• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DTLM-DBP:Deep Transfer Learning Models for DNA Binding Proteins Identification

    2021-12-14 06:05:34SaraSaberUswahKhairuddinRubiyahYusofandAhmedMadani
    Computers Materials&Continua 2021年9期

    Sara Saber,Uswah Khairuddin,Rubiyah Yusof and Ahmed Madani

    1Department of Computer Engineering,Faculty of Engineering,Arab Academy of Science and Technology,Egypt

    2Centre for Artificial Intelligence&Robotics,Malaysia-Japan International Institute of Technology,Universiti Teknologi Malaysia

    Abstract:The identification of DNA binding proteins (DNABPs) is considered a major challenge in genome annotation because they are linked to several important applied and research applications of cellular functions e.g.,in the study of the biological,biophysical,and biochemical effects of antibiotics,drugs,and steroids on DNA.This paper presents an efficient approach for DNABPs identification based on deep transfer learning,named“DTLM-DBP.” Two transfer learning methods are used in the identification process.The first is based on the pre-trained deep learning model as a feature’s extractor and classifier.Two different pre-trained Convolutional Neural Networks(CNN),AlexNet 8 and VGG 16,are tested and compared.The second method uses the deep learning model as a feature’s extractor only and two different classifiers for the identification process.Two classifiers,Support Vector Machine (SVM) and Random Forest (RF),are tested and compared.The proposed approach is tested using different DNA proteins datasets.The performance of the identification process is evaluated in terms of identification accuracy,sensitivity,specificity and MCC,with four available DNA proteins datasets:PDB1075,PDB186,PDNA-543,and PDNA-316.The results show that the RF classifier,with VGG-Net pre-trained deep transfer learning features,gives the highest performance.DTLM-DBP was compared with other published methods and it provides a considerable improvement in the performance of DNABPs identification.

    Keywords:DNABPs;deep transfer learning;AlexNet 8;VGG 16;SVM;RF

    1 Introduction

    Deoxyribonucleic Acid (DNA) represents the cell blueprint that contains the main information that codes all organisms.DNA can perform its functions with the help of thousands of proteins,which are called DNA binding proteins (DNABPs).DNABPs have several jobs,such controlling protein production,regulating cell growth and storing DNA in the nucleus.DNABPs play an important role in the structural composition of DNA.In addition,they regulate and control different cellular processes such as the transcription,replication,recombination,repair and modification of DNA.

    DNABPs identification is considered a major challenge of genome annotation because they have several linked cellular functions.The identification process may include:identifying the DNABPs (positive sample) from the non-DNABPs (negative sample) [1],identifying the singlestranded DNABPs from the double-stranded DNABPs [2],or identifying the DNABPs from the Ribonucleic acid-binding proteins (RNABPs) [3-5].In this paper,the identification process is formulated as a binary classification problem to identify DNABPs and non-DNABPs.DNABPs are the proteins that have DNA binding domains and they generally interact with the major groove of B-DNA.Non-DNABPs,on the other hand,are the structural proteins within the chromosomes.

    Several experimental technical methods can be used for identifying DNABPs,but they are time-consuming and expensive [6].Therefore,there is a significant need to find a suitable and efficient computational method for replacing these experimental methods.Recently,several computational and statistical methods have been proposed for DNABPs identification,but most of these methods cannot provide the invaluable knowledge base for DNABPs identification.With the advancements in machine and deep learning techniques over recent years,several methods based on machine and deep learning have been presented.

    Zhu et al.,proposed a method for DNABPs identification based on the position-specific scoring matrices (PSSM) and co-occurrence matrix.The results achieved an accuracy of 97.06%for Yeast dataset,98.95% for Human dataset,and 89.69% for H.Pylori dataset [7].The PSSM with SVM (PSFM-DT) tested by Xu et al.[8]achieved an accuracy of 79.96% for PDB1075 dataset,and 79.96% for PDB186 dataset.In addition,the PSSM with RF tested by Waris et al.[9]achieved an accuracy of 92.3% for their tested dataset.Chowdhury et al.,proposed a method(iDNAProt-ES) for DNABPs identification by extracting the structural and evolutionary features that feed the SVM predictor.The results achieved an accuracy of 90.18% for the jack-knife dataset [10].Xu used the random forest for DNABPs identification.The results achieved an accuracy of 85.57 for the jack-knife dataset [11].

    Zhang et al.,proposed a method for DNABPs identification by combining the positionspecific frequency matrix and the distance-bigram transformation (PSFM-DBT).The results achieved an accuracy of 81.02% for PDB1075 dataset,and 80.65% for PDB186 dataset [12].Zhang et al.,made features with a fusion of evolutionary,structural,and physicochemical features for DNABPs identification,and used the binary firefly optimization for removing the redundant features.The results achieved an accuracy of 91% for the DNA dataset,and 0.80.9% for PDB186 dataset [13].Ma et al.,proposed a method for DNABPs identification based on selecting the hybrid features using the random forest.The results achieved an accuracy of 89.56% for Mainsett dataset [14].

