• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Energy-Efficient Deployment of Water Quality Sensor Networks

    2021-12-14 06:06:42QianSunZhipingShenJinglinLiangXiaoyiWangJipingXuLiWangHuiyanZhangJiabinYuNingCaoandRuichaoWang
    Computers Materials&Continua 2021年9期

    Qian Sun,Zhiping Shen,Jinglin Liang,Xiaoyi Wang,*,Jiping Xu,Li Wang,Huiyan Zhang,Jiabin Yu,Ning Cao and Ruichao Wang

    1School of Artificial Intelligence,Beijing Technology and Business University,Beijing,100048,China

    2Beijing Laboratory for Intelligent Environmental Protection,Beijing,100048,China

    3Shandong Chengxiang Information Technology Co.Ltd.,Dezhou,253000,China

    4University College Dublin,Dublin,4,Ireland

    Abstract:Water quality sensor networks are promising tools for the exploration of oceans.Some key areas need to be monitored effectively.Water qualitysensors are deployed randomly or uniformly,however,and understanding how to deploy sensor nodes reasonably and realize effective monitoring of key areas on the basis of monitoring the whole area is an urgent problem to be solved.Additionally,energy is limited in water quality sensor networks.When moving sensor nodes,we should extend the life cycle of the sensor networks as much as possible.In this study,sensor nodes in non-key monitored areas are moved to key areas.First,we used the concentric circle method to determine the mobile sensor nodes and the target locations.Then,we determined the relationship between the mobile sensor nodes and the target locations according to the energy matrix.Finally,we calculated the shortest moving path according to the Floyd algorithm,which realizes the redeployment of the key monitored area.The simulation results showed that,compared with the method of direct movement,the proposed method can effectively reduce the energy consumption and save the network adjustment time based on the effective coverage of key areas.

    Keywords:Concentric circle method;cascaded movement;Floyd algorithm;network coverage;energy

    1 Background

    Water quality monitoring is a process of monitoring and measuring the types and concentrations of water pollutants,and then evaluating the water quality status [1-4].Pollution levels vary across areas,and concentrations of dissolved oxygen,ammonia nitrogen,potassium permanganate,and other pollutants are higher in heavily polluted area.The water pollution index is a method used to statistically summarize pollutants in the water and comprehensively reflect the degree of water pollution in numerical form [5,6].It can be used as the basis of water pollution classification.The evaluated waters are divided into key monitored areas and non-key areas according to the water pollution index.

    In actual water quality monitoring,the swarm intelligent optimization algorithm is used to maximize the coverage rate [7,8].For key monitored areas,however,because of the rigor and volatility of its data,a higher coverage rate is often required [9].Therefore,from the perspective of rational use of resources and ensuring the accuracy of monitoring data,the sensors in non-key monitored areas are moved to key areas for real-time monitoring under the condition of a limited number of sensors.Therefore,the main purpose of this study was to choose the mobile sensor nodes and their moving paths.

    Some researchers have introduced a basic bidding protocol that adopts the direct movement method.This consumes a significant amount of time and energy of a single sensor;thus,it cannot meet the practical requirements of the network [10].Perez et al.[11]abstract the sensor network as a graph,and then used the Kruskal algorithm to move the sensors with the shortest distance by finding some relay nodes.This method provides an idea for the movement of sensors.By involving more sensors,the moving distance of a single sensor is reduced,and the moving time of the sensors is also reduced.Wang et al.used cascaded movement to optimize the problem,taking the total energy consumption of the path as the optimal goal.They could not,however,balance the energy consumption of each mobile sensor,which made the network stability worse [12].Liu et al.[13]proposed that the energy consumption of each sensor is the optimization goal.In a practical environment,however,the target area is not a single grid.We considered how sensors influence each other when several move to the target area at the same time.

    In this study,we calculated the energy matrix by the Euclidean distance between the mobile nodes and the target locations.Then,we determined the point-to-point correspondence.Finally,we achieved the effective coverage of the key monitored areas without increasing the number of sensors by using the Floyd algorithm and cascaded movement strategy.

    2 Model Establishment

    2.1 The Region Model

    In this study,we deployed sensor nodes with the same communication radius and sensing radius in the two-dimensional plane of the monitored area.The established model is shown in Fig.1.The area enclosed in red represents the key monitored area,and the area enclosed by green indicates the non-key monitored area.

