even set size,the Bayesian estimators of bothαandβare directly derived as follows

    and

    respectively,in the case of odd set size,while in the case of even set size they are,respectively,given by

    and

    4.4 Estimation Based on MRSS Design

    Case I:modd

    Case II:meven

    By substituting Eqs.(4),(5),and (22) into Eq.(24) for odd samples and Eqs.(4),(5) and(23) into Eq.(25) for even samples,the Bayesian estimators ofαandβare directly derived,respectively,as follows

    and

    in the case of odd set size,while in the case of even set size they are,respectively,given by

    and

    4.5 Estimation Based on NRSS Design

    Let {u(k(i)),i=1,2,...,m}be a neoteric ranked set sample,wheremis the set size drawn from a distribution with pdff(u;θ)and cdfF(u;θ),wheremis the set size andθis the parameter space.Then,according to Sabry and Shabaan [11],the likelihood function of NRSS samples drawn from Weibull(α,β)is then given by

    where

    andk0=0,km+1=m2+1 andu(k0)=-∞,u(km+1)=∞.Therefore,the joint posterior distribution ofαandβis directly derived as follows

    and therefore,substituting Eqs.(4),(5) and (30) into Eq.(31),the Bayesian estimators ofαandβare derived,respectively,as

    and

    As the Bayes estimators based on the above sampling designs involve complicated integral functions;Lindley’s approximation is considered to calculate the approximate Bayes estimators of α and β associated with each sampling design.

    4.6 Lindley’s Approximation

    Lindley [17]proposed an approximation procedure to evaluate the ratio of two integrals such that foru(φ,η);

    wherel(φ,η;x)is the log-likelihood function of the parametersφandη.Several authors have used this approximation procedure to obtain the approximate Bayes estimators for various distributions,for example,[18-21].In the case of two-parameter distributions,using the notationu(θ)=u(θ1,θ2),the posterior mean can be approximated as follows

    where

    andτijis the(i,j)entry of the inverse of the observed information matrix.All quantities of unknown(θ1,θ2)in Eq.(34) are evaluated using the maximum likelihood estimators (MLEs)Assuming thatθ1=λ,θ2=β,andthe mean of the posterior distribution derived using different sampling designs can be obtained and thus Bayes estimators ofλandβare obtained for each sampling design.For application see [22-24].

    5 Simulation Study

    In this section,we conduct a Monte Carlo simulation to compare the performance of the different ranked set sample designs.The data were generated from Weibull (10,1.5),Weibull (10,3.5),and Weibull (10,20) distributions for different sample sizes (m=9,12,15,20,25,30 and 35).The simulation is conducted using software R Software.The algorithm is as follows:

    a.Generatemrandom samples from the Weibull distribution using the quantile function defined in Eq.(3) with number of replicates nsim=10,000

    b.Use the SRS design and different RSS designs discussed in Section 3 to simulate SRS samples and different RSS designs’samples.

    c.Obtain the Bayesian estimators under squared error loss function and using Jeffery’s priors.

    d.Calculate the root total mean squared error (RTMSE) for different RSS estimators and SRS estimators for each replicate,where

    wherepis the number of parameters involved and calculate the total relative efficiency based on the sampling design A relative to the sampling design B (TRE(A,B)),which is defined as:

    e.Conduct a GOF analysis and compare the empirical distribution for each replicate based on the likelihood estimators for all designs and compute the Kolmogorov-Smirnov (KS) statistic,Akaike information criterion (AIC),corrected Akaike information criterion (CAIC),Hannan-Quinn information criterion (HQIC) and Bayesian information criterion (BIC) for all fitted models.Compute an average KS statistic,AIC,CAIC,HQIC,and Schwarz-BIC indices.

    The results of the simulation study are reported in Tabs.1-4.The results for TRE,TRMSE,and p-values for KS test analysis are demonstrated in Figs.2-4.From the results,the following comments are observed,

    Table 1:Total relative efficiency and root total mean squared error for RSS-based estimators under perfect ranking and different designs

    Table 2:GOF analysis for different sampling designs from Weibull (10,1.5)

    · The total efficiency of all RSS-based designs increases as the sample size increases.

    · It is clear that the NRSS design provides the most efficient estimators and is superior to other sampling designs.

    · When the distribution shape is approximately symmetric,the RSS designs are more efficient than the corresponding efficiencies for asymmetric shapes.