    Moreover,Shen et al.,used the multi-scale local average blocks approach for DNABPs identification.The results achieved an accuracy of 91.80% for PDNA-543 dataset,92.06% for PDNA-41 dataset,90.23% for PDNA-316 dataset,and 77.6% for PDNA-52 dataset [15].Krishna et al.,proposed a DNABPs identification (DNA-Prot) method by incorporating the evolutionary features into the pseudo-amino acid composition.The results achieved an accuracy of 81.83% for DNA-Prot dataset,and 61.42% for DNA binder dataset [16].This method was modified by adding the grey model and named iDNA-Prot [17].Fu et al.,applied the same method on the jack-knife test and independent test,which achieved an accuracy of 89.77% and 88.71%,respectively [18].Wei et al.[19]used RF in the training,called the Method by Local-DPP model.Moreover,Liu et al.[20]used SVM and called it iDNAPro-PseAAC.This method was improved through dimension reduction by Liu et al.[21]and renamed iDNA-Pro-dis.The concept of Pse-AAC was applied in other models called DNABinder [22],PseDNA-Pro [23],and DPP-PseAAC [24].Biological information was added by Zaman et al.[25]and named (HMMBinder).

    Szilagyi et al.presented a method for DNABPs identification (DNABIND) based on the amino acid proportions in the sequence of the protein.The results achieved an accuracy of 67.70% for PDB186 dataset [26].Gao et al.presented a threading-based method for DNABPs identification (DNA-Threader).The results achieved an accuracy of 59.7% for PDB186 dataset [27].Szilagyi et al.presented a DNABPs identification method (DNABIND) based on hybrid feature selection using RF and Gaussian naive Bayes (DBPPred).The results achieved an accuracy of 76.90% for PDB186 dataset [28].

    Zhang et al.,proposed a DNABPs identification method using bootstrap multiple CNN.The results achieved an accuracy of 90.77% for PDNA-543 dataset and 91.04% for PDNA-316 dataset [29].They used the long short-term memory and CNN.The results achieved an accuracy of 81.83% for DNA-Prot dataset,and 89.19% for Chip-seq dataset [30].Liu et al.,proposed a method for DNABPs identification by combining the auto-cross covariance with ensemble learning(iDNA-KACC).The results achieved an accuracy of 75.16% for the tested dataset [31].Qu et al.,proposed a method for DNABPs identification using mixed feature representation methods.The results achieved an accuracy of 77.43% for PDB1075 dataset,and 81.58% for PDB186 dataset [32].Hu et al.[33]combined the sequence features with multiple SVMs and named the method TargetDNA.Si et al.[34]presented a meta-based DNABPs identification and named it MetaDBSite.

    The main contribution of this paper is the testing and adaptation of pre-trained deep transfer learning models for DNABPs sequence identification.The paper presents a novel approach for DNABPs identification using deep transfer learning.In this approach,two transfer learning methods were tested and compared;in the first method,the pre-trained deep CNN (AlexNet 8 or VGG 16) learning model was used as a feature’s extractor and classifier.In the second method,the deep learning model was used as a feature’s extractor only,while the classifier was either the SVM or RF.The proposed approach was tested using different DNA proteins datasets.The performance of the identification process was evaluated in terms of identification accuracy,sensitivity,specificity,and MCC with four available DNA proteins datasets:PDB1075,PDB186,PDNA-543,and PDNA-316 datasets.The results show that the RF classifier with VGG-Net pre-trained deep transfer learning features produced the highest performance.DTLM-DBP was compared with the other published methods and found to represent a considerable improvement in the performance of DNABPs identification.The remainder of the paper is organized as follows:the second section will present the proposed methodology,the third section gives the results,and the conclusion will be given in the last section.

    2 Materials and Methods

    The general block diagram of the DNABPs identification process in this paper is shown in Fig.1.Two transfer learning methods were carried out.In the first method,the protein sequences were adapted to CNN models using 1D convolutions layers,then one of the pre-trained deep CNN learning models was used as a feature’s extractor and classifier.In the second method,the deep learning model was used as a feature’s extractor only,while the classifier was either the SVM or RF.More details about each block will be presented in the following subsections.

    Figure 1:DNABPs identification process

    2.1 Datasets

    There are several publicly available protein sequences datasets,most of which were collected from the protein data bank (PDB).The researchers collected the sequences data from the PDB website by searching for words such as ‘DNA binding,’‘DNA protein’and other related terms,Then,certain processing procedures were undertaken to avoid the inclusion of redundant data,and finally,the obtained datasets were used in the research.To guarantee the reliability of the proposed approach and for performance evaluation comparison purposes,pre-collected publicly available datasets were used that had been used by several researchers in the literature.

    The experimental work was implemented on four different DNABPs datasets:PDB1075,PDB186,PDNA-543,and PDNA-316 datasets.PDB1075 dataset was collected by Liu et al.[21],and included 1,075 protein samples;525 samples were positive DNABPs and 550 samples were negative non-DNABPs.PDB186 dataset was collected by Lou et al.[28],and included 186 protein samples;93 samples were positive DNABPs and 93 samples were negative non-DNABPs.PDNA-543 dataset was collected by Hu et al.[33],and included 144,544 protein samples;9,549 samples were positive DNABPs and 134,995 samples were negative non-DNABPs.PDNA-316 dataset was collected by Si et al.[34],and included 72,718 protein samples;5,609 samples were positive DNABPs and 67,109 samples were negative non-DNABPs.

