• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modelling Intelligent Driving Behaviour Using Machine Learning

    2021-12-14 06:04:06QuraTulAinKhanSagheerAbbasMuhammadAdnanKhanAreejFatimaSaadAlanaziandNouhSabriElmitwally
    Computers Materials&Continua 2021年9期

    Qura-Tul-Ain Khan,Sagheer Abbas,Muhammad Adnan Khan,Areej Fatima,Saad Alanazi and Nouh Sabri Elmitwally,5

    1School of Computer Science,NCBA&E,Lahore,54000,Pakistan

    2Riphah School of Computing&Innovation,Faculty of Computing,Riphah International University,Lahore Campus,Lahore,54000,Pakistan

    3Department of Computer Science,Lahore Garrison University,Lahore,54000,Pakistan

    4Department of Computer Science,College of Computer and Information Sciences,Jouf University,Skaka,Aljouf,72341,Saudi Arabia

    5Department of Computer Science,Faculty of Computers and Artificial Intelligence,Cairo University,12613,Egypt

    Abstract:In vehicular systems,driving is considered to be the most complex task,involving many aspects of external sensory skills as well as cognitive intelligence.External skills include the estimation of distance and speed,time perception,visual and auditory perception,attention,the capability to drive safely and action-reaction time.Cognitive intelligence works as an internal mechanism that manages and holds the overall driver’s intelligent system.These cognitive capacities constitute the frontiers for generating adaptive behaviour for dynamic environments.The parameters for understanding intelligent behaviour are knowledge,reasoning,decision making,habit and cognitive skill.Modelling intelligent behaviour reveals that many of these parameters operate simultaneously to enable drivers to react to current situations.Environmental changes prompt the parameter values to change,a process which continues unless and until all processes are completed.This paper model intelligent behaviour by using a ‘driver behaviour model’to obtain accurate intelligent driving behaviour patterns.This model works on layering patterns in which hierarchy and coherence are maintained to transfer the data with accuracy from one module to another.These patterns constitute the outcome of different modules that collaborate to generate appropriate values.In this case,accurate patterns were acquired using ANN static and dynamic non-linear autoregressive approach was used and for further accuracy validation,time-series dynamic backpropagation artificial neural network,multilayer perceptron and random sub-space on real-world data were also applied.

    Keywords:Machine learning;artificial neural network;ann;time series;intelligent behaviour;agent

    1 Introduction

    Human error is the main cause of driving problems.Accordingly,driver behaviour modelling has emerged to improve the driving experience by predicting environmental factors,driver intent,and driver and vehicle state.Sensory information and other predictors can helpfully warn the driver of potential dangers.Meanwhile,vehicle behaviour can determine driver state,measuring elements including driving competence and attention level [1].Understanding a driver’s cognitive load is critical.Autonomous systems can help to automatically identify driver cognitive workload,enabling the development of robust evaluation tools.Driver performance and physiological data can be assessed and measurements collected in real-time.A classification system can detect cognitive load,with physiological data allowing greater classification accuracy [2].In vehicular systems,drivers usually demonstrate different driving styles.To analyse explicit links between a driver’s dynamic demand and driving style,driving style can be classified as low,moderate and high.This involves recognising driving style according to the vehicle,driving route,design task and driver selection [3].

    All aspects of a human’s life are defined by their routine behaviour [4].Routine describes deliberate behaviour constituting goal-oriented actions performed in different situations [5],actions that are acquired,learned and developed through repeated practice [6].Good routines enable efficient completion of frequently repeated tasks through predictable behaviours.Variations in routine behaviour importantly indicate human response because behaviour is not static [7].

    Current research is directed towards finding driver behaviour solutions that can avoid road safety problems,especially by identifying and understanding the relationship between road safety and driver behaviour.The major contributing factors to traffic accidents are weather,traffic,vehicle control,and driver sensitivity to complex environments.However,traffic accidents are ultimately largely dependent on the rational judgement and decision making of drivers [8].

    Behaviour analysis involves two different approaches to understanding decision-making:analysing the beliefs and the values behind the process and evaluating decision-making according to personality traits and individual habits.This method is quantifiable and can be represented in applications of classifying drivers based on their driving style [9].