    Table 3:GOF analysis for different sampling designs from Weibull (10,3.5)

    · Mean squared error decreases as the sample size increases and NRSS has the smallest MSE.· The GOF analysis showed that NRSS designs do have the highest p-value when testing the empirical distributions using KS test.Other GOF indices are the smallest for NRSS design relative to other RSS designs and they also decrease as the sample size increases.

    Table 4:GOF analysis for different sampling designs from Weibull (10,20)

    Figure 2:Total relative efficiency for different RSS sampling designs

    Figure 3:Total root mean squared error for different RSS sampling designs

    Figure 4:p-values for KS statistics for different RSS sampling designs

    6 Conclusion

    In this paper and based on numerical analysis,four RSS sampling designs were compared when estimating the parameters of the Weibull distribution.According to an extensive simulation study,it was possible to observe that under perfect ranking,the NRSS design outperforms the one-stage RSS,ERSS,and MRSS designs.Furthermore,it can be noted that the RTMSEs decrease as the set size increases,especially in asymmetric cases,and the total relative efficiency increases as the set size increases.Moreover,the NRSS design has the smallest MSEs and the largest efficiencies over the other sampling designs.

    Acknowledgement:The authors are very grateful to the editor’s board and reviewers for their careful and fastidious perusing of the paper.The reviews are detailed and helpful to finalize the manuscript.The authors would like to kindly acknowledge them.