    2.2 Deep Transfer Learning Models

    In this paper,two pre-trained deep transfer learning models,AlexNet and VGG-Net,were adapted for the identification of DNABPs sequences.The model architecture of each training model will be presented.These two models had been selected from the large number of pre-trained deep learning transfer models because,according to the literature,they are the most successful models in terms of the identification process,while their architectures are simple and contain different numbers of convolution layers.

    2.2.1 AlexNet-8 Pre-Trained Deep Transfer Learning Model

    AlexNet-8 is a CNN that is 8 layers deep,and was introduced by Krizhevsky et al.[35].The number of parameters in AlexNet-8 is 60 million and the number of neurons is 650,000.It consists of 8 layers (5 convolutional and 3 fully connected),as shown in the model architecture in Fig.2 [36].The first and second convolutional layers are followed by normalization and a max-pooling layer,the third and fourth convolutional layers are connected directly,and the last convolutional layer is followed by a max-pooling layer.The output of the convolutional layer passes through a series of two fully connected layers,in which the second fully connected layer is fed into the SoftMax classifier.

    Figure 2:AlexNet-8 model architecture

    2.2.2 VGG-16 Pre-Trained Deep Transfer Learning Model

    VGG-16 is a CNN model which is 16 layers deep,and was introduced by Simonyan and Zisserman in 2014 [37,38].According to the literature,VGG-16 offers a considerable improvement over AlexNet in several applications because it is rich with several feature representations that can be used for a wide range of applications.The VGG-16 model architecture is shown in Fig.3 [39].It consists of a 16-layer network comprised of convolutional layers.

    Figure 3:VGG-16 model architecture

    2.3 Classifiers

    The DNA proteins identification process is mainly a binary classification problem between two classes.The first class is the DNABPs that have DNA binding domains and interact with the DNA.The second class is the non-DNABPs,such as the structural proteins within the chromosomes.Several classifiers are suitable for binary classification;the most commonly used classifiers for DNA proteins identification are SVM [8,22,33]and RF [14,16,17,28].In this paper,the two classifiers were used and compared.

    2.3.1 SVM Classifier

    SVM is a set of related supervised-learning models introduced by Cortes et al.[40].It minimizes the identification error and maximizes the geometric margin.SVMs are the most suitable binary linear identification methods [40-43].SVM works for two-class problems by separating the data by a separating hyperplane,as shown in Fig.4.

    Figure 4:SVM separating hyperplanes

    In Fig.4,consider that the training sequences are represented by {xi,yi},i=1,...,l,yi=±1,xi∈Rd,x points lie on the hyperplane and satisfy the condition x.w+b=0,w a is normal to the hyperplane.This can be formulated as [44]:

    The primal Lagrange is given as [44]:

    whereαi,i=1,...,lare the positive Lagrange multipliers,‖w‖ is the Euclidean norm ofw.

    For minimizingLPwith respect tow,b,using the conditions:

    Using Eqs.(3)-(5),the dual Lagrangian will be:

    The mapping of training vectors xi into the higher dimensional space uses a function called kernel function K(xi,xj)≡Φ(xi)Φ(xj).There are several SVMs kernel functions,such as:

    Linear kernel:

    Polynomial kernel:

    RBF kernel:

    Sigmoid kernel:

    whereγ,r and d are kernel parameters.

    Figure 5:RF algorithm

    The DNA protein sequences identification was carried out using the SVM Matlab Toolbox with different kernel functions:linear,polynomial,RBF,and sigmoid kernel.DNABPs identification using SVM can be carried out in two steps.The first step is building the identification simulation model,while the second step is the feature matching for the model performance evaluation.In the modelling step,the features related to the DNA protein sequences are stored.When a tested sequence arrives,its features are matched with the stored features in the model and the identification decision is taken based on the matching process.

    2.3.2 RF Classifier

    RF is a tree collection introduced by Ho [45];each tree is grown through a subset of all the possible attributes of the input features vectors [46].It constructs the decision ensemble in random trees based on the input features,and the final identification decision is obtained by combining the results from the trees via voting,as shown in Fig.5.

    3 Results and Discussions

    3.1 Performance Evaluation Metrics

    The performance of the DNA protein sequences identification system is normally evaluated using wide performance metrics,such as identification accuracy,sensitivity,specificity,and Matthew’s correlation coefficient.These metrics can be calculated using four parameters obtained from the testing of the identification system with a certain dataset.The system tests the DNA protein sequences if it is a DNABP (positive sample) or non-DNABP (negative sample).For each DNABP testing,if the test result is positive,this means that the system identifies it as correct (True),and accumulating the positive true results for all the tested protein sequences in the dataset gives theTpnumber.If the test result is negative,this means that the system identifies it as incorrect (False) and the accumulation gives theFnnumber.For each non-DNABP testing,if the test result is positive,this means that the system identifies it as incorrect (False),and the accumulation gives theFpnumber.If the test result is negative,this means that the system identifies it as correct (True) and the accumulation gives theTnnumber.Using these four numbers,it is possible to calculate:

    1.Accuracy

    2.Sensitivity

    3.Specificity

    4.Matthew’s correlation coefficient

    The accuracy,the sensitivity and the specificity are percentages,while theMCCranges from-1 to+1;the perfect classifier should give 100% for the three first parameters and+1MCC.