    2.2 The Network Coverage Model

    The grid points generated in Fig.1 are denoted as u,the total number of grid points in the area is denoted as U,and the probability that theu-th grid point is monitored by the sensor is denoted as c,as shown in Eq.(1).In this paper,the Boolean sensing model is used in the sensor coverage model:

    whered(si,u)represents the Euclidean distance between the sensor nodesand the grid point u,andRCrepresents the effective monitoring radius of the sensor.The probability that the monitored grid can be monitored by all sensor nodes is defined as the joint detection probability,which is shown in Eq.(2):

    Figure 1:Schematic diagram of the monitoring region model

    3 Determining the Mobile Nodes and Target Locations

    To move the sensors reasonably,we employed the concentric circle method to move sensors in the non-key monitored areas to the key areas without changing the number of sensors.The sensors in the non-key monitored area were called mobile nodes and were located according to the grid nodes.The points with larger coverage holes in the key monitored area were called target locations,and their positions were determined as follows:

    Suppose that the number of mobile nodes is less than the number of target locations.

    Step 1.Determine the mobile nodes number N in the non-key monitored area.

    Step 2.Determine the area that is not covered by the sensors.All grid points are taken as the center of the circle,and the width of the mesh is taken as the initial radius.Make concentric circles outward according to the grid width.The maximum radius of the concentric circle is the communication distance of the sensor.

    Step 3.When the maximum ring of the concentric circle coincides with the coverage area the concentric circle radius will stop increasing.

    Step 4.Assume thatQ={q1,q2,...,qm}is the set of concentric circles of all grid nodes in the area that is not covered by the sensors,and find the circle with the largest radius in the set(if the maximum radii are the same,select the circle with the smaller sum of the horizontal and vertical coordinates of the center position).Record the node position and radius of the circle,and merge the area into the sensor coverage area.

    Step 5.Repeat Steps (2)-(4).When the number of circles to be determined is equal to N,the process ends.Then the centers of these circles are the target locations.

    4 Cascaded Movement Strategy Based on Floyd Algorithm

    4.1 Cascaded Movement Strategy

    After determining the point-to-point correspondence between the mobile nodes and the target locations,we determined how to move the mobile nodes to the target locations.Direct movement requires a long time,and long-distance movement of a single sensor will consume too much energy.The main idea of the cascaded movement strategy is to find some relay nodes to participate in the movement to reduce latency and balance the energy consumption.The principle of the cascaded movement strategy is shown in Fig.2.Note that s0is the node to be moved,and s1and s2are relay nodes.S0moves to s1,and s1moves to s2;then,s2moves to s,where node s represents the target location.Nodes usually exchange their information logically,and then move simultaneously.By using the cascaded movement strategy,the time consumption was greatly reduced,and the energy originally consumed in s0during the movement process was instead consumed by s0,s1,and s2.This method made the energy consumption of the sensor network more balanced.When selecting a cascaded movement path,we considered not only the total energy consumption but also the energy consumption of each sensor node.Therefore,we determined an optimal cascaded movement path.

    Figure 2:Cascaded movement

    4.2 Floyd Algorithm

    The Floyd algorithm can identify the shortest path between vertices in a given weighted graph [14-16].In this study,we introduced the Floyd algorithm to the cascaded movement strategy.The sensors in the non-key monitored area were the initial points,and the target locations in the key area were the ending points.The remaining sensors were relay nodes.By calculating the shortest distance matrix and path matrix of the sensor nodes,and by backtracking the path matrix,we found the shortest distance of the sensor movement and the shortest cascaded path.

    4.2.1 The Sensor Layout Model G=(V,E,C)

    G=(V,E,C) is a weighted and directed graph,where V is the sensor node set,E is the set of the lines connected between nodes,and C is the distance adjacency matrix.In the sensor node set,v0,v1,...,vlrepresentslsensor nodes.The set E is formed by the nodes in V,where(the nodeviis connected to nodevj),and C is the distance adjacency matrix corresponding to graph G.cijis expressed as in Eq.(3):

    We constructed a suitable directed network graph to simulate the sensor network.The shortest path between the determined mobile node and the target location was planned by the Floyd algorithm,as shown in Fig.3.