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    视频区欧美日本亚洲| 色视频在线一区二区三区| 国产亚洲av高清不卡| 亚洲欧美色中文字幕在线| 操出白浆在线播放| 欧美性长视频在线观看| 日韩大片免费观看网站| 在线观看一区二区三区激情| 久久精品久久久久久噜噜老黄| 精品人妻1区二区| 亚洲五月色婷婷综合| 色综合欧美亚洲国产小说| 国产在线观看jvid| 高潮久久久久久久久久久不卡| 色网站视频免费| 午夜福利视频在线观看免费| 夜夜骑夜夜射夜夜干| 国产成人精品无人区| 亚洲欧洲精品一区二区精品久久久| 美国免费a级毛片| 亚洲少妇的诱惑av| 久久鲁丝午夜福利片| 欧美中文综合在线视频| 18禁国产床啪视频网站| av国产久精品久网站免费入址| 夫妻午夜视频| 夫妻性生交免费视频一级片| 丁香六月天网| 午夜两性在线视频| 在线观看国产h片| 18在线观看网站| 欧美日韩亚洲综合一区二区三区_| 亚洲欧美色中文字幕在线| 亚洲欧美一区二区三区国产| 校园人妻丝袜中文字幕| 老司机亚洲免费影院| 亚洲成国产人片在线观看| 亚洲黑人精品在线| 国产欧美日韩精品亚洲av| 日韩电影二区| 热re99久久国产66热| 久久精品亚洲av国产电影网| 精品少妇黑人巨大在线播放| 精品人妻1区二区| 午夜91福利影院| 亚洲国产欧美在线一区| 国产福利在线免费观看视频| 啦啦啦啦在线视频资源| 成人黄色视频免费在线看| 国产在线观看jvid| 9热在线视频观看99| 日本wwww免费看| videos熟女内射| 色视频在线一区二区三区| 久久99一区二区三区| 在现免费观看毛片| 黄色片一级片一级黄色片| av国产精品久久久久影院| 国产精品一国产av| 欧美精品av麻豆av| 9191精品国产免费久久| 日日爽夜夜爽网站| 精品久久久精品久久久| 亚洲专区中文字幕在线| 午夜视频精品福利| 超色免费av| 亚洲av欧美aⅴ国产| 人人妻人人爽人人添夜夜欢视频| 亚洲国产精品国产精品| 免费在线观看影片大全网站 | 黄色毛片三级朝国网站| 欧美老熟妇乱子伦牲交| netflix在线观看网站| 久久久亚洲精品成人影院| 亚洲av美国av| 天堂俺去俺来也www色官网| a 毛片基地| 一区二区三区乱码不卡18| 国产高清videossex| 七月丁香在线播放| 一区在线观看完整版| 久久久久久久久久久久大奶| 久久久久精品人妻al黑| 久久精品熟女亚洲av麻豆精品| 亚洲专区中文字幕在线| 久热爱精品视频在线9| 丰满少妇做爰视频| 校园人妻丝袜中文字幕| 2018国产大陆天天弄谢| 亚洲欧洲国产日韩| 1024视频免费在线观看| 精品国产一区二区三区久久久樱花| 欧美老熟妇乱子伦牲交| 久久国产精品男人的天堂亚洲| 纯流量卡能插随身wifi吗| 亚洲专区国产一区二区| 精品久久久精品久久久| 一区二区日韩欧美中文字幕| 成人影院久久| 免费在线观看黄色视频的| 电影成人av| 精品国产乱码久久久久久男人| av视频免费观看在线观看| 黄色 视频免费看| 欧美精品亚洲一区二区| 久久青草综合色| 婷婷丁香在线五月| 亚洲一卡2卡3卡4卡5卡精品中文| 99国产精品一区二区蜜桃av | 9热在线视频观看99| 国产精品一区二区免费欧美 | 免费人妻精品一区二区三区视频| 国产熟女欧美一区二区| avwww免费| 啦啦啦视频在线资源免费观看| 日本一区二区免费在线视频| 久久99精品国语久久久| 国产一区二区三区av在线| 中文字幕人妻熟女乱码| 欧美亚洲 丝袜 人妻 在线| avwww免费| 国产精品免费视频内射| 男男h啪啪无遮挡| 久久ye,这里只有精品| 国产精品 欧美亚洲| cao死你这个sao货| 久久中文字幕一级| 看免费成人av毛片| 亚洲成人国产一区在线观看 | 人人妻人人澡人人爽人人夜夜| 国产视频一区二区在线看| 91精品国产国语对白视频| 青青草视频在线视频观看| 高清不卡的av网站| 久久影院123| 国产一区亚洲一区在线观看| 操美女的视频在线观看| 波野结衣二区三区在线| 成年人免费黄色播放视频| 亚洲午夜精品一区,二区,三区| 啦啦啦视频在线资源免费观看| 汤姆久久久久久久影院中文字幕| 亚洲第一av免费看| 菩萨蛮人人尽说江南好唐韦庄| 啦啦啦 在线观看视频| 成人国产一区最新在线观看 | 欧美成人精品欧美一级黄| 中文字幕色久视频| 亚洲人成77777在线视频| 在线观看人妻少妇| 99九九在线精品视频| 狂野欧美激情性xxxx| 国产精品成人在线| kizo精华| 亚洲第一av免费看| 热re99久久国产66热| 人人妻人人添人人爽欧美一区卜| av片东京热男人的天堂| 成在线人永久免费视频| 嫩草影视91久久| 丝袜美足系列| 国产片内射在线| 91麻豆av在线| 国产有黄有色有爽视频| 