    3.2 Deep Transfer Learning Models

    This section presents the results of the first DNABPs identification method,which is based on the pre-trained deep transfer learning models as the features extractor and classifier.Two pretrained deep transfer learning models,AlexNet and VGG-Net,were tested and compared in terms of identification accuracy,sensitivity,specificity,and MCC for the four examined DNA proteins datasets,as shown in Tab.1.

    Table 1:Performance comparison between deep transfer learning models

    The results in Tab.1 show that the VGG-Net 16 pre-trained deep transfer learning model gives higher performance than AlexNet.This may be because the 16-layer VGGnet is deeper than the 8-layer AlexNet,and the VGGnet is rich with several feature representations.

    3.3 Classifiers Tuning

    This section presents the results of the second DNABPs identification method,which is based on the pre-trained deep transfer learning models as the features extractor.The classifier is one of the two different classifiers (SVM or RF) used for the identification process.The identification accuracy,sensitivity,specificity,and MCC for the four examined DNA proteins datasets are as shown in Tab.2.

    The results in Tab.2 show that the RF classifier with VGG-Net pre-trained deep transfer learning features gives the highest performance compared to the other approaches.

    3.4 Performance Comparison with Existing Methods

    The performance of the proposed DNABPs identification method (DTLM-DBP) was compared with the other published methods for the four available DNA proteins datasets:PDB1075,PDB186,PDNA-543,and PDNA-316 datasets.For PDB1075 dataset,DTLM-DBP was compared with DNAbinder [22],DNA-Prot [16],iDNA-Prot [17],iDNA-Prot-dis [21],PSSM-DT [8],PseDNA-Pro [23],iDNAPro-PseAAC [20],PSFM-DBT [12],Mixed Feature [32],Local-DPP [19],iDNAProt-ES [10],HMMBinder [25],iDNA-KACC [31],and DPP-PseAAC [24],as shown in Tab.3.

    The results in Tab.3.show that the proposed method gives a better performance than the other published methods.

    For PDB186 dataset,DTLM-DBP was compared with DNABIND [26],DNAbinder [22],DNA-Threader [27],DNA-Prot [16],DBPPred [28],iDNA-Prot [17],iDNA-Prot-dis [21],PSSM-DT [8],iDNAPro-PseAAC [20],Mixed Feature [32],PseDNA-Pro [23],iDNAProt-ES [10],PSFM-DBT [12],Local-DPP [19],HMMBinder [25],DPP-PseAAC [24],and iDNA-KACCEL [31],as shown in Tab.4.The results show the superiority of the proposed method over the other published methods.

    Table 2:Performance comparison between SVM and RF classifiers

    Table 3:Comparison of DTLM-DBP with previous methods for PDB 1075 dataset

    For PDNA-543 dataset,DTLM-DBP was compared with TargetDNA [33],EC-RUS [15],and Bootstrap [30],as shown in Tab.5.

    Table 4:Comparison of DTLM-DBP with previous methods for PDB 186 dataset

    Table 5:Comparison of DTLM-DBP with previous methods for PDNA-543 dataset

    For PDNA-316 dataset,DTLM-DBP was compared with MetaDBSite [34],TargetDNA [33],EC-RUS [15],and Bootstrap [30],as shown in Tab.6.

    The results confirmed the efficacy and viability of the proposed method for different datasets.

    Table 6:Comparison of DTLM-DBP with previous methods for PDNA-316 dataset

    4 Conclusions

    The paper presented an efficient new approach for DNABPs identification based on deep transfer learning “DTLM-DBP.” The protein sequences were adapted to CNN models using 1D convolutions layers,then the VGG-NET 16 pre-trained deep transfer learning models were used as a feature’s extractor.Finally,the RF classifier was used for sequence features matching.DTLM-DBP was tested using different DNA proteins datasets and compared with the other published DNABPs identification methods,and it has provided a considerable improvement in the performance of DNABPs identification.

    Acknowledgement:We would like to acknowledge Universiti Teknologi Malaysia for their support via the 2020-2021 Industry-International Incentive Grant which funded this publication.

