• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prediction of Parkinson’s Disease Using Improved Radial Basis Function Neural Network

    2021-12-14 06:04:12RajalakshmiShenbagaMoorthyandPabitha
    Computers Materials&Continua 2021年9期

    Rajalakshmi Shenbaga Moorthyand P.Pabitha

    1St.Joseph’s Institute of Technology,Chennai,600119,India

    2Madras Institute of Technology,Chennai,600044,India

    Abstract:Parkinson’s disease is a neurogenerative disorder and it is difficult to diagnose as no therapies may slow down its progression.This paper contributes a novel analytic system for Parkinson’s Disease Prediction mechanism using Improved Radial Basis Function Neural Network(IRBFNN).Particle swarm optimization(PSO)with K-means is used to find the hidden neuron’s centers to improve the accuracy of IRBFNN.The performance of RBFNN is seriously affected by the centers of hidden neurons.Conventionally K-means was used to find the centers of hidden neurons.The problem of sensitiveness to the random initial centroid in K-means degrades the performance of RBFNN.Thus,a metaheuristic algorithmcalled PSO integrated with K-means alleviates initial random centroid and computes optimal centers for hidden neurons in IRBFNN.The IRBFNN uses Particle swarm optimization K-means to find the centers of hidden neurons and the PSO K-means was designed to evaluate the fitness measures such as Intracluster distance and Intercluster distance.Experimentation have been performed on three Parkinson’s datasets obtained from the UCI repository.The proposed IRBFNN is compared with other variations of RBFNN,conventional machine learning algorithms and other Parkinson’s Disease prediction algorithms.The proposed IRBFNN achieves an accuracy of 98.73%,98.47% and 99.03% for three Parkinson’s datasets taken for experimentation.The experimental results show that IRBFNN maximizes the accuracy in predicting Parkinson’s disease with minimum root mean square error.

    Keywords:Improved radial basis function neural network;K-means;particle swarm optimization

    1 Introduction

    Parkinson’s Disease (PD) is the second neurogenerative disorder after Alzheimer’s disease.It affects nearly 1% of individuals who are in or above the age of 60 [1,2].PD is a progressive neurological disorder characterized by a large number of motor symptoms such as hypomimia,dysarthria,and non-motor symptoms such as autonomic dysfunction and sleep disorder [3,4].There are no disease modifying therapies that either slow down,stop or inverse the progression of PD [5].Treatments such as Levodopa/Carbidopa duodenal infusion improve motor conditions along with reduction in disabling dyskinesia in patients with PD [6].Though these therapies only provide temporary relief from early symptoms,they do not cease progression of PD [7].

    Two main quantitative measures that measure the progression of PD is i) the Hoehn and Yahr Scale [8]and ii) the Unified Parkinson’s Disease Rating Scale (UPDRS) [9].The Movement Disorder Society (MDS) had revised UPDRS,which is called MDS-UPDRS.These measures identify the progression of PD,but the symptoms of PD vary from person to person.Thus,diagnosing PD is complex.In this article,an Improved Radial Basis Function Neural Network(IRBFNN) was used to predict the Parkinson’s disease.This work aims to improve the accuracy of predicting Parkinson’s disease from the dataset taken from the UCI repository.Voice signals,vowels,handwritten symbols,and gaits [10]are used for detecting Parkinson’s disease.In recent days,researchers focus on applying machine learning algorithms to build a model for better classification/prediction using data gathered at the clinic [11,12].

    The motivation behind using IRBFNN is to predict PD with maximum accuracy,positive predictive value,negative predictive value,and minimum error.The problem with conventional RBFNN is that performance of the classifier lies in the center of the hidden neurons[13-15].Conventionally K-means clustering was used to find the centers of the hidden neurons in RBFNN.K-means is vulnerable to the initial centroid,which heavily affects the performance of RBFNN [16].In order to build an efficient RBFNN,an optimal radial basis function has to be constructed for the hidden neurons.Some traditional methods used to find RBF centers are K-means,K-means with density parameter [16],original density method [17].All the approaches specified have their origin from K-means.Thus,this paper focuses on using K-means for finding centers of hidden neurons.Thus,a metaheuristic algorithm called Particle Swarm Optimization(PSO) based K-means is used to find the centers of the hidden neurons of IRBFNN to maximize the accuracy with correct predictions.The PSO K-means [18]finds the centers using the exploration,exploitation of the particles and movement of the particle towards the global best.

    The main contributions of the paper are:

    —PSO K-means is used to find the centers with the fitness value of maximizing the Intercluster distance and minimizing the intra-cluster distance

    —The centers given by PSO K-means are used in the hidden neurons of IRBFNN

    —Experimentation of IRBFNN is done on 3 Parkinson’s datasets

    IRBFNN is compared with other variations of RBFNN such as RBFNN-3 where centers are found using Whale Optimization Algorithm (WOA) K-means,RBFNN-2 where centers are determined using Sine Cosine Algorithm (SCA) K-means,RBFNN-1 in which centers are calculated using Genetic Algorithm (GA) based K-means and RBFNN where centers are found using K-means in terms of accuracy,positive predictive value,negative predictive value,root mean square error,F-score

    —IRBFNN is also compared with conventional machine learning algorithms such as K-means,Random Forest,Decision Tree,and Support Vector Machine

    —Mean,Best,and Worst fitness values are also compared for proposed PSO K-means,WOA K-means,SCA K-means,and GA K-means,which is used in IRBFNN,RBFNN-3,RBFNN-2 and RBFNN-1,respectively.

    —Also,IRBFNN is compared with other machine learning algorithms used for PD prediction

    —Experimentation is carried out 30 times,and the mean value is taken for performance analysis

    The rest of the paper is organized as follows:Section 2 describes the related study on applying different machine learning algorithms for predicting Parkinson’s disease.Section 3 details the proposed system for the prediction of Parkinson’s disease.Section 4 details IRBFNN along with centers determined using PSO K-means.Section 5 details the experimental results obtained by comparing the proposed Improved radial basis function neural network (IRBFNN-RBFNN+PSO+K-means) with other machine learning algorithms using the Parkinson’s dataset taken from UCI repository [19].Section 6 concludes the work along with the future scope.

    2 Background and Related Works

    Freezing of Gait (FoG) in Parkinson’s disease was predicted using FoG prediction algorithm,which considers various metrics such as sensor positions,sensor axis,sampling window length [20].Multisource ensemble learning together with Convolutional Neural Network (CNN) was used to detect Parkinson’s disease [21].Cascaded Multi-Column Random Vector Functional Link (RVFL)had been used for diagnosing PD.The data sets used was taken from PPMI.The model produced an accuracy of 81.93% [22].