人人妻,人人澡人人爽秒播 | 国产av国产精品国产| 国产成人啪精品午夜网站| 亚洲美女黄色视频免费看| 欧美老熟妇乱子伦牲交| 王馨瑶露胸无遮挡在线观看| 国产精品免费大片| 国产有黄有色有爽视频| 国产淫语在线视频| 国产精品久久久人人做人人爽| 亚洲国产毛片av蜜桃av| 久久热在线av| 日韩人妻精品一区2区三区| 婷婷色综合www| xxx大片免费视频| 最新在线观看一区二区三区 | 一个人免费看片子| 国语对白做爰xxxⅹ性视频网站| 久久国产精品大桥未久av| 黄网站色视频无遮挡免费观看| 50天的宝宝边吃奶边哭怎么回事| 中国国产av一级| 亚洲,一卡二卡三卡| 国产av国产精品国产| 欧美日韩国产mv在线观看视频| 丁香六月欧美| 精品欧美一区二区三区在线| 纯流量卡能插随身wifi吗| 亚洲精品av麻豆狂野| 国产av国产精品国产| 亚洲国产欧美网| 国产精品久久久久久精品电影小说| 成年人午夜在线观看视频| 一边摸一边抽搐一进一出视频| 天天躁日日躁夜夜躁夜夜| 亚洲av男天堂| 少妇人妻 视频| 中国美女看黄片| 美女脱内裤让男人舔精品视频| 午夜福利,免费看| 精品少妇黑人巨大在线播放| 亚洲av美国av| 蜜桃在线观看..| 久久久久精品人妻al黑| 亚洲第一青青草原| 日本欧美视频一区| 国产亚洲欧美在线一区二区| 男女下面插进去视频免费观看| 国产av精品麻豆| 免费看不卡的av| 亚洲精品在线美女| 老司机在亚洲福利影院| 亚洲国产欧美网| 一级毛片我不卡| 免费在线观看日本一区| 精品高清国产在线一区| 久久人人爽人人片av| 久久精品国产a三级三级三级| 国产在线观看jvid| 中文字幕人妻丝袜一区二区| 午夜福利免费观看在线| 只有这里有精品99| 桃花免费在线播放| 两性夫妻黄色片| 国产熟女午夜一区二区三区| 成人国语在线视频| 欧美日韩亚洲国产一区二区在线观看 | 91麻豆精品激情在线观看国产 | 黄色视频在线播放观看不卡| 精品一区二区三区av网在线观看 | xxxhd国产人妻xxx| 亚洲精品av麻豆狂野| 久久久久网色| 飞空精品影院首页| av线在线观看网站| 亚洲国产看品久久| 赤兔流量卡办理| 大香蕉久久网| 国产福利在线免费观看视频| 日韩av不卡免费在线播放| 国产亚洲欧美在线一区二区| a级毛片在线看网站| 久9热在线精品视频| bbb黄色大片| 久久久亚洲精品成人影院| av网站免费在线观看视频| 国产成人精品久久久久久| 国产熟女欧美一区二区| 一级片免费观看大全| 免费在线观看黄色视频的| svipshipincom国产片| 国产成人免费无遮挡视频| 日韩一卡2卡3卡4卡2021年| 日韩欧美一区视频在线观看| 在线 av 中文字幕| 日本a在线网址| 精品人妻在线不人妻| 国产亚洲精品第一综合不卡| 亚洲午夜精品一区,二区,三区| 777米奇影视久久| 日本色播在线视频| 最新在线观看一区二区三区 | 亚洲精品久久午夜乱码| 又紧又爽又黄一区二区| 婷婷色av中文字幕| 亚洲av成人不卡在线观看播放网 | 国产爽快片一区二区三区| 美女午夜性视频免费| 国产伦理片在线播放av一区| 黑丝袜美女国产一区| 久久性视频一级片| bbb黄色大片| 爱豆传媒免费全集在线观看| 18禁裸乳无遮挡动漫免费视频| 亚洲av电影在线观看一区二区三区| 久久影院123| 中国国产av一级| 色播在线永久视频| 一边摸一边做爽爽视频免费| 亚洲三区欧美一区| 国产爽快片一区二区三区| 老熟女久久久| 亚洲熟女毛片儿| 蜜桃国产av成人99| 不卡av一区二区三区| 下体分泌物呈黄色| 热re99久久精品国产66热6| 天天躁夜夜躁狠狠躁躁| 日韩视频在线欧美| 成人国产一区最新在线观看 | 国产男女超爽视频在线观看| 国产伦人伦偷精品视频| 国产成人精品久久二区二区91| 日韩一卡2卡3卡4卡2021年| 国产成人av教育| 亚洲精品国产色婷婷电影| svipshipincom国产片| 亚洲欧美一区二区三区久久| 中文字幕亚洲精品专区| 91成人精品电影| kizo精华| 一级毛片黄色毛片免费观看视频| 亚洲激情五月婷婷啪啪| bbb黄色大片| 国产色视频综合| 午夜激情久久久久久久| 欧美精品av麻豆av| 一区二区三区四区激情视频| a 毛片基地| 精品一品国产午夜福利视频| 国产一区二区激情短视频 | 精品久久蜜臀av无| 电影成人av| 免费人妻精品一区二区三区视频| 免费高清在线观看日韩| 欧美日本中文国产一区发布| 麻豆av在线久日| 亚洲国产欧美在线一区| 热re99久久国产66热| 免费在线观看影片大全网站 | 国产成人一区二区在线| 在线观看免费日韩欧美大片| av天堂久久9| 成人18禁高潮啪啪吃奶动态图| 日本猛色少妇xxxxx猛交久久| netflix在线观看网站| 三上悠亚av全集在线观看| 尾随美女入室| 电影成人av| 久久精品久久久久久噜噜老黄| 久久国产精品人妻蜜桃| 亚洲欧美一区二区三区国产| 日本91视频免费播放| 女人久久www免费人成看片| www.999成人在线观看| 新久久久久国产一级毛片| 国产在线一区二区三区精| 成人国产一区最新在线观看 | 人人妻,人人澡人人爽秒播 | 色婷婷久久久亚洲欧美| 99国产精品一区二区三区| 亚洲自偷自拍图片 自拍| 在线观看国产h片| 国产一区亚洲一区在线观看| 大码成人一级视频| 777米奇影视久久| 免费av中文字幕在线| 亚洲综合色网址| 欧美黄色淫秽网站| 中文精品一卡2卡3卡4更新| 性少妇av在线| 国产精品秋霞免费鲁丝片| 777米奇影视久久| 国产麻豆69| 亚洲熟女精品中文字幕| 亚洲人成电影免费在线| 在线观看免费午夜福利视频| 国产精品.久久久| avwww免费| 大香蕉久久网| 亚洲人成电影免费在线| 日本av手机在线免费观看| 18禁观看日本| 色94色欧美一区二区| 国产免费福利视频在线观看| 一区二区三区精品91| 久久ye,这里只有精品| 女性被躁到高潮视频| 两个人免费观看高清视频| 18在线观看网站| 久久ye,这里只有精品| 国产成人欧美| 成人免费观看视频高清| 99香蕉大伊视频| 黄色毛片三级朝国网站| 欧美精品高潮呻吟av久久| 伊人亚洲综合成人网| 亚洲国产精品一区三区| 国产高清视频在线播放一区 | 亚洲 国产 在线| 国产精品一区二区在线观看99| 亚洲熟女精品中文字幕| 国产成人av激情在线播放| 老熟女久久久| 尾随美女入室| 中国美女看黄片| 成人国产av品久久久| 欧美人与性动交α欧美软件| 韩国精品一区二区三区| 亚洲av电影在线进入| 亚洲欧美成人综合另类久久久| 操出白浆在线播放| 免费不卡黄色视频| 成人18禁高潮啪啪吃奶动态图| 婷婷色av中文字幕| 两个人免费观看高清视频| 亚洲激情五月婷婷啪啪| √禁漫天堂资源中文www| 欧美性长视频在线观看| 热re99久久精品国产66热6| 老熟女久久久| 一本一本久久a久久精品综合妖精| 亚洲人成电影观看| xxxhd国产人妻xxx| 久久人人97超碰香蕉20202| 欧美日韩综合久久久久久| 国产精品成人在线| 国产精品三级大全| 国产精品一二三区在线看| 欧美亚洲日本最大视频资源| 精品人妻熟女毛片av久久网站| 夜夜骑夜夜射夜夜干| 不卡av一区二区三区| 亚洲精品中文字幕在线视频| 熟女av电影| 宅男免费午夜| 成年人免费黄色播放视频| 亚洲国产精品999| 少妇被粗大的猛进出69影院| 女人高潮潮喷娇喘18禁视频| 亚洲精品一卡2卡三卡4卡5卡 | 黄频高清免费视频| 人人妻人人爽人人添夜夜欢视频| 蜜桃在线观看..| 丝袜美腿诱惑在线| 大香蕉久久成人网| 最新在线观看一区二区三区 | 国产欧美亚洲国产| 国产一区二区激情短视频 | 天天躁日日躁夜夜躁夜夜| 国产一卡二卡三卡精品| 成人黄色视频免费在线看| 男女国产视频网站| 9热在线视频观看99| 久久精品aⅴ一区二区三区四区| a级毛片在线看网站| 亚洲成国产人片在线观看| 午夜两性在线视频| 国产91精品成人一区二区三区 | 少妇被粗大的猛进出69影院| 丝瓜视频免费看黄片| 性色av一级| 97在线人人人人妻| 亚洲伊人色综图| 精品久久久久久久毛片微露脸 | netflix在线观看网站| 搡老岳熟女国产| 久久人妻福利社区极品人妻图片 | 亚洲欧美日韩高清在线视频 | 涩涩av久久男人的天堂| 国产欧美亚洲国产| 欧美黄色淫秽网站| 亚洲欧美成人综合另类久久久| 久久精品国产综合久久久| 亚洲专区中文字幕在线| 日本a在线网址| 欧美大码av| 波多野结衣av一区二区av| 色网站视频免费| 日韩大片免费观看网站| a级毛片黄视频| 亚洲第一青青草原| 