    Figure 3:Sensor layout model

    4.2.2 Model Description

    This model regarded the sensor nodes in the non-key monitored area and the target locations in the key area as network nodes.The connected lines between the network nodes were abstracted as network edges and the relationship between these nodes was preserved.

    The moving direction in the sensor networks was in a bidirectional path.The initial energy of the node and the actual distance of the path between the nodes should be comprehensively considered in the weights in application.Then,experts can label the weights.In this study,we considered only the distance.

    4.2.3 Find the Shortest Distance Matrix D(n)and the Shortest Path Matrix R(n)

    The basic idea of the Floyd algorithm is to construct v matricesD(1),D(2),...,D(v)in turn by inserting the points directly in the weighted adjacency matrix of the graph.The resulting matrixD(v)becomes the distance matrix of the graph,and the matrix of insertion points is calculated to obtain the shortest path between two points,where elementd0ijofD(0)represents the distance between two connected nodesviandvj(see Eq.(4)).D(k)andR(k)are calculated by Eqs.(5)and (6):

    We obtained the shortest distance matrixD(n)and the shortest path matrixR(n)by distance adjacency matrix C using the Floyd algorithm.Only the shortest path between the mobile node and the target location was saved inR(n).On this basis,the shortest path could be traced back to obtain the specific path between the two nodes.Then,according to the cascaded movement strategy,the mobile node was moved through the relay node to reach the target node location.

    5 Simulation Analysis

    5.1 Experimental Design

    In this study,we used the cascaded movement strategy to move the sensors in the non-key monitored area to the key monitored area to achieve effective coverage of the key monitored areas.The water area was 100 m×100 m,and the grid was 2 m×2 m.The sensor radius was 10 m.The initial energy was 10000 J,and the energy consumption was 30 J when the sensor moved 1 m.

    5.2 Experimental Results and Analysis

    We increased the coverage of the key monitored areas by moving the sensors in the non-key monitored areas to the key monitored areas.Fig.4 shows the distribution of sensor nodes after uniform deployment.The area enclosed in red represents the key monitored area,and the area enclosed by green indicates the non-key monitored area.

    Fig.5 presents the result of the final deployment of the sensors after cascaded movement.As shown in Fig.5,the sensor nodes in the non-key monitored area have moved to the key monitored area,which greatly enhanced the coverage rate of the key monitored area.

    The change in coverage rate over time by direct movement is shown in Fig.6.Fig.7 presents the change in coverage rate with cascaded movement over time.With the movement of sensors in non-key monitored areas,the original uniform coverage was broken,which reduced the coverage of non-key monitored areas as well as the entire monitored area.At the same time,with the increase in sensor nodes in key monitored areas,the coverage of key monitored areas gradually increased,and eventually reached 96%.Thus,we achieved effective coverage of key monitored areas without increasing the number of sensors.Moreover,these two figures highlight that if we considered only the coverage rate,direct movement and cascaded movement were considered to be equivalent.

    Figure 4:Distribution of the sensor nodes after uniform deployment

    Figure 5:Distribution of the sensor nodes after cascaded movement

    Fig.8 shows the total moved distance of the mobile sensor nodes when using direct movement and cascaded movement.We can see that when the sensor node reached a new balance (the growth of the coverage rate of key monitored area is less than 0.05%),the total move distance for the cascaded movement was slightly higher than that for the direct movement.We needed only 23.963 s,however,to reach the new balance for cascaded movement,whereas 35.012 s was required for direct movement.Therefore,using cascaded movement effectively reduced the network adjustment time.

    Figure 6:Coverage rate (direct movement)

    Figure 7:Coverage rate (cascaded movement)

    Fig.9 shows the nodes’residual energy.Although direct movement could achieve effective coverage of key areas with less moved distance,some nodes’residual energy was too low after moving.If we used cascaded movement,more nodes could be involved to share the energy consumption during the movement of sensor nodes.When the network reached a new balance,the residual energy of the nodes was relatively balanced,which effectively extended the life cycle of the network.

    Figure 8:Moved distances

    Figure 9:Residual energy of the sensor nodes

    6 Conclusions

    We studied the deployment of water quality sensor networks.First,we established the monitored area model and divided the entire monitored area into a key area and non-key area.The mobile nodes and the target locations were determined,and the cascaded movement strategy was used to move the sensors.This realized the effective coverage of the key monitored area under the condition of limited resources.The simulation results showed that the cascaded movement strategy could make the residual energy relatively balanced and extended the life cycle of the network compared with the direct movement.