    2 Literature Review

    Thinking essential to understanding the world and managing different situations,problems and relationships [10].To encourage environmentally responsive behaviour,researchers have used people-oriented approaches which reduce feelings of helplessness and provide sources for motivations [11].Such approaches allow people to accomplish repetitive tasks at different levels using the human routines that are the blueprints of behaviour.Human routines are expressed through actions performed in particular situations,with behaviour modelling enabling people to improve their inexpert behaviour and change bad habits [4].

    Driving output is determined by various factors,with drivers considered the most unstable factors because they exhibit different driving styles.Driving style constitutes the habitual longterm behaviour of drivers,contributing to the real-time adjustments they make to environmental information [3].Driver behaviour variables require analysis to represent concepts related to driving habits.Defining driver behaviour as one of several different driving behaviours enables identification of behavioural trends and allows accurate measurement of driving style,with the main goal of driver style classification being to detect behaviour,recognise different techniques and enable learning [12].For example,some researchers have classified eco-driving according to three categories:trajectory planning,route planning and driver behaviour improvement [13].

    Elsewhere,driving styles have been categorised as normal,safe,inattentive and aggressive [9].Risky speeding is a behavioural pattern pertaining to an aggressive driving style,describing irregular,abrupt or instantaneous changes in vehicle speed,improper vehicle positioning and inconsistent acceleration or braking [14].Aggressive driving behaviour increases the collision risk and can arise from driver annoyance or attempts to minimise travel time [15].Although repeated behaviour in a stable context can promote automatic habits which are resistant to change through information-based techniques,such behaviours are context-dependent,meaning a change in context can weaken the habit’s strength and facilitate reflection on that behaviour [16].

    Tab.1 presents studies on the effects of emotional,sensorimotor,cognitive and mixed stressors on driver behaviour and performance.Notably,another study recognised the effective copying mechanism could reduce behavioural errors caused by cognitive or emotional conflict [17].

    Table 1:Comparison of previous work

    3 Methodology

    The methodology comprised multiple modules (see Fig.1 for a visual representation):a data acquisition and classification module,a driver ride profiling module,a decision-making module,a memory management module,a route planning module,an assistance system module and an Artificial neural network (ANN) module.Dataset validation involved a dynamic nonlinear autoregressive approach.

    3.1 Data Acquisition and Classification

    Data acquisition and classification involves collecting environmental,vehicle and cognitive data.Environmental data include weather condition and time of day.Vehicle data include the condition of the vehicle,utilising inputs collected from all parts of the vehicle,including accelerator pressure,braking,steering wheel movement,gear changes and vehicle turns.Cognitive inputs consider parameters such as intentions,motivations,emotions,knowledge,learning and decision-making.This research only analysed environmental and vehicle data.

    Figure 1:Proposed driver behaviour model

    3.2 Driver Ride Profiling

    Driver ride profiling includes route preferences,driver skill,driver training and self-coaching.Route preferences includes long,medium and short routes,as well as factors such as terrain.Driver skill refers to driver expertise for a specific route.Driver training and self-coaching incorporate iterative learning,which describes driving training for a specific route.

    3.3 Decision-Making Module

    The decision-making module incorporates incentive-based modelling,situation assessment and behaviour prediction.Incentive-based modelling is responsible for decisions utilising working progress,which includes the driver’s past experience and how a driver operates a vehicle in a particular scenario,with scenario describing speed and weather condition.

    Situation assessment considers the current environment using inputs from the data acquisition and classification,route planning and driver ride profiling modules.The behaviour prediction sub-module predicts behaviour after each complete iteration.Behaviour prediction interacts with the assistance system module to derive data patterns from that module’s personal assistance and prediction systems.

    3.4 Memory Management

    Memory management stores relevant data and provides requested data to different modules.

    3.5 Route Planning

    Route planning considers speed limits,road types,traffic jams and weather conditions.Its navigation system includes online maps,available paths and alternative paths,with road network representation used to calculate the path according to road and location conditions.

    3.6 Assistance System

    The assistance system comprises the personal assistance system,prediction system and emergency assistance system.The personal assistance system guides the driver along their selected route,suggests changes to vehicle speed and assesses driver behaviour.The prediction system helps the driver to predict the next best route,the time of arrival at the destination and the driver’s behaviour in particular scenarios.The emergency assistance system is only activated in case of emergencies,including sudden severe changes in the situation or the driver’s behaviour.

    3.7 Driver Behaviour Model Empowered by an Artificial Neural Network

    The driver behaviour model uses an ANN to enable smooth data flow and dynamic and intelligent driver behaviour.The ANN is divided into static techniques and dynamic techniques.A dynamic nonlinear autoregressive approach was used to validate the model because driver behaviour is a constantly changing phenomenon.Other validation techniques used were multilayer perceptron and random subspace.