    Funding Statement:This paper was funded under the 2020-2021 Industry-International Incentive Grant by Universiti Teknologi Malaysia (Grant Number:Q.K130000.3043.02M12) which was granted to U.Khairuddin,F.Behrooz and R.Yusof.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    亚洲国产精品成人久久小说| 成人鲁丝片一二三区免费| 亚洲精华国产精华液的使用体验| 国产视频首页在线观看| 国产精品国产三级专区第一集| 人妻系列 视频| 国产一区二区三区av在线| 天堂俺去俺来也www色官网| 国产高清国产精品国产三级 | 一区二区三区四区激情视频| 九草在线视频观看| 哪个播放器可以免费观看大片| .国产精品久久| 久久久欧美国产精品| 中文在线观看免费www的网站| 国产亚洲精品久久久com| 99视频精品全部免费 在线| 国产精品国产三级国产专区5o| 亚洲美女视频黄频| 夜夜爽夜夜爽视频| 18禁裸乳无遮挡动漫免费视频 | 久久热精品热| 岛国毛片在线播放| 午夜视频国产福利| 91久久精品国产一区二区成人| 国产精品成人在线| 特大巨黑吊av在线直播| 日本色播在线视频| 日本黄色片子视频| 精品久久国产蜜桃| 日韩av在线免费看完整版不卡| 国产男女超爽视频在线观看| 亚洲国产精品成人久久小说| 国产精品国产三级国产av玫瑰| 国产成人午夜福利电影在线观看| 国产精品久久久久久精品古装| 免费观看的影片在线观看| 欧美少妇被猛烈插入视频| av在线蜜桃| 国产精品国产三级国产专区5o| 日韩欧美精品免费久久| 亚洲欧洲日产国产| 最近最新中文字幕免费大全7| 成人一区二区视频在线观看| 一本久久精品| 国产女主播在线喷水免费视频网站| 性色av一级| 亚洲精品日韩在线中文字幕| 尾随美女入室| 国产色婷婷99| 美女高潮的动态| 久久精品夜色国产| 在线观看三级黄色| 日日摸夜夜添夜夜添av毛片| 国产精品一二三区在线看| 最近中文字幕高清免费大全6| 亚洲经典国产精华液单| 亚洲国产成人一精品久久久| 在线免费观看不下载黄p国产| 亚洲婷婷狠狠爱综合网| 国产精品爽爽va在线观看网站| 国产色婷婷99| 亚洲欧美日韩卡通动漫| 三级经典国产精品| 成年免费大片在线观看| 午夜日本视频在线| 伦精品一区二区三区| 国产综合懂色| 又爽又黄a免费视频| 高清欧美精品videossex| 五月伊人婷婷丁香| 搞女人的毛片| 国产69精品久久久久777片| 国产亚洲午夜精品一区二区久久 | 国产成人福利小说| 我的老师免费观看完整版| 日日摸夜夜添夜夜添av毛片| 国产91av在线免费观看| 欧美3d第一页| 国产精品精品国产色婷婷| 国产免费福利视频在线观看| 女人被狂操c到高潮| 舔av片在线| 午夜福利网站1000一区二区三区| 真实男女啪啪啪动态图| 亚洲人成网站在线播| 性色av一级| 少妇熟女欧美另类| 丝袜脚勾引网站| 视频中文字幕在线观看| 国产黄色免费在线视频| 精品视频人人做人人爽| 超碰av人人做人人爽久久| 2022亚洲国产成人精品| 国产综合懂色| 男男h啪啪无遮挡| 偷拍熟女少妇极品色| 国产亚洲午夜精品一区二区久久 | 亚洲国产色片| 在线观看一区二区三区| 一个人看视频在线观看www免费| 亚洲国产精品成人久久小说| 中文精品一卡2卡3卡4更新| kizo精华| 久久久久性生活片| 国产精品久久久久久精品电影小说 | 亚洲内射少妇av| 我的老师免费观看完整版| 一级毛片aaaaaa免费看小| 女人被狂操c到高潮| 久久久国产一区二区| 你懂的网址亚洲精品在线观看| 国产伦理片在线播放av一区| 天堂网av新在线| 免费黄频网站在线观看国产| 成人美女网站在线观看视频| 亚洲三级黄色毛片| 少妇的逼水好多| 亚洲国产精品国产精品| 99久久精品国产国产毛片| av一本久久久久| 日韩精品有码人妻一区| 国产毛片在线视频| 精品久久久噜噜| 亚洲av在线观看美女高潮| 丝袜脚勾引网站| 免费av毛片视频| 日韩欧美精品v在线| 午夜日本视频在线| 蜜臀久久99精品久久宅男| 精品人妻视频免费看| 久久久a久久爽久久v久久| 黄色视频在线播放观看不卡| 免费av毛片视频| 午夜日本视频在线| 国产成人一区二区在线| 在现免费观看毛片| 97在线视频观看| 色哟哟·www| 