    Funding Statement:This research was funded by the National Natural Science Foundation of China (Grant No.61802010);National Social Science Fund of China (Grant No.19BGL184);Beijing Excellent Talent Training Support Project for Young Top-Notch Team (Grant No.2018000026833TD01);and Hundred-Thousand-Ten Thousand Talents Project of Beijing (Grant No.2020A28).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    久久久久国产网址| 久久午夜综合久久蜜桃| 男人操女人黄网站| 日韩中文字幕视频在线看片| 99九九线精品视频在线观看视频| 青青草视频在线视频观看| 国内精品宾馆在线| 热re99久久精品国产66热6| 超碰97精品在线观看| 精品亚洲成国产av| 国产精品不卡视频一区二区| 欧美激情极品国产一区二区三区 | 亚洲,欧美,日韩| 色5月婷婷丁香| 久久久久国产网址| 九九在线视频观看精品| 九草在线视频观看| 少妇高潮的动态图| 国产免费现黄频在线看| 女人久久www免费人成看片| 精品熟女少妇av免费看| 美女主播在线视频| xxx大片免费视频| 国产综合精华液| 欧美日韩国产mv在线观看视频| 水蜜桃什么品种好| 久久韩国三级中文字幕| 精品卡一卡二卡四卡免费| 日韩 亚洲 欧美在线| 九九爱精品视频在线观看| 男人添女人高潮全过程视频| 欧美人与善性xxx| 在线天堂最新版资源| 黄片无遮挡物在线观看| 日韩中字成人| 大香蕉久久成人网| 高清午夜精品一区二区三区| 99国产综合亚洲精品| 免费看不卡的av| 日韩视频在线欧美| 久久久a久久爽久久v久久| 亚洲图色成人| 国产精品国产三级国产专区5o| 亚洲欧美中文字幕日韩二区| 大片免费播放器 马上看| 男女国产视频网站| av一本久久久久| 777米奇影视久久| 久久精品国产亚洲网站| 一本大道久久a久久精品| 国产成人a∨麻豆精品| 91精品伊人久久大香线蕉| 插阴视频在线观看视频| 一级黄片播放器| 特大巨黑吊av在线直播| 久久久a久久爽久久v久久| 高清毛片免费看| 亚洲国产欧美日韩在线播放| 国产乱人偷精品视频| 精品99又大又爽又粗少妇毛片| 99热这里只有精品一区| 久久久精品免费免费高清| 99国产精品免费福利视频| 国产有黄有色有爽视频| 国产熟女欧美一区二区| 免费观看在线日韩| 天堂中文最新版在线下载| 亚洲欧美一区二区三区黑人 | 免费观看a级毛片全部| 26uuu在线亚洲综合色| 亚洲精品久久久久久婷婷小说| freevideosex欧美| 国产免费一级a男人的天堂| 国产黄色免费在线视频| 夜夜看夜夜爽夜夜摸| 国产免费福利视频在线观看| 国产精品 国内视频| 免费高清在线观看视频在线观看| 亚洲精品自拍成人| 人人妻人人澡人人看| 少妇人妻 视频| 免费不卡的大黄色大毛片视频在线观看| 国产精品成人在线| 91国产中文字幕| 精品久久久久久久久亚洲| av又黄又爽大尺度在线免费看| 美女国产视频在线观看| 久久久久久久久大av| 成人18禁高潮啪啪吃奶动态图 | 欧美日韩国产mv在线观看视频| 我要看黄色一级片免费的| 国语对白做爰xxxⅹ性视频网站| 人妻少妇偷人精品九色| 欧美成人精品欧美一级黄| 一本一本综合久久| 春色校园在线视频观看| 