    The ANN applied recognised human activity using an artificial backpropagation neural network and featured three layers:an input,output and hidden layer.Every neuron of the hidden layer used the Sigmoid(x) activation function.The proposed ANN is represented mathematically as:

    Combining Eqs.(1) and (2)

    Eq.(3) provides backpropagation error,where&demonstrate the foreseen output and assessed output.The output layer’s actuation function is described by Eqs.(4) and (5)

    Weight change is described by Eq.(6):

    From Eq.(6),the chain rule method is applied:

    From Eq.(7),values are substituted to provide the value of weight change according to Eq.(8)

    where

    The chain rule is applied to update weight between the input and hidden layers:

    where∈represents the constant and

    Upon rearranging the previous equations,the condition can be calculated as

    Eqs.(9) and (10) refresh the weights for the output and hidden layers;finally,Eq.(11) derives the weights for the hidden and input layers.

    This ANN included one hidden layer and 20 neurons,with six inputs and one output.This ANN used the two-layer feed-forward method and was applied to test the framework using data categorised as training,approval,or testing.The ANN’s execution was assessed using a regression investigation.To assess outcomes,we analysed the mean square error and regression fit.If the required result was not attained,the ANN was retrained with a different dataset.

    3.8 Dynamic Environment

    Dynamic environment incorporates vehicle status,traffic flow,weather conditions,road conditions and the driver’s past behaviour.

    4 Analysis and Results

    The dataset was taken from [18]and featured 54 parameters and 94,380 values.Validation was conducted using the validation tools MATLAB and Weka.

    4.1 Dataset Parameters

    The dataset included two basic parameter types:input and output parameters.

    4.2 Input Parameters

    Tab.2 presents the external parameters,which pertain to elements external to the driver.

    4.3 Output Parameters

    The output parameters presented in Tab.3 pertain to driver elements.

    4.4 Validation Techniques

    Driver behaviour changes continuously and involves dynamic aspects.Accordingly,a dynamic ANN was used to analyse input values,with results presented according to the real-time scenario.

    Table 2:Input parameters [18]

    Table 3:Output parameters [18]

    4.5 Validation Using the MATLAB Time-Series Neural Network

    The MATLAB time-series neural network was used to validate the dataset,as presented in Tab.4.This ANN was chosen because of its dynamic nature;given behaviour is a constantly changing phenomenon,static techniques cannot provide accurate results.Furthermore,the scaled conjugate gradient was chosen for accuracy;this stops automatically when an ANN stops improving following increases in validation values.

    Table 4:Validation using MATLAB time-series neural network

    4.5.1 Artificial Neural Network Training

    The ANN was trained using scaled conjugate gradient.Data division was random,with results presented for 636 epoch iterations.Results included performance,training state,error histogram,regression,time-series response and error autocorrelation.

    4.5.2 Training State

    The training state graph shows results for epoch 636 and the validation checks at epoch 636.Gradient is on the y-axis,and epoch is on the x-axis.The first graph indicates that values begin at the peak and gradually decrease or minimise.

    Figure 2:Validation performance:Mean square error decreases as the number of iterations increases

    4.5.3 Best Validation Performance

    The best validation performance was calculated,as presented in Fig.2,with the x-axis at epoch 174 and mean square error shown on the y-axis.The best validation performance was calculated as the point at which the best line and the validation line intersected.Overall mean square error tended to decrease as the number of iterations increased.

    4.5.4 Error Histogram

    The error histogram was computed with 20 bins.At the beginning of the iterations,the minimisation of error tended to increase gradually because training data values increased,and error was totally removed,as shown by the plain orange line.Following the zero error,the training process gradually minimised and totally stopped with only the training state remaining.

    4.5.5 Regression Plots

    Different regression outputs are shown in Fig.3,with graph 1 showing the training of data at regression value 0.99769,with the bunching of data indicating the fit line,graph 2 showing the test for fittest data regression values—that is,values nearest to target values—at 0.99684,and graph 3 showing the overall combined result for data flow and regression values at 0.99752;these results are highly refined and accurate.

    Figure 3:Regression plots

    4.5.6 Time-Series Response

    Fig.4 shows the time-series values sequentially by showing the time-series gap between target outputs and training outputs.Variations are indicated clearly for the first half of training;at the beginning of the second half,fluctuations tended to stabilise again.