    FoG prediction model using AdaBoost was designed using impaired gait features.In order to correctly identify gait,a pre-Fog phase was used based on the slope of the impaired gait pattern [23].Positive Transfer Learning (PTL) was used to detect PD.An At-home testing device(AHTD) measures the symptoms of PD which is then converted into UPDRS measurements [24].

    FoG prediction was made using Electroencephalography (EEG) features,which was determined using Fourier and wavelet analysis using data gathered from 16 patients [25].Conventional RBFNN was used to predict PD using the data generated by electrodes implanted in the deep brain of a patient [26].Random forest together with minimum redundancy and maximum relevance was used to predict PD using the dataset having voice measurements of 31 people [27].National Centre for Voice and Speech (NCVS) having 263 samples were used as a dataset to create a model using support vector machine and random forest to maximize accuracy while classifying PD [28].Joint Regression and Classification Framework was designed for diagnosing PD using Parkinson’s Progression Marker Initiative (PPMI) dataset [29].

    From the literature,it is observed that there are several approaches present for prediction of Parkinson’s disease.Also,there is wide use of particle swarm optimization algorithms to find the number of neurons,their centers and weights of RBFNN and the methods were applied to various real-world problems.With the goal to still maximizing the accuracy,in this paper,PSO with K-means is designed to find the optimal centers for RBFNN structure and the proposed approach is used for optimal prediction of Parkinson’s disease.

    3 Proposed Parkinson’s Disease Prediction System

    The system design for the proposed prediction of Parkinson’s disease is shown in Fig.1.The sensors embedded in the elderly patient gather the patient’s health data and the data get stored in the data store.The data in the data store is split as training data set and test data set.Training data set is given as input to the preprocessor where the normalization process happens.The normalized data is provided as input to the predictor,which is designed using IRBFNN.The IRBFNN is trained with the training dataset,and the model is tested with the test dataset.Improved radial basis function neural network is used to transfer input vector∈Xrepresented in Eq.(1) into a suitable form that can be feed into the network to get linear separability.

    whereAijrepresentsjthfeature ofithinstance and |d|represents the number of features.

    Figure 1:Proposed Parkinson’s disease prediction system

    3.1 Preprocessor

    The preprocessor does the process of normalizing the data to the range [0,1].Normalization of attributes represented in Eq.(2) is essential for efficient training of the predictor.

    3.2 IRBFNN

    IRBFNN classifies the input sample by sending each input vectorto each RBF neuron in the hidden layer.Each RBF neuron in the hidden layer is a prototype that maps the input instancewith the mean centroid vectorof hidden neurons.The radial basis function plays a crucial role in the classification of the instances accurately.

    3.2.1 Initialization of Neuron

    The numbers of neurons in the input layer are initialized to the number of dimensions of the dataset.LetI←represents the set of neurons in the input layer.The number of neurons in the hidden layer is determined using Eq.(3) as specified in [16].

    whereHrepresents the set of hidden neurons specified asH←{h1,h2,...,hL} andSrepresents the set of neurons in the summation layer.Typically,the neurons in the summation layer are equal to the number of target class label |CL|in the dataset.The set of neurons in the summation layer is given asFinally,the number of neurons in the output layer is 1,and it is represented asO1.

    3.2.2 Construction of Radial Basis Function Using PSO K-means

    Each RBF neuron is designed using PSO K-means.The RBF neuron prototype plays a prominent role in the optimal allocation of class label to the instance that results in maximizing accuracy.Thus,it is necessary to choose a good prototype for maximizing accuracy.The metaheuristic clustering is used as a RBF neuron prototype where each instance is trained for the optimal class assignment.PSO is evaluated against the metrics such as Intra-cluster distance and Inter-cluster distance.

    3.2.3 Computing Variance

    Having computed the hidden neurons’centers using PSO K-means,the next step is computing the variance of each hidden neuron using Eq.(4).

    3.2.4 Computing Weight

    The initial weights between the hidden neuron and the summation layer neuron are assigned by the pseudo inverse method represented in Eq.(5).The weight between thejthhidden neuron andkthsummation neuron is given aswjk.If the error rate specified in Eq.(7) does not converge at each iteration,then the weight vector is updated using the gradient descent method as defined in Eq.(9).

    Error for theithinstance is specified using Eq.(6).

    whereyiis the actual output,is the predicted output of theithinstance and |X|represents the number of instances.Eq.(8) illustrates the computation of change in weight vector.

    When the error value is converged,the IRBFNN maximizes the accuracy in the prediction of Parkinson’s disease for the test dataset.

    4 Implementation

    The radial basis function is designed using particle swarm optimization-based K-means.Algorithm 1 illustrates the working procedure of IRBFNN.Section 4 details the computation of the radial basis function for IRBFNN.The combined fitness function for the particle swarm optimization is represented in Eq.(10).The objective of maximizing the fitness function is achieved by maximizing the Inter-cluster distance and minimizing the intra-cluster distance.whereΔrepresents Intra-cluster distance,δrepresents Inter-cluster distance.Each particle performs the computation in every iteration,such as evaluating its fitness using Eq.(10).Intra-cluster distanceΔ(Ωi)is the distance between any two instances within the same clusterΩirepresented in Eq.(11).Low intra-cluster distance of any cluster means that the clusters are compact.

    whereCi,Cjrepresents the centroid ofithcluster andjthcluster respectively and is computed as shown in Eq.(13).

    The PSO K-means for finding optimal centers of the hidden neuron are represented in Algorithm 2.TheGBestPosswarmcontain the cluster centres that are used by hidden neurons in IRBFNN.

    5 Experimental Results

    The proposed IRBFNN was executed in python and its accomplishment was measured using three Parkinson’s disease datasets taken from the UCI repository [19].PSO K-means is used to find centers of hidden neurons.The investigation is performed on Intel ? core TM i5-4210 U CPU @1.70 GHz and 4 GB RAM.

    5.1 Dataset Description

    In order to evaluate the efficiency of the proposed IRBFNN,several investigations were performed.The analysis was conducted on 3 benchmarking Parkinson’s datasets taken from the UCI repository.The datasets include Dataset 1-Parkinson’s dataset,Dataset 2-Parkinson’s disease classification dataset,Dataset 3-Parkinson’s speech dataset with multiple types of sound recordings data set.Researchers widely used these datasets for classifying the Parkinson’s disease.Tab.1 gives a detailed description of the datasets including the number of instances,features,and classes.