国产黄片视频在线免费观看| 国产极品粉嫩免费观看在线 | 免费久久久久久久精品成人欧美视频 | 亚洲av欧美aⅴ国产| 黄色配什么色好看| 亚洲无线观看免费| 国产女主播在线喷水免费视频网站| freevideosex欧美| 我的女老师完整版在线观看| 国产精品一国产av| 九九久久精品国产亚洲av麻豆| 夫妻午夜视频| 精品国产国语对白av| 18禁在线无遮挡免费观看视频| av在线播放精品| 少妇猛男粗大的猛烈进出视频| 黄片播放在线免费| 精品久久久久久久久av| 有码 亚洲区| 久久青草综合色| 国产精品一区www在线观看| 久久精品国产鲁丝片午夜精品| 国产在线视频一区二区| 亚洲精品日韩在线中文字幕| 啦啦啦在线观看免费高清www| 天美传媒精品一区二区| 亚洲欧美一区二区三区国产| 亚洲欧美色中文字幕在线| 久久国产精品大桥未久av| 婷婷色综合大香蕉| 国产日韩一区二区三区精品不卡 | 久久狼人影院| 久久久久久久久久人人人人人人| 国产极品天堂在线| 自拍欧美九色日韩亚洲蝌蚪91| 国模一区二区三区四区视频| 欧美成人精品欧美一级黄| 尾随美女入室| 22中文网久久字幕| 国产精品人妻久久久影院| 国产成人a∨麻豆精品| 免费看av在线观看网站| 午夜福利视频在线观看免费| 考比视频在线观看| 人妻制服诱惑在线中文字幕| 欧美最新免费一区二区三区| 精品国产一区二区三区久久久樱花| 免费观看av网站的网址| 3wmmmm亚洲av在线观看| 男女边吃奶边做爰视频| 国产高清有码在线观看视频| 汤姆久久久久久久影院中文字幕| 大陆偷拍与自拍| 插逼视频在线观看| 久久久午夜欧美精品| 五月伊人婷婷丁香| 亚洲国产精品专区欧美| 亚洲av男天堂| 国产亚洲最大av| xxxhd国产人妻xxx| 一区二区三区乱码不卡18| 18禁在线无遮挡免费观看视频| 国产成人aa在线观看| 乱人伦中国视频| 免费大片黄手机在线观看| 街头女战士在线观看网站| 男女高潮啪啪啪动态图| 日韩欧美精品免费久久| 99热6这里只有精品| 成年女人在线观看亚洲视频| 国产av精品麻豆| 亚洲美女视频黄频| 观看美女的网站| 性色avwww在线观看| 自线自在国产av| 欧美人与善性xxx| 黑丝袜美女国产一区| av在线观看视频网站免费| 最黄视频免费看| 精品久久蜜臀av无| 国产精品一区二区在线不卡| av国产久精品久网站免费入址| 在线 av 中文字幕| 亚洲av不卡在线观看| 人妻 亚洲 视频| 一级毛片黄色毛片免费观看视频| 国产精品久久久久久久电影| 精品久久久久久久久亚洲| 国产一区亚洲一区在线观看| 国产日韩一区二区三区精品不卡 | 国产国语露脸激情在线看| 亚洲国产精品专区欧美| 免费大片18禁| 天堂俺去俺来也www色官网| 国产日韩欧美在线精品| 精品少妇黑人巨大在线播放| 亚洲成色77777| 中文字幕人妻丝袜制服| 日本与韩国留学比较| 美女主播在线视频| 色吧在线观看| √禁漫天堂资源中文www| 精品国产国语对白av| 午夜激情福利司机影院| 久久精品熟女亚洲av麻豆精品| 国产欧美亚洲国产| 边亲边吃奶的免费视频| 久久精品国产自在天天线| 少妇人妻 视频| 丰满乱子伦码专区| 成人国产麻豆网| 亚洲怡红院男人天堂| 一区二区av电影网| 国产男女内射视频| 91久久精品国产一区二区成人| 国产老妇伦熟女老妇高清| 国产 精品1| 精品人妻一区二区三区麻豆| 麻豆成人av视频| 欧美日韩成人在线一区二区| 我的女老师完整版在线观看| 51国产日韩欧美| 国产精品国产av在线观看| 人体艺术视频欧美日本| 99视频精品全部免费 在线| 哪个播放器可以免费观看大片| 国产精品人妻久久久影院| 中文字幕av电影在线播放| 亚洲精品日本国产第一区| 