九色成人免费人妻av| 丰满人妻一区二区三区视频av| 我的女老师完整版在线观看| 亚洲欧美精品专区久久| 特级一级黄色大片| 91精品国产九色| 色哟哟·www| 女人久久www免费人成看片| 男人狂女人下面高潮的视频| 美女内射精品一级片tv| 亚洲国产最新在线播放| av在线播放精品| 能在线免费看毛片的网站| 嫩草影院精品99| 纵有疾风起免费观看全集完整版| 国产在线男女| 国产一级毛片在线| 99热全是精品| 国产精品熟女久久久久浪| 国产亚洲午夜精品一区二区久久 | 国内精品宾馆在线| 国产精品嫩草影院av在线观看| 中文乱码字字幕精品一区二区三区| 我的女老师完整版在线观看| 欧美日韩精品成人综合77777| 日韩av不卡免费在线播放| 久久久精品免费免费高清| 国产美女午夜福利| 毛片一级片免费看久久久久| 日产精品乱码卡一卡2卡三| 波野结衣二区三区在线| 亚洲第一区二区三区不卡| 欧美激情国产日韩精品一区| 国产 一区 欧美 日韩| 91精品国产九色| 卡戴珊不雅视频在线播放| 日韩伦理黄色片| 日本-黄色视频高清免费观看| 中国美白少妇内射xxxbb| 久久久久久久大尺度免费视频| 青春草亚洲视频在线观看| 国产精品三级大全| 亚洲欧洲日产国产| 亚洲精品国产成人久久av| 国产免费视频播放在线视频| 色吧在线观看| av播播在线观看一区| 欧美xxⅹ黑人| 大香蕉久久网| 黄色配什么色好看| 99热这里只有是精品50| 在线观看一区二区三区激情| 国产成人一区二区在线| 日韩av不卡免费在线播放| 又大又黄又爽视频免费| 青青草视频在线视频观看| 老司机影院成人| 国产色爽女视频免费观看| 美女脱内裤让男人舔精品视频| 久久精品久久久久久噜噜老黄| 国产国拍精品亚洲av在线观看| 亚洲综合精品二区| 国产淫语在线视频| 国产免费一级a男人的天堂| 自拍欧美九色日韩亚洲蝌蚪91 | 超碰97精品在线观看| 男人狂女人下面高潮的视频| 国产日韩欧美亚洲二区| 国产精品人妻久久久久久| 黄色一级大片看看| 男女边摸边吃奶| 亚洲怡红院男人天堂| 久久精品国产自在天天线| 亚洲怡红院男人天堂| 精品国产乱码久久久久久小说| 免费看a级黄色片| 日本黄大片高清| 国产永久视频网站| 午夜福利在线在线| 亚洲真实伦在线观看| 国产成人91sexporn| 2021天堂中文幕一二区在线观| 2021天堂中文幕一二区在线观| 国产成年人精品一区二区| 91久久精品国产一区二区三区| 18禁在线无遮挡免费观看视频| 老司机影院成人| 水蜜桃什么品种好| 干丝袜人妻中文字幕| 中文字幕亚洲精品专区| 新久久久久国产一级毛片| 成年av动漫网址| 新久久久久国产一级毛片| 国产成人a区在线观看| 欧美极品一区二区三区四区| 国产综合懂色| 特级一级黄色大片| 两个人的视频大全免费| 精品国产乱码久久久久久小说| 麻豆国产97在线/欧美| 亚洲av福利一区| 激情五月婷婷亚洲| 国产高清有码在线观看视频| videossex国产| 欧美日韩国产mv在线观看视频 | 日韩欧美精品v在线| 亚洲av福利一区| av国产精品久久久久影院| 成年人午夜在线观看视频| 亚洲国产成人一精品久久久| 国产乱人偷精品视频| 久久亚洲国产成人精品v| 免费大片黄手机在线观看| 国产成人freesex在线| 亚洲成色77777| 中文天堂在线官网| 精品久久久久久久久亚洲| 777米奇影视久久| 国产男人的电影天堂91| 久久久精品欧美日韩精品| 大香蕉97超碰在线| 欧美日韩亚洲高清精品| 国产欧美日韩精品一区二区| 国产熟女欧美一区二区| 婷婷色综合大香蕉| av播播在线观看一区| 成人午夜精彩视频在线观看| 蜜桃亚洲精品一区二区三区| 国产在线一区二区三区精| 亚洲国产精品国产精品| 可以在线观看毛片的网站| .国产精品久久| 日产精品乱码卡一卡2卡三| 少妇的逼好多水| 日本-黄色视频高清免费观看| 国内少妇人妻偷人精品xxx网站| 3wmmmm亚洲av在线观看| 九九久久精品国产亚洲av麻豆| 亚洲精品国产成人久久av| 欧美zozozo另类| 麻豆成人午夜福利视频| 特大巨黑吊av在线直播| 国产一区有黄有色的免费视频| 久久久欧美国产精品| 91精品一卡2卡3卡4卡| 少妇高潮的动态图| 神马国产精品三级电影在线观看| 欧美精品国产亚洲| 丰满少妇做爰视频| 久久久久久久国产电影| 一个人看视频在线观看www免费| 精品国产一区二区三区久久久樱花 | 日本-黄色视频高清免费观看| 日本与韩国留学比较| 日本色播在线视频| 国产亚洲91精品色在线| 一区二区三区四区激情视频| 蜜桃亚洲精品一区二区三区| 