    5.2 Algorithms Used for Comparison

    A metaheuristic algorithm PSO integrated with K-means with the defined fitness represented in Eq.(10) is used to find the centers of hidden layer neurons for IRBFNN.For the experimental purposes,the dataset is divided into 80:20 ratio i.e.,80% of data is used for training and 20% of data are used for testing.The experimentation is repeated for 30 times and the average value is taken for analyzing the efficiency of IRBFNN.The variations of radial basis function used for comparison of proposed PSO K-means are Whale Optimization Algorithm (WOA) K-means [30]Sine Cosine Algorithm (SCA) K-means [31],Genetic Algorithm K-means [32],and K-means [33].

    Table 1:Dataset details

    Algorithm 1:IRBFNN Input:Initialize input neurons I ←images/BZ_264_1039_1377_1061_1423.pngin1,in2,...,in|d|images/BZ_264_1360_1377_1381_1423.pngInitialize hidden neurons H ←{h1,h2,...,hL}Initialize summation neurons S ←images/BZ_264_1161_1485_1182_1531.pngs1,s2,...,s|CL|images/BZ_264_1457_1485_1478_1531.pngOutput:Trained model IRBFNN μ ←PSOK-Means(X)for each Hidden Neuron hiinH Compute variance σi using Eq.(4)end for each instance→XiinX for each centre μjinμimages/BZ_264_1413_1924_1437_1959.pngimages/BZ_264_1008_1973_1033_2018.png→Xiimages/BZ_264_1078_1973_1103_2018.pngCompute φij using φij=1 σj2π e-images/BZ_264_1298_1924_1322_1959.png→Xi- →μj 2σ2j end end while error E converges for each instance→XiinX for each summation neuron skinS for each Hidden Neuron hjinH sumik ←sumik+wjk*φij end end for each summation neuron skinS for each summation neuron szinS if sumik>sumiz fimages/BZ_264_745_2694_769_2739.png→Xiimages/BZ_264_815_2694_839_2739.png←k

    (Continued)

    else fimages/BZ_265_691_405_715_451.png→Xiimages/BZ_265_761_405_785_451.png←z end if end end compute error ei using Eq.(6)E ←E+images/BZ_265_696_696_714_742.pnge2iimages/BZ_265_754_696_772_742.pngend for each Hidden Neuron hjinH for each summation neuron skinS Compute change in weight using Eq.(8)Compute weight wjk using Eq.(9)end end end

    Algorithm 2:PSO K-means (X)Input:Dataset X ←→X1,→X2,...,→XnOutput:Cluster centres GBestPosswarm for each particle Pkinswarm Initialize particle PosPk ←images/BZ_265_1168_1549_1190_1594.png→c1,→c2,...,→ckimages/BZ_265_1422_1549_1444_1594.pngimages/BZ_265_1256_1603_1277_1649.png←rand ∈(0,1)Initialize Personal Best PBestPk ←-∞Initialize Global Best GBestswarm ←-∞Initialize Personal Best Position PBestPosdPk,t ←[0]1*k Initialize GBest Position GBestPosswarm ←[0]|swarm|*k End while t≤TMax for each particle Pkinswarm for each Instance→Xi ∈X for each Dimension→ck ∈Pk Distik ←Initialize Velocityimages/BZ_265_1001_1603_1023_1649.png→v1,→v2,...,→vkimages/BZ_265_990_2136_1004_2181.pngimages/BZ_265_990_2163_1004_2208.pngimages/BZ_265_990_2190_1004_2236.png→Xi-→ckimages/BZ_265_1141_2136_1156_2181.pngimages/BZ_265_1141_2163_1156_2208.pngimages/BZ_265_1141_2190_1156_2236.pngend Iindex ←Iindex ∪→Xiend Compute fitness f (Pk) using Eq.(18)end for each particle Pkinswarm PBest_{P_{k},t}←f(P_{k,t})|PBest_{P_{k},t-1}<f(P_{k,t})PBestPosdPk,t ←Maximages/BZ_265_1059_2596_1081_2642.pngPosPk,t-1images/BZ_265_1243_2596_1264_2642.pngend GBestswarm ←Max{?Pk ∈P}GBestPosdswarm,t ←images/BZ_265_990_2758_1011_2804.pngPosPk,t-1images/BZ_265_1173_2758_1195_2804.pngGBestswarm,t=PBestPk,t

    ?for each particle Pkinswarm Compute Velocity VdPk,t Compute Position PosdPk,t end end return GBestPosswarm

    Maximum number of iterations is set as 100 for all Radial Basis Function except K-Means where the maximum iteration is set as 500.The number of neurons in the input layer is set as number of features in the respective datasets.The number of neurons in the input layer is 23,754 and 26 for dataset 1,dataset 2 and dataset 3 respectively.The number of neurons in hidden layer is 6 for dataset 1 and dataset 3 and 29 for dataset 2 respectively.The parameter settings for the variations of radial basis functions and the neural network are listed in Tab.2.The efficiency of the proposed IRBFNN was compared with other Parkinson’s Prediction Algorithms such as Neural Network [34],Support Vector Machine (SVM) with Recursive Feature Selection [35],Fuzzy K-NN [36],PSO-FKNN [37],CNN [38],Minimum Average Maximum Value Singular Value Decomposition (MAMA SVD) with K-NN [39],Octopus Pooling Method (OPS) with KNN [40],Simple Logistic Greedy Stepwise (SLGS) [41],Leave one subject out (LOSO) validation with K-NN [42]and Fuzzy Lattice Reasoning [43].Similar research work on health datasets is described in [44-47].

    5.3 Results

    The results acquired for IRBFNN are elaborated in this section.The proposed IRBFNN is compared to assess the outcome of using PSO K-means as radial basis function instead of using K-means in RBFNN,GA K-means in RBFNN-1,SCA K-means in RBFNN-2 and WOA Kmeans in RBFNN-3.The metrics used to evaluate the proposed mechanism includes:

    Accuracy:Accuracy is defined as the correct prediction ratio that the classifier made to the total number of instances.The classifier’s accuracy is represented in Eq.(14).

    F score:F Score is the harmonic mean of precision and recall and it gives the measure of incorrectly classified instances by the classifier as specified in Eq.(15).

    Recall:Recall is the ratio of correctly identified positive instances to the total number of positive instances specified in Eq.(16).

    Positive Predictive Value(PPV):PPV represented in Eq.(17) represents the probability that if the result is abnormal,then it indeed indicates the correct result.