久久久国产欧美日韩av| 日日摸夜夜添夜夜添av毛片| 国产成人精品福利久久| 亚洲av.av天堂| 一级毛片我不卡| 中文字幕亚洲精品专区| 在线播放无遮挡| 日韩一本色道免费dvd| 久久精品国产自在天天线| 国产日韩一区二区三区精品不卡 | 免费观看性生交大片5| 99久久精品国产国产毛片| 91精品国产九色| 国产精品人妻久久久久久| 亚洲精品乱码久久久v下载方式| 亚洲人与动物交配视频| 91精品国产九色| 精品亚洲成国产av| 人妻一区二区av| 精品人妻偷拍中文字幕| 国产男人的电影天堂91| 中文乱码字字幕精品一区二区三区| 日韩欧美一区视频在线观看| 边亲边吃奶的免费视频| 国产男女内射视频| 欧美 亚洲 国产 日韩一| 久久久久久久大尺度免费视频| av有码第一页| 日韩大片免费观看网站| 亚洲精品日本国产第一区| 日韩在线高清观看一区二区三区| 午夜日本视频在线| 免费大片18禁| 国产在线免费精品| 亚洲色图 男人天堂 中文字幕 | 国产不卡av网站在线观看| 街头女战士在线观看网站| 天堂8中文在线网| 女的被弄到高潮叫床怎么办| 日本黄色日本黄色录像| 亚洲色图 男人天堂 中文字幕 | 欧美日韩视频精品一区| 丰满迷人的少妇在线观看| 在现免费观看毛片| 大又大粗又爽又黄少妇毛片口| 人妻夜夜爽99麻豆av| 美女主播在线视频| 天堂8中文在线网| 秋霞在线观看毛片| 国产精品国产av在线观看| 纵有疾风起免费观看全集完整版| 日韩中文字幕视频在线看片| 春色校园在线视频观看| h视频一区二区三区| a级毛片在线看网站| 中文字幕最新亚洲高清| 99热全是精品| kizo精华| 如日韩欧美国产精品一区二区三区 | 色吧在线观看| 春色校园在线视频观看| 亚洲第一av免费看| 成人毛片60女人毛片免费| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品久久久久久av不卡| 成人二区视频| 国产一区二区三区综合在线观看 | 大陆偷拍与自拍| 美女主播在线视频| 少妇猛男粗大的猛烈进出视频| 在线亚洲精品国产二区图片欧美 | 亚洲综合色网址| 久久久久精品性色| 国产深夜福利视频在线观看| 国产成人精品在线电影| 美女国产视频在线观看| 久久青草综合色| 少妇熟女欧美另类| 日韩电影二区| 午夜日本视频在线| 男女边吃奶边做爰视频| 最近2019中文字幕mv第一页| 精品一区二区三卡| 在线看a的网站| 午夜久久久在线观看| 麻豆乱淫一区二区| 黄色一级大片看看| 一级毛片 在线播放| 亚洲国产色片| 日韩欧美一区视频在线观看| 只有这里有精品99| 男男h啪啪无遮挡| 日韩欧美一区视频在线观看| 国产精品免费大片| 久久精品熟女亚洲av麻豆精品| 3wmmmm亚洲av在线观看| 老司机亚洲免费影院| 人妻 亚洲 视频| 大话2 男鬼变身卡| 精品久久国产蜜桃| 婷婷色综合www| 国产精品久久久久久精品古装| 黄色一级大片看看| 午夜激情久久久久久久| 特大巨黑吊av在线直播| 免费观看在线日韩| 青春草亚洲视频在线观看| 自线自在国产av| 亚洲成人av在线免费| 中国三级夫妇交换| 午夜福利视频精品| 国产精品蜜桃在线观看| 99国产精品免费福利视频| 草草在线视频免费看| 亚洲国产色片| 久久av网站| 亚洲怡红院男人天堂| 亚洲国产最新在线播放| av在线老鸭窝| 精品国产露脸久久av麻豆| 一级片'在线观看视频| 国产免费一区二区三区四区乱码| 国产高清三级在线| 22中文网久久字幕| 在线观看三级黄色| 水蜜桃什么品种好| 国产伦理片在线播放av一区| 最新中文字幕久久久久| 日本欧美国产在线视频| 免费看不卡的av| 日韩伦理黄色片| 