    Figure 4:Time-series response showing the time-series gap between target outputs and training outputs

    4.6 Validation Using Weka Multilayer Perceptron

    Weka is a tool for validating or training neural networks using different training algorithms.This research also used Weka’s multilayer perceptron to train its data.

    4.6.1 Pre-Processing

    The first step for training in Weka first step is pre-processing the dataset.This involves selecting all filters and attributes to direct classification and clustering.

    4.6.2 Classification

    The second step is classifying the dataset.There were 54 attributes that could be trained for 31 sigmoid nodes.Results are given in the following sections.

    4.6.3 Classification Results

    Tab.5 presents the results for the classification of training data.The correlation coefficient range was near zero;the closer the result is to zero,the more accurate the ANN training.Mean absolute error and root mean square error are the average means of the error values and range from 0 to 100.Relative absolute error and root relative square error range from 0 to 10.

    Table 5:Validation using Weka multilayer perceptron

    4.6.4 Cluster

    The third step is to cluster the given attributes.This can be conducted using a simple expectation maximisation class,which assigns probability distribution for each instance,indicating the probability of its belonging a different cluster and involves the following steps:

    1) The number of clusters is set to one.

    2) The training set is split randomly into ten folds.

    3) Expectation maximisation is performed ten times using the ten folds in the usual CV manner.

    4) The loglikelihood is averaged across the ten results.

    5) If loglikelihood has increased,the number of clusters is increased by one,and the program continues at step 2.

    During simulation,the number of clusters selected by cross-validation was nine,the number of iterations performed was three and the loglikelihood value was-47.07798.Tabs.6 and 7 present the cluster and cluster instance results.

    Table 6:Cluster results

    Table 7:Cluster instances

    4.7 Validation Using Weka Random Subspace

    The Weka random subspace approach constructs a decision-tree-based classifier that maintains the highest accuracy for training data and improves generalisation accuracy as it grows in complexity.The classifier comprises multiple trees constructed systematically by pseudo-randomly selecting subsets of components of the feature vector that is tree constructed in randomly chosen subspace.

    4.7.1 Classification Results

    Results are shown for ten folds and cross-validation techniques.The total classes processed are organised from A to J,with each class showing the individual output values of training iterations in a hierarchical form that indicates tree format.

    Figure 5:Individual parameter evaluations

    The sequence of results for different parameters is shown in Fig.5;each parameter is evaluated individually for more refined results.

    Tab.8 shows the classification of training data,with the correlation coefficient range being near zero;the closer the result is to zero,the more accurate the ANN training.Mean absolute error and root mean square error are the average means of the error values and range from 0 to 300.Relative absolute error and root relative square error range from 0 to 150.

    Table 8:Validation results for Weka random subspace

    Figure 6:Visualisation comparing time and predicted time:Patterns show the predicted time at different iteration stages

    4.7.2 Visualisation

    Fig.6 presents a visualisation of the results in the form of time series.Time is given at the x-axis and predicted time is given at the y-axis.Patterns show the predicted time at different iteration stages.

    4.8 Validation Using Linear Regression Analysis

    Tab.9 shows the simulation results for linear regression analysis.

    Table 9:Validation using linear regression analysis

    4.9 Validation Using Decision Tree

    Tab.10 shows the simulation results for the decision-tree approach.

    Table 10:Validation using the decision-tree approach

    Table 11:Comparison of results

    5 Discussion

    Tab.11 combines the results of all of the validation techniques used:multilayer perceptron,random subspace,linear regression analysis and decision tree.The differences between the results are indicated by comparing mean absolute errors,root mean square errors,relative absolute errors and root relative squared errors.

    Tab.11 clearly demonstrates that multilayer perceptron produces better results than the other validation techniques.

    6 Conclusion

    Intelligent agents can represent most human properties due to the similarity in cognitive processes,which enable the completion of deliberate,repetitive tasks ranging from routine to specific tasks.These processes are expressed through intelligent behaviour and actions performed in particular environments.Modelling intelligent driving behaviour is a complex task requiring consideration of many internal and external parameters.These parameters are activated simultaneously to transfer driving patterns from one situation to another,with these patterns constantly evolving to refine driving patterns.