    Table 2:Parameter settings of variations of the activation function (radial basis function) and radial basis function neural network

    Negative Predictive Value(NPV):NPV represented in Eq.(18) is the probability that if the result is normal,then it truly represents the correct result.

    Root Mean Square Error:RMSE represented in Eq.(19) represents the measure of error in predicting the class label.

    Fitness:The mean,best and worst fitness values of the radial basis functions are evaluated.

    Execution Time:It is defined by the time taken to execute the algorithm to produce the desired outcome of 0 (indication of person is healthy) and 1 (indication of person is suffered from Parkinson’s disease).This also includes the time taken by radial basis function to find the centers of hidden neurons.

    5.3.1 Comparison of IRBFNN with RBFNN,RBFNN-1,RBFNN-2,RBFNN-3

    Fig.2 gives the calculated values of average accuracy for the proposed IRBFNN is higher than other variations of RBFNN networks for all three Parkinson’s datasets.The reason behind is that radial basis function of WOA K-means in RBFNN-3 does not explores the search space efficiently [30].Also,SCA K-means in RBFNN-2 use so many random parameters resulting in the degradation of searching ability [31].The GA K-means in RBFNN-2 suffers from a problem of premature convergence,and thus the centers of hidden neurons are not optimal enough to increase the classifier accuracy.The RBF K-means is used to find centers of hidden neurons in RBFNN.As K-means is vulnerable to the initial centroid and the centers are not optimal in increasing classifier’s accuracy.For dataset1,IRBFNN achieves 4.9%,12.04%,14.71% and 17.3%greater accuracy than RBFNN-3,RBFNN-2,RBFNN-1 and RBFNN respectively.Similarly,for dataset 2,IRBFNN achieves 1.6%,24.67%,34.09% and 38.12% greater accuracy than RBFNN-3,RBFNN-2,RBFNN-1 and RBFNN respectively.IRBFNN improves the accuracy by 4.85%,7.8%,9.99%,and 20.00% than RBFNN-3,RBFNN-2,RBFNN-1,and RBFNN respectively for dataset 3.

    Experimentation results carried out to measure the F-score of IRBFNN,and other variants of RBFNN are shown in Tab.3.For dataset 1,IRBFNN yields 4.2%,10.64%,12.66% and 54.70%greater F-score than RBFNN-3,RBFNN-2,RBFNN-1 and RBFNN respectively.And for dataset 2,F-score is 5.56%,17.12%,40.50%,and 28.34% greater for IRBFNN than RBFNN-3,RBFNN-2,RBFNN-1,RBFNN respectively.Similarly,IRBFNN has 3.5%,10.3%,15.9% and 28.45%greater F-score than RBFNN-3,RBFNN-2,RBFNN-1 and RBFNN respectively for dataset 3.In all datasets,IRBFNN has a greater F-score because the RBF,PSO K-means explores and exploits in the search space and returns optima centers for hidden neurons of IRBFNN.

    Figure 2:Comparison of accuracy of IRBFNN with variants of RBFNN

    Next experiment is carried out to measure the positive predictive value,which is shown in Tab.4.IRBFNN is superior to all other variants of RBFNN for dataset 1 and dataset 3.RBFNN-3 has a 6.9% higher PPV than IRBFNN for dataset 2.IRBFNN ranks first in maximizing PPV for all datasets except dataset2,for which it comes the second position.These experimental results indicate the proposed activation function PSO K-means is good in finding the centers of hidden neurons and justifies the need for integrating PSO K-means in original RBFNN.Tab.5 gives the comparison between IRBFNN,RBFNN-3,RBFNN-2,RBFNN-1 and RBFNN based on the correct prediction of negative instances as negative using the metric NPV.Also,Tab.5 outlines that IRBFNN surpasses the classifier outputs given by additional algorithms for all datasets.IRBFNN improves NPV by 0.11% and 12.06% than RBFNN-3 for dataset3 and dataset2,respectively.The reason behind the success of IRBFNN is that activation function PSO K-means carefully searches the solution space without trapping in local optima to produce centers of hidden neurons.Tab.6 shows the outcome of applying IRBFNN and other variants of RBFNN on all three Parkinson’s datasets.It also gives clear evidence that IRBFNN has superior performance than other algorithms.For a good classifier,recall should be high so does IRBFNN.IRBFNN improves recall by 3.34%,8.6%,9.6% and 11.68% than RBFNN-3,RBFNN-2,RBFNN-1 and RBFNN respectively for dataset 1.For large scale dataset 2,the Recall of IRBFNN is 8.09% higher than RBFNN-3.Fig.3 presents the results of IRBFNN and other variants of RBFNN for measuring root mean square error.Fig.3 gives evidence that IRBFNN achieves minimum root mean square error for all datasets.The RMSE of IRBFNN is 0.09829,which is less than RBFNN where the RMSE is 0.56 for dataset 3.In other words,RMSE of IRBFNN is 33.195%,45.52%,50.17%,and 58.91% less than RBFNN-3,RBFNN-2,RBFNN-1,and RBFNN,respectively for dataset 3.Fig.4 represents that IRBFNN predicts the instances more accurately than other variants of RBFNN.

    Table 3:Average F-score of RBFNN,RBFNN-1,RBFNN-2,RBFNN-3,IRBFNN

    Table 4:Average PPV of RBFNN,RBFNN-1,RBFNN-2,RBFNN-3,IRBFNN

    Table 5:Average NPV of RBFNN,RBFNN-1,RBFNN-2,RBFNN-3,IRBFNN

    Table 6:Average Recall of RBFNN,RBFNN-1,RBFNN-2,RBFNN-3,IRBFNN

    5.3.2 Comparison of Fitness of Radial Basis Function of IRBFNN with RBFNN,RBFNN-1,RBFNN-2,RBFNN-3

    The fitness value of various algorithms for all datasets is represented in Fig.5.radial basis function PSO K-means has better fitness than other RBF’s such as WOA K-means,SCA K-means,GA K-means.IRBFNN,and RBFNN-3,RBFNN-2 has nearly the same worst fitness value but the former achieves 3.34% and 8.69% minimum RMSE than the latter.For dataset 3,IRBFNN has poor worst fitness than RBFNN-1 but the mean fitness of IRBFNN is superior to the latter which gives evidence that IRBFNN is better than all other classifiers mentioned.Fig.5 represents the fitness value as specified in Eq.(10) for the datasets described in Tab.1.