1024视频免费在线观看| 久久久精品94久久精品| 国产高清视频在线播放一区 | 国产精品一区二区在线观看99| 国产无遮挡羞羞视频在线观看| 欧美日韩亚洲综合一区二区三区_| 中国国产av一级| 精品人妻1区二区| 男人操女人黄网站| 好男人视频免费观看在线| 亚洲视频免费观看视频| 欧美亚洲 丝袜 人妻 在线| 女人爽到高潮嗷嗷叫在线视频| 国产精品麻豆人妻色哟哟久久| 嫁个100分男人电影在线观看 | 午夜免费成人在线视频| 亚洲人成77777在线视频| 国产精品 欧美亚洲| 精品国产超薄肉色丝袜足j| 丝袜美腿诱惑在线| 国产人伦9x9x在线观看| 免费黄频网站在线观看国产| 99国产精品免费福利视频| 可以免费在线观看a视频的电影网站| 国精品久久久久久国模美| 欧美av亚洲av综合av国产av| 国产精品 国内视频| 午夜日韩欧美国产| videos熟女内射| 最新的欧美精品一区二区| 久久久久久久精品精品| 欧美精品高潮呻吟av久久| 中国美女看黄片| av电影中文网址| 久久人人97超碰香蕉20202| 日韩av在线免费看完整版不卡| 免费av中文字幕在线| 国产在线一区二区三区精| 中文欧美无线码| 丰满少妇做爰视频| 国产午夜精品一二区理论片| 国产精品 国内视频| 大码成人一级视频| 老熟女久久久| 久久精品成人免费网站| 亚洲情色 制服丝袜| 亚洲国产毛片av蜜桃av| 日本a在线网址| 久久久精品94久久精品| 午夜福利视频在线观看免费| 少妇裸体淫交视频免费看高清 | 黄色视频在线播放观看不卡| 在线天堂中文资源库| 国产一区二区在线观看av| 亚洲欧美激情在线| av有码第一页| 国产成人av激情在线播放| 精品亚洲乱码少妇综合久久| 成年人黄色毛片网站| 一区二区三区乱码不卡18| 国产精品二区激情视频| 大香蕉久久成人网| 亚洲国产精品成人久久小说| 亚洲av日韩在线播放| 久久综合国产亚洲精品| 精品一区二区三卡| 汤姆久久久久久久影院中文字幕| 日韩免费高清中文字幕av| 另类亚洲欧美激情| 美女扒开内裤让男人捅视频| 亚洲精品国产区一区二| 少妇裸体淫交视频免费看高清 | 大香蕉久久成人网| 免费在线观看视频国产中文字幕亚洲 | 制服人妻中文乱码| 精品一区二区三卡| 少妇人妻久久综合中文| 飞空精品影院首页| 又大又爽又粗| 中文字幕av电影在线播放| 91麻豆精品激情在线观看国产 | 国产成人精品久久二区二区免费| avwww免费| 欧美人与性动交α欧美精品济南到| 欧美 亚洲 国产 日韩一| 久久毛片免费看一区二区三区| 国产一区亚洲一区在线观看| 老熟女久久久| 日韩av在线免费看完整版不卡| 亚洲一区中文字幕在线| 欧美激情极品国产一区二区三区| 一区二区三区四区激情视频| 黄色一级大片看看| 男女边吃奶边做爰视频| 日韩电影二区| av福利片在线| 嫩草影视91久久| 美女午夜性视频免费| 欧美xxⅹ黑人| 2021少妇久久久久久久久久久| 亚洲男人天堂网一区| 国产人伦9x9x在线观看| 午夜福利乱码中文字幕| 99热国产这里只有精品6| 亚洲中文字幕日韩| 视频区欧美日本亚洲| 高清不卡的av网站| 国产又爽黄色视频| 一本色道久久久久久精品综合| 免费少妇av软件| 99久久精品国产亚洲精品| 天天躁夜夜躁狠狠躁躁| 青草久久国产| 天堂俺去俺来也www色官网| 成人黄色视频免费在线看| 国产亚洲av高清不卡| 最黄视频免费看| 成人国产一区最新在线观看 | 成人影院久久| 欧美97在线视频| 日本猛色少妇xxxxx猛交久久| 丰满饥渴人妻一区二区三| 只有这里有精品99| 日本欧美国产在线视频| 99国产精品免费福利视频| av一本久久久久| 精品一品国产午夜福利视频| 中文字幕最新亚洲高清| 在线天堂中文资源库| 午夜免费鲁丝| 久久久国产精品麻豆| 国产在视频线精品| 性高湖久久久久久久久免费观看| 精品久久久精品久久久| 国产成人精品无人区| 国产精品久久久久成人av| 男女边摸边吃奶| 欧美日韩黄片免| 国产精品国产三级专区第一集| 国产精品久久久久久精品古装| 日韩av不卡免费在线播放| 9热在线视频观看99| 久久精品亚洲av国产电影网| 一二三四在线观看免费中文在| 香蕉国产在线看| av线在线观看网站| 老司机午夜十八禁免费视频| 免费少妇av软件| 制服人妻中文乱码|