    This paper’s ‘driver behaviour model’ can model intelligent driver behaviour in vehicular systems.According to this model,data from a dynamic environment is collected and refined through combination with the driver’s profile and the route details.Refinements of behaviour require intersecting of the model’s decision-making and assistance-system modules,which manage mechanisms internal to driver behaviour and behaviour in emergency situations.The external environment,a driver’s past experience and their current route strongly impact output patterns.

    To validate this model,driver datasets comprising multiple values related to different vehicular systems were evaluated,using Weka,by time-series ANNs using MATLAB backpropagation,multilayer perceptron,random subspace,linear regression and decision trees.Results produced means,regressions and correlations using classification and clustering techniques and indicated that the multilayer perceptron approach generates better results than other validation techniques.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    99久久无色码亚洲精品果冻| 欧美日本视频| 久久精品91蜜桃| 日韩成人在线观看一区二区三区| 俄罗斯特黄特色一大片| 免费在线观看亚洲国产| 国产成人av激情在线播放| 免费在线观看视频国产中文字幕亚洲| 一区二区三区高清视频在线| 国产精品久久久久久精品电影| 亚洲狠狠婷婷综合久久图片| 一进一出抽搐动态| 国产激情久久老熟女| 国产1区2区3区精品| 岛国在线观看网站| www日本黄色视频网| 久久久久久大精品| 美女 人体艺术 gogo| 午夜久久久久精精品| 国产成+人综合+亚洲专区| 久久精品91蜜桃| 国产蜜桃级精品一区二区三区| 性色av乱码一区二区三区2| 无人区码免费观看不卡| 日日爽夜夜爽网站| 每晚都被弄得嗷嗷叫到高潮| 国产av不卡久久| 麻豆av在线久日| 中出人妻视频一区二区| 熟妇人妻久久中文字幕3abv| 一级a爱片免费观看的视频| 视频区欧美日本亚洲| www.www免费av| 亚洲avbb在线观看| 欧美性长视频在线观看| www日本黄色视频网| 国产精品精品国产色婷婷| 日韩有码中文字幕| 啦啦啦韩国在线观看视频| 激情在线观看视频在线高清| 色噜噜av男人的天堂激情| or卡值多少钱| 国产视频内射| 99久久99久久久精品蜜桃| 久久久久久免费高清国产稀缺| 18禁观看日本| 色综合站精品国产| 久久性视频一级片| 国产又黄又爽又无遮挡在线| 久久久久国产精品人妻aⅴ院| 国产三级中文精品| 欧美性猛交黑人性爽| 国产av又大| 级片在线观看| 亚洲 欧美 日韩 在线 免费| 91麻豆精品激情在线观看国产| 国产成人精品无人区| 成年女人毛片免费观看观看9| 国产亚洲精品av在线| ponron亚洲| 