    Figure 3:Comparison of root mean square error of IRBFNN with variants of RBFNN

    5.3.3 Comparison of IRBFNN with other Parkinson’s Disease Prediction Method

    The accuracy of IRBFNN is compared with other existing Parkinson’s Prediction Algorithm.For dataset 1,the accuracy was measured as:neural network [34]0.9290,SVM with recursive feature selection [35]0.9384,Fuzzy K-NN [36]0.9579,PSO FKNN [37]0.9747 and IRBFNN 0.9874.For dataset 2,the computation of accuracy is given as CNN [38]with accuracy 0.8690,MAMASVD+K-NN [39]with accuracy 0.9200,OPS+K-NN [40]with accuracy 0.9841,SLGS [41]with accuracy 0.8871 for males and 0.8715 for females and IRBFNN with accuracy 0.9847.For dataset 3,the measurement of accuracy is given as:LOSO+K-NN [42]with accuracy 0.8250,FLR [43]with accuracy of 1.0000 and IRBFNN with an accuracy of 0.9903.For dataset 3,IRBFNN ranks second while FLR obtained first rank.In other words,the FLR improves accuracy by 0.0962% than IRBFNN.It is observed that IRBFNN is superior to other methods for dataset 1 and dataset 2 from experimental results.

    Figure 4:Prediction of parkinson’s disease

    Figure 5:Rate of convergence for different radial basis function of IRBFNN,RBFNN-3,RBFNN-2,RBFNN-1

    5.3.4 Analyzing Computational Time

    The computational complexity of the proposed IRBFNN is measured using Big-OhOnotation.The time taken for each process are specified in Tab.7.Tab.8 shows the average execution time taken by the algorithms.The deduction made from the Tab.8 is that,for all the datasets,the time taken by IRBFNN is minimum than other algorithms.From Tab.8 it is evident that the algorithm spends maximum time in computing centers of hidden neurons.Thus,the computational complexity of IRBFNN isO(Tmax|P||d||X|).

    Table 7:Computational complexity of proposed IRBFNN

    Table 8:Average execution time in seconds

    5.3.5 Comparison of IRBFNN with other Machine Learning Algorithms

    From Tab.9,it is evident that for all the datasets,IRBFNN achieves maximum accuracy than other traditional algorithms.The accuracy of IRBFNN is improved by 9.382%,14.621%,10.266%,and 18.875% than SVM,Random Forest,Decision Tree,and K-means for dataset 1.For dataset 2 IRBFNN improves accuracy 17.387% greater than Decision trees.Similarly,for dataset 3,the performance of IRBFNN is improved by 17.08% than SVM.But the time taken by IRBFNN is more than traditional machine learning algorithms showing there is a trade-off between accuracy and time taken.Tab.10 shows the time taken by various algorithms for predicting the Parkinson’s disease.

    Table 9:Average classification accuracy for five classifiers on Parkinson’s dataset

    The inferences made from the experiment results were listed as:

    · Improved radial basis function neural network maximizes accuracy together with minimizing root mean square error

    · The use of PSO K-means with the fitness of maximizing Intercluster distance and minimizing intracluster distance finds optimal cluster centers,which is used in hidden neurons of IRBFNN

    · Experiments performed to measure the positive predictive value,and negative predictive value also signifies the introduction of PSO K-means radial basis function improves the performance in identifying the positive and negative instances

    · The execution time of the proposed IRBFNN is higher than conventional machine learning algorithms but with the increase in accuracy

    · The introduction of PSO K-means improves the accuracy of IRBFNN by 3.83%,14.85%,19.57% and 25.15% than RBFNN-3,RBFNN-2,RBFNN-1 and RBFNN,respectively.

    Table 10:Average time taken between various machine learning classifiers and IRBFNN in seconds

    6 Conclusion

    Finally,through rigorous analysis,it has been inferred that the IRBFNN was designed and experimented successfully to predict Parkinson’s disease.Besides,the proposed network reveals that finding the efficient radial basis function is essential for accurate prediction.The presented IRBFNN best solves the given problem of predicting Parkinson’s disease by efficiently finding the centers of hidden neurons for designing the radial basis function of IRBFNN.Thus,to obtain the good performance,metaheuristic algorithms are used to find optimal values of these parameters,leading to minimizing error and maximizing accuracy.PSO K-means’performance is compared with other metaheuristic way of finding centers in designing radial basis function neural network and the proposed IRBFNN shows that PSO K-means choose the optimal center by doing good level of exploration and exploitation by avoiding struck in local optima when predicting Parkinson’s disease.The key findings of the paper are listed as:

    · The problem of finding the centers of the hidden neurons is solved by using PSO with K-means,which maximizes the accuracy of the presented IRBFN

    · The integration of PSO with K-means diminishes the problems caused by the initial random centroid of conventional K-means by doing a good level of exploration and exploitation

    · The fitness value of PSO takes Intra-cluster distance,Inter-cluster distance,which produces optimal cluster centers