欧美变态另类bdsm刘玥| av在线蜜桃| 国产成人免费观看mmmm| 亚洲高清免费不卡视频| 97精品久久久久久久久久精品| 高清在线视频一区二区三区| 人人妻人人看人人澡| 在线天堂最新版资源| 亚洲欧美日韩无卡精品| 国产成人福利小说| 听说在线观看完整版免费高清| 久久6这里有精品| 国产精品伦人一区二区| 国产探花极品一区二区| 九九久久精品国产亚洲av麻豆| 国产黄片视频在线免费观看| 国产精品国产三级国产专区5o| 国产精品国产av在线观看| 三级国产精品欧美在线观看| 亚洲精品乱久久久久久| 性插视频无遮挡在线免费观看| 国产中年淑女户外野战色| 中文在线观看免费www的网站| 熟女av电影| 欧美xxⅹ黑人| 免费播放大片免费观看视频在线观看| 少妇的逼好多水| 国内精品宾馆在线| 亚洲精品乱码久久久v下载方式| 人人妻人人爽人人添夜夜欢视频 | 天天躁夜夜躁狠狠久久av| 午夜激情久久久久久久| 久久久久精品性色| 中文字幕久久专区| 国产女主播在线喷水免费视频网站| 日日撸夜夜添| 综合色丁香网| 韩国av在线不卡| 国产精品麻豆人妻色哟哟久久| 欧美激情国产日韩精品一区| 婷婷色麻豆天堂久久| 午夜激情久久久久久久| 丰满少妇做爰视频| 中文字幕亚洲精品专区| 国产成人午夜福利电影在线观看| 国产午夜福利久久久久久| 各种免费的搞黄视频| 国产精品熟女久久久久浪| 国产探花在线观看一区二区| 国产免费一级a男人的天堂| 欧美少妇被猛烈插入视频| 亚洲成人久久爱视频| 久久久a久久爽久久v久久| 亚洲av二区三区四区| 国产真实伦视频高清在线观看| 色哟哟·www| 大香蕉97超碰在线| 久久久久久久亚洲中文字幕| av福利片在线观看| 蜜臀久久99精品久久宅男| 精品久久久久久久久av| 51国产日韩欧美| 国产又色又爽无遮挡免| 国产高潮美女av| 久久精品综合一区二区三区| 又爽又黄无遮挡网站| 欧美高清成人免费视频www| 我的老师免费观看完整版| 黑人高潮一二区| videossex国产| 亚洲国产精品国产精品| 精品酒店卫生间| 日本色播在线视频| 日韩强制内射视频| av女优亚洲男人天堂| 精品人妻一区二区三区麻豆| 大话2 男鬼变身卡| 亚洲一级一片aⅴ在线观看| 禁无遮挡网站| 美女被艹到高潮喷水动态| 日韩人妻高清精品专区| 精品国产乱码久久久久久小说| 成人漫画全彩无遮挡| 在线免费观看不下载黄p国产| 日本一本二区三区精品| 熟女电影av网| 亚洲av免费在线观看| 毛片女人毛片| 丝瓜视频免费看黄片| 91精品一卡2卡3卡4卡| 男人舔奶头视频| 久久久久久久精品精品| 特大巨黑吊av在线直播| av福利片在线观看| 国产亚洲91精品色在线| 久久精品国产亚洲网站| 性色av一级| av专区在线播放| 亚洲av欧美aⅴ国产| 一级片'在线观看视频| 色婷婷久久久亚洲欧美| 久久久a久久爽久久v久久| 三级国产精品欧美在线观看| 久久久国产一区二区| 国产精品99久久99久久久不卡 | 国产一区二区三区av在线| 在线观看美女被高潮喷水网站| 亚洲精品国产av蜜桃| 亚洲欧美一区二区三区黑人 | 日产精品乱码卡一卡2卡三| 国产精品秋霞免费鲁丝片| 亚洲aⅴ乱码一区二区在线播放| 午夜精品国产一区二区电影 | 日本熟妇午夜| 亚洲激情五月婷婷啪啪| 嫩草影院新地址| 亚洲国产成人一精品久久久| 最近中文字幕2019免费版| 男女边吃奶边做爰视频| 亚洲成人一二三区av| 亚洲成人av在线免费| 亚洲欧洲国产日韩| av免费在线看不卡| 日韩成人av中文字幕在线观看| 一级黄片播放器| h日本视频在线播放| 亚洲国产欧美人成| 亚洲国产精品国产精品| 精品熟女少妇av免费看| 欧美bdsm另类| 一二三四中文在线观看免费高清| 欧美成人午夜免费资源| 高清午夜精品一区二区三区| 青春草亚洲视频在线观看| 欧美高清性xxxxhd video| 在线看a的网站| 亚洲欧洲日产国产| 亚洲av不卡在线观看| av天堂中文字幕网| 亚洲精品色激情综合| 一本久久精品| 99热这里只有是精品50| 国产白丝娇喘喷水9色精品| 又大又黄又爽视频免费| 国产成人a∨麻豆精品| 精品人妻一区二区三区麻豆| 99久久九九国产精品国产免费| 国产精品无大码| 一区二区三区四区激情视频| 久久久a久久爽久久v久久| 纵有疾风起免费观看全集完整版| 噜噜噜噜噜久久久久久91| 午夜精品国产一区二区电影 | 久久亚洲国产成人精品v| 国产成人免费观看mmmm| 在线观看av片永久免费下载| 狂野欧美激情性xxxx在线观看| 高清毛片免费看| 午夜福利网站1000一区二区三区| 