久久久久久久久久黄片| 国产熟女午夜一区二区三区| 日日爽夜夜爽网站| 黄色成人免费大全| 国产高清视频在线播放一区| 精品人妻1区二区| 日韩免费av在线播放| 村上凉子中文字幕在线| 国产成年人精品一区二区| 亚洲九九香蕉| 国产精华一区二区三区| 可以免费在线观看a视频的电影网站| 国产av一区在线观看免费| 日韩欧美在线乱码| 精品不卡国产一区二区三区| 亚洲成人精品中文字幕电影| 91成年电影在线观看| 久久久久久大精品| 午夜福利视频1000在线观看| 久久久久国产一级毛片高清牌| 日日夜夜操网爽| 久久香蕉精品热| 无遮挡黄片免费观看| 男女做爰动态图高潮gif福利片| 久久久久久久午夜电影| 99久久无色码亚洲精品果冻| 欧美色视频一区免费| 精品午夜福利视频在线观看一区| 中文字幕高清在线视频| 日本黄大片高清| 亚洲国产看品久久| 视频区欧美日本亚洲| 国产成人精品久久二区二区91| 亚洲人成电影免费在线| 熟女少妇亚洲综合色aaa.| 亚洲成av人片在线播放无| 国产精品98久久久久久宅男小说| 国产精品久久久久久亚洲av鲁大| 欧美又色又爽又黄视频| 婷婷精品国产亚洲av| 久久人人精品亚洲av| 老汉色av国产亚洲站长工具| 男女床上黄色一级片免费看| 亚洲aⅴ乱码一区二区在线播放 | 精品国产乱子伦一区二区三区| 国产精品野战在线观看| 亚洲中文日韩欧美视频| 亚洲一区二区三区色噜噜| 美女午夜性视频免费| 久久精品影院6| 免费人成视频x8x8入口观看| 非洲黑人性xxxx精品又粗又长| 精品国产乱子伦一区二区三区| 免费无遮挡裸体视频| 久久人人精品亚洲av| 九色成人免费人妻av| 亚洲七黄色美女视频| 午夜免费激情av| 夜夜爽天天搞| 午夜免费激情av| 亚洲成av人片免费观看| 午夜福利视频1000在线观看| 在线观看免费午夜福利视频| 成人18禁在线播放| 日韩精品中文字幕看吧| 亚洲真实伦在线观看| 久久婷婷人人爽人人干人人爱| 一个人免费在线观看的高清视频| 最近在线观看免费完整版| 欧美丝袜亚洲另类 | 国产成人精品无人区| aaaaa片日本免费| 精品一区二区三区av网在线观看| 韩国av一区二区三区四区| 国产99白浆流出| 色噜噜av男人的天堂激情| 日本免费a在线| av福利片在线| 精品国产乱子伦一区二区三区| 国产黄片美女视频| 色在线成人网| 丁香欧美五月| 免费av毛片视频| 极品教师在线免费播放| 国产真实乱freesex| xxxwww97欧美| 两个人看的免费小视频| 亚洲国产日韩欧美精品在线观看 | 欧美成人一区二区免费高清观看 | 亚洲av电影不卡..在线观看| 男女那种视频在线观看| 中文资源天堂在线| 一边摸一边做爽爽视频免费| 久久久国产欧美日韩av| 欧美午夜高清在线| 哪里可以看免费的av片| 岛国在线免费视频观看| 午夜精品久久久久久毛片777| 国产精品永久免费网站| 国产午夜精品论理片| 999久久久精品免费观看国产| 国产私拍福利视频在线观看| 精品熟女少妇八av免费久了| 好看av亚洲va欧美ⅴa在| 亚洲真实伦在线观看| 一夜夜www| 婷婷丁香在线五月| 变态另类成人亚洲欧美熟女| 国产黄a三级三级三级人| 久久久精品国产亚洲av高清涩受| 久久久久国产精品人妻aⅴ院| 久久精品国产亚洲av香蕉五月| 亚洲一码二码三码区别大吗| 午夜久久久久精精品| 精品国产亚洲在线| 亚洲国产欧美人成| 欧美日韩亚洲国产一区二区在线观看| 精品国产亚洲在线| 日本a在线网址| √禁漫天堂资源中文www| 国产黄片美女视频| 亚洲成人国产一区在线观看| 亚洲人与动物交配视频| 曰老女人黄片| 国产一区二区激情短视频| 国产日本99.