    The use of PSO K-means in finding the hidden neurons’centers maximize the accuracy,F-score,positive predictive value,negative predictive value,recall and minimizes the root mean square error.In future work,a novel feature selector algorithm will be integrated before the analytics process for further enhancing the accuracy of prediction.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    能在线免费看毛片的网站| 九九爱精品视频在线观看| 91精品国产国语对白视频| 美女国产视频在线观看| 嫩草影院新地址| 一级毛片久久久久久久久女| 久久久久国产精品人妻一区二区| 晚上一个人看的免费电影| 亚洲av成人精品一区久久| 中文资源天堂在线| 国产成人aa在线观看| 欧美精品一区二区大全| 成人国产av品久久久| 国产熟女午夜一区二区三区 | 日韩精品有码人妻一区| 久久99蜜桃精品久久| 五月伊人婷婷丁香| 婷婷色综合大香蕉| 菩萨蛮人人尽说江南好唐韦庄| 国产精品国产三级专区第一集| 日产精品乱码卡一卡2卡三| 两个人的视频大全免费| 纵有疾风起免费观看全集完整版| 国产探花极品一区二区| 国产欧美日韩精品一区二区| 嘟嘟电影网在线观看| 建设人人有责人人尽责人人享有的| 午夜免费鲁丝| 人人妻人人澡人人看| 22中文网久久字幕| av福利片在线观看| 人妻一区二区av| 国产毛片在线视频| 日韩在线高清观看一区二区三区| 大又大粗又爽又黄少妇毛片口| 精品99又大又爽又粗少妇毛片| 国产精品久久久久久精品古装| 欧美xxxx性猛交bbbb| 乱系列少妇在线播放| 一个人免费看片子| 中文字幕人妻丝袜制服| 桃花免费在线播放| 日本欧美国产在线视频| 久久精品熟女亚洲av麻豆精品| 精品国产露脸久久av麻豆| 少妇丰满av| 人人澡人人妻人| 99热6这里只有精品| 美女中出高潮动态图| 熟女电影av网| 日韩三级伦理在线观看| 国产精品久久久久久精品电影小说| 乱码一卡2卡4卡精品| 日韩熟女老妇一区二区性免费视频| 国产午夜精品久久久久久一区二区三区| 简卡轻食公司| 伊人久久国产一区二区| 久久人妻熟女aⅴ| 日本vs欧美在线观看视频 | 日韩,欧美,国产一区二区三区| 国产精品国产三级专区第一集| 欧美国产精品一级二级三级 | 国产精品成人在线| 黄色怎么调成土黄色| 在线观看www视频免费| a级片在线免费高清观看视频| 欧美精品一区二区大全| av天堂久久9| 最近2019中文字幕mv第一页| 免费看不卡的av| 天天躁夜夜躁狠狠久久av| 中文精品一卡2卡3卡4更新| 国模一区二区三区四区视频| 精品久久久噜噜| 国产精品.久久久| 日韩av在线免费看完整版不卡| 午夜激情久久久久久久| 少妇人妻精品综合一区二区| 国产伦理片在线播放av一区| 国产极品天堂在线| 天美传媒精品一区二区| 三上悠亚av全集在线观看 | 中文字幕精品免费在线观看视频 | 中文字幕亚洲精品专区| 久久久久久久久久人人人人人人| 爱豆传媒免费全集在线观看| 国产黄色视频一区二区在线观看| 国产精品99久久久久久久久| 国产精品成人在线| 毛片一级片免费看久久久久| 久久久a久久爽久久v久久| 夫妻性生交免费视频一级片| 日韩中文字幕视频在线看片| 亚洲欧美一区二区三区国产| 99re6热这里在线精品视频| 如日韩欧美国产精品一区二区三区 | 99视频精品全部免费 在线| 国产伦精品一区二区三区视频9| 国产成人免费无遮挡视频| 久久久久久久大尺度免费视频| 国产在线视频一区二区| 亚洲国产精品专区欧美| 老司机影院成人| 精品久久久噜噜| 天天操日日干夜夜撸| 国产亚洲午夜精品一区二区久久| 丰满饥渴人妻一区二区三| 久久亚洲国产成人精品v| 日日啪夜夜撸| 国产av国产精品国产| 99热这里只有精品一区| 免费观看av网站的网址| a级毛片免费高清观看在线播放| a 毛片基地| 久久久久久久亚洲中文字幕| 久久久亚洲精品成人影院| 欧美少妇被猛烈插入视频| 最近的中文字幕免费完整| 人人妻人人看人人澡| 亚洲av国产av综合av卡| 久久精品久久精品一区二区三区| 高清在线视频一区二区三区| 亚洲精品aⅴ在线观看| 色哟哟·www| 午夜激情福利司机影院| 在线精品无人区一区二区三| 菩萨蛮人人尽说江南好唐韦庄| 婷婷色综合www| 少妇精品久久久久久久| 亚洲一区二区三区欧美精品| 国产av国产精品国产| 亚洲精品一区蜜桃| 亚洲av欧美aⅴ国产| 高清av免费在线| 一级黄片播放器| 伦精品一区二区三区| 国产 一区精品| 一区二区三区四区激情视频| 一级爰片在线观看| 欧美亚洲 丝袜 人妻 在线| 日本av手机在线免费观看| 久久久久久久大尺度免费视频| 成人亚洲精品一区在线观看| 一边亲一边摸免费视频| 免费看日本二区| 岛国毛片在线播放| 又粗又硬又长又爽又黄的视频| 精品一区二区三区视频在线| 成年人免费黄色播放视频 | 国产69精品久久久久777片| 亚洲在久久综合| 欧美bdsm另类| 在线 av 中文字幕| 日韩,欧美,国产一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 国产精品熟女久久久久浪| 秋霞伦理黄片| 亚洲欧美成人综合另类久久久| 丰满少妇做爰视频| 国产午夜精品一二区理论片| 视频区图区小说| 亚洲综合精品二区| 国产成人一区二区在线| 黑人高潮一二区| 精品人妻熟女av久视频| www.av在线官网国产| 桃花免费在线播放| 在线观看www视频免费| 日韩熟女老妇一区二区性免费视频| 免费不卡的大黄色大毛片视频在线观看| 中文乱码字字幕精品一区二区三区| 久久久欧美国产精品| 国产真实伦视频高清在线观看| 大片免费播放器 马上看| 日韩视频在线欧美| 国产极品粉嫩免费观看在线 | 久久精品久久久久久久性| 