欧美少妇被猛烈插入视频| 国产乱来视频区| 伊人久久精品亚洲午夜| 亚洲欧美成人综合另类久久久| 国产人妻一区二区三区在| 亚洲在久久综合| 一本色道久久久久久精品综合| 国产精品99久久99久久久不卡 | 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 狂野欧美白嫩少妇大欣赏| 国产老妇女一区| 18禁在线播放成人免费| 内地一区二区视频在线| 22中文网久久字幕| 日日摸夜夜添夜夜爱| 美女视频免费永久观看网站| av福利片在线观看| 免费电影在线观看免费观看| 国产淫片久久久久久久久| 国产伦精品一区二区三区四那| 国产黄频视频在线观看| 久久韩国三级中文字幕| a级一级毛片免费在线观看| 街头女战士在线观看网站| 乱系列少妇在线播放| 成人亚洲精品一区在线观看 | 免费大片黄手机在线观看| 国产精品久久久久久精品电影| 人妻少妇偷人精品九色| 白带黄色成豆腐渣| 18禁在线播放成人免费| av在线老鸭窝| 3wmmmm亚洲av在线观看| 一级黄片播放器| av.在线天堂| 青春草亚洲视频在线观看| 国产精品伦人一区二区| 夫妻午夜视频| 国产精品伦人一区二区| 99精国产麻豆久久婷婷| 精品一区二区免费观看| 国产美女午夜福利| 熟妇人妻不卡中文字幕| 成人欧美大片| 免费高清在线观看视频在线观看| 国模一区二区三区四区视频| videos熟女内射| 亚洲一区二区三区欧美精品 | 日本一二三区视频观看| 男人添女人高潮全过程视频| 少妇丰满av| 男人爽女人下面视频在线观看| 亚洲性久久影院| 爱豆传媒免费全集在线观看| 国产v大片淫在线免费观看| 午夜福利在线观看免费完整高清在| 中国国产av一级| 国产成人a区在线观看| 国内揄拍国产精品人妻在线| 又爽又黄无遮挡网站| 中文字幕av成人在线电影| 国产精品熟女久久久久浪| 久久久久久久久久久免费av| 搡老乐熟女国产| 国产成人精品一,二区| 精品人妻视频免费看| 国语对白做爰xxxⅹ性视频网站| 午夜视频国产福利| 亚洲美女视频黄频| 久久久久精品性色| 国产欧美亚洲国产| 亚洲内射少妇av| 99热这里只有精品一区| 国产爱豆传媒在线观看| 成人漫画全彩无遮挡| 精品久久久久久久人妻蜜臀av| 亚洲国产欧美在线一区| 狠狠精品人妻久久久久久综合| 只有这里有精品99| 亚洲精品成人av观看孕妇| 91午夜精品亚洲一区二区三区| 美女cb高潮喷水在线观看| 国内精品美女久久久久久| 在线 av 中文字幕| 亚洲精品aⅴ在线观看| 国内精品宾馆在线| 精品熟女少妇av免费看| 亚洲精品日本国产第一区| 永久网站在线| 丝袜脚勾引网站| 男女边摸边吃奶| 欧美xxxx性猛交bbbb| 一区二区三区精品91| 成人二区视频| 七月丁香在线播放| 男女无遮挡免费网站观看| 我要看日韩黄色一级片| 成年版毛片免费区| 日日摸夜夜添夜夜爱| 美女脱内裤让男人舔精品视频| 亚洲欧美清纯卡通| 天堂中文最新版在线下载 | 免费看av在线观看网站| 亚洲欧美精品专区久久| 久热久热在线精品观看| 美女主播在线视频| 亚洲精品一区蜜桃| 国产伦精品一区二区三区视频9| av在线app专区| 又粗又硬又长又爽又黄的视频| 美女被艹到高潮喷水动态| 亚洲欧洲日产国产| 日韩成人伦理影院| 免费观看性生交大片5| 免费av不卡在线播放| 日本爱情动作片www.在线观看| 人妻制服诱惑在线中文字幕| 视频中文字幕在线观看| 国产精品人妻久久久久久| 噜噜噜噜噜久久久久久91| 天天一区二区日本电影三级| 能在线免费看毛片的网站| 全区人妻精品视频| 国产淫片久久久久久久久| 蜜臀久久99精品久久宅男| 女的被弄到高潮叫床怎么办| 亚洲美女视频黄频| tube8黄色片| 久久久精品94久久精品| 波多野结衣巨乳人妻| av在线天堂中文字幕| 国产伦理片在线播放av一区| 国产高清有码在线观看视频| 成人免费观看视频高清| 久久久久九九精品影院| av在线蜜桃| 欧美成人精品欧美一级黄| 爱豆传媒免费全集在线观看| 亚洲性久久影院| 18禁在线无遮挡免费观看视频| 亚洲电影在线观看av| 亚洲欧美日韩另类电影网站 | 伦理电影大哥的女人| 亚洲国产精品成人综合色| 色网站视频免费| 99久久精品国产国产毛片| av福利片在线观看| 国语对白做爰xxxⅹ性视频网站| 国产有黄有色有爽视频| 水蜜桃什么品种好| av免费观看日本| 国产综合懂色| 在线观看国产h片| 天天一区二区日本电影三级| 国产成人免费无遮挡视频| 在线a可以看的网站| 91精品伊人久久大香线蕉| 精品国产露脸久久av麻豆| 久久久久精品性色|