免费观看| x7x7x7水蜜桃| 欧美日韩瑟瑟在线播放| 亚洲男人天堂网一区| 麻豆国产av国片精品| 黄色毛片三级朝国网站| 国产不卡一卡二| 在线观看午夜福利视频| 啦啦啦韩国在线观看视频| 村上凉子中文字幕在线| 欧美人与性动交α欧美精品济南到| 亚洲国产欧美网| 午夜影院日韩av| 最近最新免费中文字幕在线| 看片在线看免费视频| 国产欧美日韩一区二区精品| 亚洲国产欧美网| 国内揄拍国产精品人妻在线| 别揉我奶头~嗯~啊~动态视频| 人人妻人人看人人澡| 美女午夜性视频免费| 国产亚洲av嫩草精品影院| 亚洲精品av麻豆狂野| 欧美av亚洲av综合av国产av| 午夜福利视频1000在线观看| 无限看片的www在线观看| 在线观看一区二区三区| 三级毛片av免费| 在线十欧美十亚洲十日本专区| 在线永久观看黄色视频| 一本一本综合久久| 久久精品国产综合久久久| 国产主播在线观看一区二区| 国产区一区二久久| 一区二区三区高清视频在线| a级毛片在线看网站| 可以在线观看毛片的网站| 亚洲国产精品999在线| 国产成人影院久久av| 真人做人爱边吃奶动态| 丰满的人妻完整版| 久久久精品国产亚洲av高清涩受| 日韩中文字幕欧美一区二区| 久久精品国产亚洲av高清一级| 怎么达到女性高潮| 欧美黑人精品巨大| 99久久精品国产亚洲精品| 一级黄色大片毛片| 日本免费a在线| 高潮久久久久久久久久久不卡| 色在线成人网| 国产成人一区二区三区免费视频网站| 又黄又爽又免费观看的视频| 舔av片在线| 久久久久精品国产欧美久久久| 国产高清视频在线播放一区| a级毛片在线看网站| 男男h啪啪无遮挡| 亚洲美女视频黄频| e午夜精品久久久久久久| 小说图片视频综合网站| 亚洲七黄色美女视频| 99精品在免费线老司机午夜| 在线观看一区二区三区| 国产69精品久久久久777片 | 欧美黑人欧美精品刺激| 成人三级做爰电影| ponron亚洲| 国产精品 国内视频| 天堂av国产一区二区熟女人妻 | 老司机午夜十八禁免费视频| 亚洲一区二区三区色噜噜| 一个人免费在线观看电影 | 色哟哟哟哟哟哟| 欧美日韩乱码在线| 看黄色毛片网站| av欧美777| 一进一出抽搐动态| 亚洲精品在线美女| 麻豆av在线久日| 亚洲自偷自拍图片 自拍| 亚洲精品美女久久久久99蜜臀| 精品午夜福利视频在线观看一区| 国产精品久久久久久亚洲av鲁大| 日韩有码中文字幕| 色哟哟哟哟哟哟| 中亚洲国语对白在线视频| 欧美高清成人免费视频www| 国产精品一及| 美女扒开内裤让男人捅视频| 人人妻人人澡欧美一区二区| 毛片女人毛片| 日本成人三级电影网站| 日韩欧美免费精品| 久久 成人 亚洲| 国产免费av片在线观看野外av| 久久久久性生活片| 此物有八面人人有两片| 可以在线观看的亚洲视频| 在线a可以看的网站| 久久中文字幕人妻熟女| 看片在线看免费视频| 18禁国产床啪视频网站| 国产av一区在线观看免费| 亚洲国产精品sss在线观看| 欧美人与性动交α欧美精品济南到| 亚洲欧美精品综合一区二区三区| 免费人成视频x8x8入口观看| 亚洲欧美日韩东京热| 国产一区二区在线av高清观看| 免费看日本二区| 18禁观看日本| 国产成人aa在线观看| 日本成人三级电影网站| 国产精品久久视频播放| 色老头精品视频在线观看| 亚洲av日韩精品久久久久久密| 国产人伦9x9x在线观看| 亚洲精品久久成人aⅴ小说| 首页视频小说图片口味搜索| 精品电影一区二区在线| 真人一进一出gif抽搐免费| 精品福利观看| 亚洲精品中文字幕一二三四区| 看黄色毛片网站| 中文字幕人妻丝袜一区二区| 中文字幕最新亚洲高清| 久久精品国产亚洲av香蕉五月| 免费看日本二区| av中文乱码字幕在线| 1024手机看黄色片| 999久久久精品免费观看国产| 麻豆av在线久日| 亚洲国产精品合色在线| av视频在线观看入口| 搡老熟女国产l中国老女人| 亚洲无线在线观看| 久久 成人 亚洲| 天堂√8在线中文| 亚洲欧洲精品一区二区精品久久久| 无遮挡黄片免费观看| 99热6这里只有精品| 亚洲一区二区三区色噜噜| 国产成人影院久久av| 欧美精品亚洲一区二区| 1024视频免费在线观看| 亚洲专区国产一区二区| 日本 欧美在线| 在线十欧美十亚洲十日本专区| 欧美日韩亚洲综合一区二区三区_| 日日夜夜操网爽| 亚洲av成人av| 精品久久久久久久久久免费视频| 五月玫瑰六月丁香| 看免费av毛片| 国产三级黄色录像| 欧美最黄视频在线播放免费| 1024香蕉在线观看| 在线播放国产精品三级| 18禁国产床啪视频网站| 亚洲天堂国产精品一区在线| 久久中文看片网| 级片在线观看| 美女高潮喷水抽搐中文字幕| 此物有八面人人有两片| 亚洲成人久久爱视频| 免费在线观看影片大全网站| 