色94色欧美一区二区| 大片电影免费在线观看免费| 三上悠亚av全集在线观看 | 青春草国产在线视频| 国产欧美亚洲国产| 97在线视频观看| 香蕉精品网在线| 国产av精品麻豆| 精品久久久久久久久av| 99热这里只有精品一区| 亚洲av中文av极速乱| 免费观看性生交大片5| 国产乱人偷精品视频| 欧美精品人与动牲交sv欧美| 卡戴珊不雅视频在线播放| tube8黄色片| 蜜臀久久99精品久久宅男| 亚洲色图综合在线观看| 欧美变态另类bdsm刘玥| 亚洲av男天堂| 国产一级毛片在线| 国产永久视频网站| 91精品伊人久久大香线蕉| 国产色婷婷99| 最黄视频免费看| 亚洲欧美清纯卡通| 国产探花极品一区二区| 精品久久久久久久久av| 高清在线视频一区二区三区| 深夜a级毛片| 中文字幕精品免费在线观看视频 | av专区在线播放| 久久国产乱子免费精品| 亚洲人与动物交配视频| 色网站视频免费| 午夜久久久在线观看| 色视频在线一区二区三区| av黄色大香蕉| 日本av免费视频播放| 插阴视频在线观看视频| 久久鲁丝午夜福利片| 国产欧美另类精品又又久久亚洲欧美| 丝袜在线中文字幕| 欧美三级亚洲精品| 亚洲av男天堂| 大陆偷拍与自拍| 久久精品国产亚洲av涩爱| 97超碰精品成人国产| 国产av精品麻豆| 美女主播在线视频| 亚洲国产精品一区三区| 秋霞在线观看毛片| 少妇的逼水好多| 成人毛片a级毛片在线播放| 汤姆久久久久久久影院中文字幕| 高清黄色对白视频在线免费看 | 一本久久精品| 高清毛片免费看| 高清午夜精品一区二区三区| 99热国产这里只有精品6| 久久99热这里只频精品6学生| 亚洲欧美一区二区三区国产| 男人添女人高潮全过程视频| 久久久久久久久久久久大奶| 国产成人精品婷婷| 日韩 亚洲 欧美在线| 美女中出高潮动态图| 国产精品一区二区在线观看99| 亚洲精品自拍成人| 两个人的视频大全免费| 亚洲欧洲国产日韩| 国产成人精品婷婷| 下体分泌物呈黄色| 午夜免费观看性视频| 亚洲精品亚洲一区二区| 狂野欧美激情性xxxx在线观看| 少妇人妻精品综合一区二区| 蜜桃在线观看..| 免费高清在线观看视频在线观看| 亚洲内射少妇av| 狂野欧美白嫩少妇大欣赏| 少妇被粗大的猛进出69影院 | 91久久精品国产一区二区成人| 免费人成在线观看视频色| 亚洲美女视频黄频| 免费在线观看成人毛片| 久久热精品热| 亚洲av免费高清在线观看| 精品酒店卫生间| 欧美国产精品一级二级三级 | 我要看日韩黄色一级片| 两个人免费观看高清视频 | 日韩在线高清观看一区二区三区| 国产亚洲午夜精品一区二区久久| 中文字幕久久专区| 亚洲一级一片aⅴ在线观看| 妹子高潮喷水视频| 久久热精品热| 简卡轻食公司| 熟女电影av网| 日韩欧美精品免费久久| 国产成人freesex在线| 伦理电影免费视频| 80岁老熟妇乱子伦牲交| 亚洲内射少妇av| 97在线人人人人妻| 亚洲av成人精品一二三区| 另类精品久久| 国产亚洲5aaaaa淫片| 久久久久网色| 两个人的视频大全免费| 18禁在线无遮挡免费观看视频| 在线观看一区二区三区激情| 十八禁网站网址无遮挡 | 亚洲色图综合在线观看| videos熟女内射| 国产一区二区三区av在线| 人妻人人澡人人爽人人| 高清在线视频一区二区三区| 国产男女超爽视频在线观看| 一级a做视频免费观看| 狠狠精品人妻久久久久久综合| 精品国产一区二区三区久久久樱花| 丰满人妻一区二区三区视频av| 啦啦啦中文免费视频观看日本| 国产美女午夜福利| 国产伦精品一区二区三区四那| 一区二区三区精品91| av在线播放精品| 少妇精品久久久久久久| 亚洲精品自拍成人| 日本爱情动作片www.在线观看| 精品亚洲乱码少妇综合久久| 亚洲精品aⅴ在线观看| 欧美日韩视频高清一区二区三区二| 内地一区二区视频在线| 天堂中文最新版在线下载| 丰满乱子伦码专区| 免费看av在线观看网站| 全区人妻精品视频| 夫妻午夜视频| 日本欧美视频一区| 一本—道久久a久久精品蜜桃钙片| 国产欧美日韩一区二区三区在线 | 亚洲av电影在线观看一区二区三区| 成年女人在线观看亚洲视频| 国产精品三级大全| 午夜视频国产福利| a级毛片免费高清观看在线播放| 大又大粗又爽又黄少妇毛片口| 日韩中字成人| 亚洲精品中文字幕在线视频 | 人妻少妇偷人精品九色| 我的老师免费观看完整版| 美女cb高潮喷水在线观看| 伦理电影大哥的女人| 天堂8中文在线网| 91精品一卡2卡3卡4卡| 自拍欧美九色日韩亚洲蝌蚪91 | 国产视频首页在线观看| 欧美高清成人免费视频www| 日本猛色少妇xxxxx猛交久久| av在线app专区| 亚洲美女视频黄频| 又爽又黄a免费视频| 免费观看a级毛片全部| 国产日韩欧美视频二区| 免费高清在线观看视频在线观看| 性色av一级| a级毛片在线看网站| 下体分泌物呈黄色| 亚洲精品乱码久久久久久按摩| 99久久人妻综合| 亚洲欧洲国产日韩| 伊人久久国产一区二区| 亚洲怡红院男人天堂| 亚洲美女搞黄在线观看| 菩萨蛮人人尽说江南好唐韦庄| 免费黄网站久久成人精品| 国产极品粉嫩免费观看在线 | 亚洲三级黄色毛片| 一级a做视频免费观看| 大又大粗又爽又黄少妇毛片口| 777米奇影视久久| 在线观看一区二区三区激情| 一边亲一边摸免费视频| 少妇被粗大的猛进出69影院 | 国产黄频视频在线观看| 国产精品久久久久久久久免| 最新中文字幕久久久久| 十八禁高潮呻吟视频 | 99久久精品一区二区三区| 国产男女内射视频| 国产成人午夜福利电影在线观看| 亚洲情色 制服丝袜| kizo精华| 精品少妇久久久久久888优播| 国产毛片在线视频| 久久97久久精品| 精品少妇黑人巨大在线播放| 久久韩国三级中文字幕| 国产av码专区亚洲av| 99九九在线精品视频 | 少妇 在线观看| 久久久亚洲精品成人影院| 51国产日韩欧美| 亚洲av中文av极速乱| 人妻系列 视频| 日本与韩国留学比较| 免费看av在线观看网站| 最新中文字幕久久久久| 乱码一卡2卡4卡精品| 一本色道久久久久久精品综合| 99热这里只有是精品50| 夫妻午夜视频| 亚洲无线观看免费| 日本爱情动作片www.