日本欧美国产在线视频| a级片在线免费高清观看视频| 国产精品无大码| 亚洲精品国产av成人精品| h视频一区二区三区| 国产极品粉嫩免费观看在线 | 狠狠婷婷综合久久久久久88av| 国产成人精品婷婷| 香蕉精品网在线| 人成视频在线观看免费观看| 丝袜美足系列| 精品久久久噜噜| 免费高清在线观看日韩| 国产淫语在线视频| 亚洲av日韩在线播放| 亚洲精品国产色婷婷电影| 亚洲精品一区蜜桃| 男女免费视频国产| 色婷婷av一区二区三区视频| 免费日韩欧美在线观看| 高清视频免费观看一区二区| 少妇人妻久久综合中文| 亚洲av免费高清在线观看| 老女人水多毛片| 丁香六月天网| av黄色大香蕉| 成人毛片a级毛片在线播放| 热re99久久国产66热| 亚洲性久久影院| 多毛熟女@视频| 中文字幕人妻熟人妻熟丝袜美| 国产永久视频网站| 精品少妇内射三级| a级片在线免费高清观看视频| 97在线视频观看| 久久精品熟女亚洲av麻豆精品| 一本色道久久久久久精品综合| 如何舔出高潮| 亚洲精品日韩在线中文字幕| 五月天丁香电影| 成人亚洲精品一区在线观看| 成人18禁高潮啪啪吃奶动态图 | 伦理电影大哥的女人| 人人澡人人妻人| 国产午夜精品一二区理论片| 97超视频在线观看视频| 欧美成人午夜免费资源| 亚洲av中文av极速乱| 精品国产国语对白av| 黄色配什么色好看| 9色porny在线观看| 午夜免费观看性视频| 亚洲综合色惰| 内地一区二区视频在线| 欧美精品一区二区免费开放| 熟女人妻精品中文字幕| 久久99一区二区三区| 99久久精品国产国产毛片| 久久久久久久久久人人人人人人| 久久午夜综合久久蜜桃| 成年女人在线观看亚洲视频| 日韩制服骚丝袜av| 99热全是精品| 亚洲av日韩在线播放| 我要看黄色一级片免费的| 人体艺术视频欧美日本| 91精品国产国语对白视频| 午夜视频国产福利| 精品久久久久久久久av| 免费黄频网站在线观看国产| 精品国产乱码久久久久久小说| 国语对白做爰xxxⅹ性视频网站| 精品人妻熟女毛片av久久网站| 亚洲熟女精品中文字幕| 人妻夜夜爽99麻豆av| 天堂8中文在线网| 久久精品国产鲁丝片午夜精品| 欧美日韩在线观看h| 熟女人妻精品中文字幕| 亚洲成人av在线免费| 日本猛色少妇xxxxx猛交久久| 在线亚洲精品国产二区图片欧美 | 亚洲欧洲国产日韩| av不卡在线播放| 看免费成人av毛片| 黑人猛操日本美女一级片| 亚洲国产欧美日韩在线播放| 亚洲av日韩在线播放| 青青草视频在线视频观看| 十八禁高潮呻吟视频| 日本与韩国留学比较| 色婷婷久久久亚洲欧美| 国产男女超爽视频在线观看| 亚洲av电影在线观看一区二区三区| 国产乱人偷精品视频| 欧美精品人与动牲交sv欧美| 亚洲精品av麻豆狂野| 涩涩av久久男人的天堂| 蜜臀久久99精品久久宅男| 国产亚洲精品久久久com| 国产精品一区二区在线观看99| 国产成人av激情在线播放 | 久久这里有精品视频免费| 22中文网久久字幕| 黄色视频在线播放观看不卡| 日日爽夜夜爽网站| 欧美+日韩+精品| 激情五月婷婷亚洲| 男女无遮挡免费网站观看| 精品久久蜜臀av无| av在线老鸭窝| 亚洲av男天堂| 国产视频内射| 亚洲精品国产av蜜桃| 精品国产一区二区三区久久久樱花| 国产熟女午夜一区二区三区 | 日韩,欧美,国产一区二区三区| 欧美少妇被猛烈插入视频| av黄色大香蕉| 亚洲欧美成人综合另类久久久| 婷婷成人精品国产| 欧美亚洲 丝袜 人妻 在线| 51国产日韩欧美| 中文天堂在线官网| 五月天丁香电影| 你懂的网址亚洲精品在线观看| 婷婷色综合www| 国产永久视频网站| 亚洲国产成人一精品久久久| xxx大片免费视频| 熟女av电影| 国产成人av激情在线播放 | 在线免费观看不下载黄p国产| 欧美激情 高清一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 极品少妇高潮喷水抽搐| 美女主播在线视频| 亚洲成人一二三区av| 2022亚洲国产成人精品| 老司机亚洲免费影院| 99精国产麻豆久久婷婷| 王馨瑶露胸无遮挡在线观看| 人妻制服诱惑在线中文字幕| 青春草亚洲视频在线观看| 国产精品一区二区三区四区免费观看| 插阴视频在线观看视频| 最新的欧美精品一区二区| 欧美成人精品欧美一级黄| 亚洲精品色激情综合| 亚洲无线观看免费| 亚洲精品国产av成人精品| 久久免费观看电影| 国产精品蜜桃在线观看| 又粗又硬又长又爽又黄的视频| 中国美白少妇内射xxxbb| 18禁在线播放成人免费| 国产熟女欧美一区二区| 久久99热6这里只有精品| 色婷婷av一区二区三区视频| 久久久欧美国产精品| 美女福利国产在线| 男的添女的下面高潮视频| 晚上一个人看的免费电影| 大码成人一级视频| 欧美人与善性xxx| 亚洲欧美清纯卡通| 中文欧美无线码| 午夜福利视频在线观看免费| 9色porny在线观看| 美女脱内裤让男人舔精品视频| 日韩 亚洲 欧美在线| 亚洲熟女精品中文字幕| 久久久久久久久久久丰满| xxx大片免费视频| 国产精品不卡视频一区二区| 人妻人人澡人人爽人人| 国产极品天堂在线| 亚洲精品乱码久久久v下载方式| 日本猛色少妇xxxxx猛交久久| 一个人看视频在线观看www免费| 2021少妇久久久久久久久久久| 美女脱内裤让男人舔精品视频| 国产精品一区www在线观看| 99精国产麻豆久久婷婷| 女性被躁到高潮视频| 亚洲天堂av无毛| 免费少妇av软件| 在线观看美女被高潮喷水网站| 肉色欧美久久久久久久蜜桃| 免费黄色在线免费观看| 久久久久久伊人网av| 欧美激情 高清一区二区三区| 一级毛片我不卡| 只有这里有精品99| 少妇精品久久久久久久| 久久久久久久精品精品| 边亲边吃奶的免费视频| 999精品在线视频| 女人精品久久久久毛片| 国产精品99久久久久久久久| 老司机影院成人| 街头女战士在线观看网站| 午夜影院在线不卡| 人人妻人人添人人爽欧美一区卜| 男女免费视频国产| 久久久久久久国产电影| 精品一区在线观看国产| 插逼视频在线观看| 欧美3d第一页| 亚洲av福利一区| 国产精品一区二区三区四区免费观看| 国产精品99久久99久久久不卡 | 99热6这里只有精品| 精品久久久久久电影网| 色5月婷婷丁香| 一本一本综合久久| 26uuu在线亚洲综合色| 欧美变态另类bdsm刘玥| 插阴视频在线观看视频| 亚洲精品自拍成人| 久久久国产欧美日韩av| xxxhd国产人妻xxx| 国产精品 国内视频| av黄色大香蕉| 日韩成人av中文字幕在线观看| 成人毛片60女人毛片免费| 久久久久久人妻| 国产高清国产精品国产三级| 夜夜看夜夜爽夜夜摸| 欧美亚洲日本最大视频资源| 有码 亚洲区| 国产成人精品在线电影| 日本黄色片子视频| 亚洲av福利一区| 国产免费现黄频在线看| 久久精品久久久久久久性| 大片电影免费在线观看免费| 亚洲av二区三区四区| 久久久精品区二区三区| 久久久国产一区二区| 波野结衣二区三区在线| 丰满饥渴人妻一区二区三| 国产国拍精品亚洲av在线观看| .国产精品久久| 啦啦啦啦在线视频资源| 日韩av免费高清视频| 免费av不卡在线播放| 在线观看www视频免费| 高清av免费在线| 黑丝袜美女国产一区| 国产一级毛片在线| 久久久精品94久久精品| 你懂的网址亚洲精品在线观看| 中文字幕亚洲精品专区| av天堂久久9| 寂寞人妻少妇视频99o| 自线自在国产av| 黄片播放在线免费| 国产精品 国内视频|