在线观看| 亚洲欧美日韩东京热| 91久久精品国产一区二区成人| 久久久久久久久久久免费av| 春色校园在线视频观看| 欧美精品人与动牲交sv欧美| 韩国高清视频一区二区三区| 精品久久久久久久久亚洲| 内地一区二区视频在线| 国产精品国产三级国产av玫瑰| 老女人水多毛片| 一本—道久久a久久精品蜜桃钙片| 国产日韩欧美在线精品| 男女国产视频网站| 国产探花极品一区二区| 18禁在线无遮挡免费观看视频| 插逼视频在线观看| 日韩亚洲欧美综合| 日日啪夜夜撸| 国产精品伦人一区二区| 少妇人妻 视频| 中文字幕人妻熟人妻熟丝袜美| 日韩中文字幕视频在线看片| 少妇的逼水好多| 99九九线精品视频在线观看视频| 国产在线免费精品| 99九九在线精品视频 | 另类精品久久| 亚洲美女视频黄频| 国产乱人偷精品视频| 国产一区亚洲一区在线观看| 另类亚洲欧美激情| 视频中文字幕在线观看| 少妇高潮的动态图| 免费观看的影片在线观看| 成年美女黄网站色视频大全免费 | 欧美变态另类bdsm刘玥| 日韩成人av中文字幕在线观看| 女人久久www免费人成看片| 性色avwww在线观看| 免费观看在线日韩| 亚洲欧美日韩另类电影网站| 最黄视频免费看| 高清在线视频一区二区三区| 九色成人免费人妻av| 国产精品不卡视频一区二区| 国产免费视频播放在线视频| 午夜福利在线观看免费完整高清在| 国产在视频线精品| 黑丝袜美女国产一区| 亚洲精品国产av成人精品| 三级国产精品欧美在线观看| 97精品久久久久久久久久精品| 汤姆久久久久久久影院中文字幕| 三上悠亚av全集在线观看 | 国产又色又爽无遮挡免| 久久97久久精品| 精品国产一区二区三区久久久樱花| 女性被躁到高潮视频| 亚洲精品日韩在线中文字幕| 国产一级毛片在线| 我的女老师完整版在线观看| 国产在线男女| 精品少妇久久久久久888优播| 波野结衣二区三区在线| 99久国产av精品国产电影| 午夜福利网站1000一区二区三区| 在线观看www视频免费| 亚洲欧美成人综合另类久久久| 亚洲av成人精品一区久久| 精品久久国产蜜桃| 欧美日本中文国产一区发布| 高清欧美精品videossex| 日韩av不卡免费在线播放| 国产精品伦人一区二区| 中国三级夫妇交换| 国产在线男女| 少妇猛男粗大的猛烈进出视频| 久久人妻熟女aⅴ| 午夜激情福利司机影院| 国产极品粉嫩免费观看在线 | 中文资源天堂在线| 美女内射精品一级片tv| 人妻夜夜爽99麻豆av| 国产精品一二三区在线看| 亚洲美女视频黄频| h视频一区二区三区| 校园人妻丝袜中文字幕| 中文字幕人妻丝袜制服| 国产视频内射| 亚洲怡红院男人天堂| 精品视频人人做人人爽| 最近中文字幕高清免费大全6| 久久国产精品大桥未久av | 精华霜和精华液先用哪个| 中文字幕人妻熟人妻熟丝袜美| 国产精品欧美亚洲77777| 欧美人与善性xxx| 亚洲高清免费不卡视频| 天天躁夜夜躁狠狠久久av| 晚上一个人看的免费电影| 久久久久视频综合| 国产成人一区二区在线| 婷婷色综合www| 2022亚洲国产成人精品| 久久久久久久久久久丰满| 国产亚洲午夜精品一区二区久久| 精品酒店卫生间| 老司机影院成人| 欧美日韩在线观看h| 中文在线观看免费www的网站| 精品一区在线观看国产| 波野结衣二区三区在线| 少妇人妻精品综合一区二区| 一区二区av电影网| 国产在线男女| 99久久综合免费| 国产永久视频网站| 内地一区二区视频在线| 多毛熟女@视频| 伦理电影大哥的女人| 曰老女人黄片| 国产欧美日韩综合在线一区二区 | 日日撸夜夜添| 在线播放无遮挡| videossex国产| 亚洲精品自拍成人| 精品亚洲乱码少妇综合久久| 国产视频首页在线观看| 国产高清不卡午夜福利| 亚洲精品成人av观看孕妇| 久久精品久久久久久噜噜老黄| 男女无遮挡免费网站观看| av国产精品久久久久影院| 国产精品一区二区性色av| 嘟嘟电影网在线观看| 精品午夜福利在线看| 一个人看视频在线观看www免费| 亚洲综合精品二区| 日本与韩国留学比较| 久久久a久久爽久久v久久| 欧美性感艳星| 精品国产露脸久久av麻豆| 99热这里只有是精品在线观看| 亚洲av男天堂| 亚洲性久久影院| 国产精品久久久久成人av| 国产真实伦视频高清在线观看| 亚洲av成人精品一区久久| 校园人妻丝袜中文字幕| 午夜福利网站1000一区二区三区| 欧美xxxx性猛交bbbb| 搡女人真爽免费视频火全软件| 午夜视频国产福利| 国模一区二区三区四区视频| 亚洲真实伦在线观看| 观看免费一级毛片| 天堂8中文在线网| 亚洲欧美精品自产自拍| 特大巨黑吊av在线直播| 国产精品三级大全| 国产精品一区二区在线观看99| 久久人人爽人人片av| 亚洲av.av天堂| 亚洲国产精品999| 大香蕉97超碰在线| 欧美日韩精品成人综合77777| 一级毛片aaaaaa免费看小| 国产成人a∨麻豆精品| 亚洲精品日韩在线中文字幕| 精品亚洲成a人片在线观看| 亚洲情色 制服丝袜| 午夜福利在线观看免费完整高清在| 亚洲精品中文字幕在线视频 | 丁香六月天网| 校园人妻丝袜中文字幕| 我的老师免费观看完整版| 国产爽快片一区二区三区| 男女国产视频网站| 国产熟女欧美一区二区| 久热久热在线精品观看| 午夜激情久久久久久久| 成人亚洲精品一区在线观看| 青春草国产在线视频| 亚洲精品色激情综合| 黄色一级大片看看| 最近的中文字幕免费完整| 女人精品久久久久毛片| 伊人久久精品亚洲午夜| 国产成人aa在线观看| 亚洲综合色惰| 亚洲在久久综合| 乱系列少妇在线播放| 久久久久久伊人网av| 在线精品无人区一区二区三| a 毛片基地| 久久久久久伊人网av| 精品少妇黑人巨大在线播放| 乱系列少妇在线播放| 国产成人免费观看mmmm| 不卡视频在线观看欧美| 亚洲欧美中文字幕日韩二区| 国产成人91sexporn| 国产毛片在线视频| 曰老女人黄片| 亚洲av男天堂| 国产一区二区三区综合在线观看 | 久久韩国三级中文字幕| 国产精品国产三级专区第一集| 精品久久久噜噜| 亚洲成人手机| 国产精品无大码| 久热这里只有精品99| 婷婷色综合www| 少妇丰满av| 久久亚洲国产成人精品v| 在线 av 中文字幕| 精品一区二区免费观看| 精品人妻熟女毛片av久久网站| 51国产日韩欧美| 国产一区亚洲一区在线观看| 久久久国产精品麻豆|