欧美成狂野欧美在线观看| 变态另类成人亚洲欧美熟女| 99riav亚洲国产免费| 又紧又爽又黄一区二区| 男人的好看免费观看在线视频 | 久久香蕉激情| 日本黄大片高清| a在线观看视频网站| 亚洲国产精品合色在线| 亚洲国产精品成人综合色| 国产精品乱码一区二三区的特点| 51午夜福利影视在线观看| 一本综合久久免费| 日本a在线网址| 不卡av一区二区三区| 听说在线观看完整版免费高清| 成人欧美大片| 久久久水蜜桃国产精品网| 久久久久久久久免费视频了| 欧美黑人欧美精品刺激| 国产99久久九九免费精品| 欧美黑人欧美精品刺激| 日日摸夜夜添夜夜添小说| 亚洲av成人av| 精品高清国产在线一区| 久久香蕉国产精品| 精品久久久久久久人妻蜜臀av| 日韩三级视频一区二区三区| 亚洲av片天天在线观看| 舔av片在线| 国产亚洲精品一区二区www| 欧美日韩亚洲综合一区二区三区_| 欧美日韩国产亚洲二区| 99国产精品一区二区蜜桃av| 日本成人三级电影网站| tocl精华| 日韩欧美国产一区二区入口| 欧美中文日本在线观看视频| 国内揄拍国产精品人妻在线| 最新美女视频免费是黄的| 免费av毛片视频| 九色国产91popny在线| 18禁国产床啪视频网站| 国产99久久九九免费精品| 女生性感内裤真人,穿戴方法视频| 国产精品电影一区二区三区| 欧美性猛交黑人性爽| 韩国av一区二区三区四区| 免费观看人在逋| 特级一级黄色大片| 一级片免费观看大全| 国产精品1区2区在线观看.| 日本 欧美在线| 女同久久另类99精品国产91| 欧美人与性动交α欧美精品济南到| 18禁观看日本| 性欧美人与动物交配| 少妇人妻一区二区三区视频| 99热这里只有精品一区 | 欧美日韩中文字幕国产精品一区二区三区| 国产熟女xx| 制服丝袜大香蕉在线| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲人成伊人成综合网2020| 色在线成人网| 日本在线视频免费播放| 波多野结衣高清作品| 中文字幕久久专区| 亚洲无线在线观看| 国产精品乱码一区二三区的特点| 18美女黄网站色大片免费观看| 在线a可以看的网站| 久久九九热精品免费| 久久久久久九九精品二区国产 | 两个人免费观看高清视频| 国内久久婷婷六月综合欲色啪| 亚洲成人精品中文字幕电影| 免费在线观看黄色视频的| 欧美日韩精品网址| 黄色视频,在线免费观看| 久久人妻av系列| 男人舔女人下体高潮全视频| 国产成人欧美在线观看| 97碰自拍视频| 日韩有码中文字幕| 我的老师免费观看完整版| 色精品久久人妻99蜜桃| 一本综合久久免费| 琪琪午夜伦伦电影理论片6080| 一本精品99久久精品77| 国产精品av视频在线免费观看| 国产日本99.免费观看| 久久婷婷成人综合色麻豆| 久久亚洲真实| 国产成+人综合+亚洲专区| 久久久久久国产a免费观看| 亚洲人成网站高清观看| 999久久久国产精品视频| 国产高清视频在线播放一区| 色精品久久人妻99蜜桃| 亚洲色图av天堂| 大型av网站在线播放| 国产三级黄色录像| 久久久久久久午夜电影| 国产伦一二天堂av在线观看| 美女黄网站色视频| 精品久久蜜臀av无| 午夜福利高清视频| 黄片大片在线免费观看| 不卡av一区二区三区| 久久中文字幕一级| 一本大道久久a久久精品| videosex国产| 亚洲av成人精品一区久久| 午夜免费观看网址| www.熟女人妻精品国产| 亚洲国产看品久久| 美女扒开内裤让男人捅视频| 色在线成人网| 很黄的视频免费| 嫩草影视91久久| 欧美色视频一区免费| 国产精品一区二区精品视频观看| 啪啪无遮挡十八禁网站| 国产精品国产高清国产av| 看片在线看免费视频| 五月玫瑰六月丁香| 黑人欧美特级aaaaaa片| 黄色女人牲交| 欧美日韩亚洲国产一区二区在线观看| 美女免费视频网站| 久久久国产成人精品二区| 91字幕亚洲| 免费在线观看黄色视频的| 欧美三级亚洲精品| 久久亚洲真实| 人人妻人人看人人澡| 欧美午夜高清在线| 两人在一起打扑克的视频| 精品福利观看| 亚洲中文av在线| 一级毛片女人18水好多| 一区福利在线观看| 国产成人影院久久av| 中文字幕高清在线视频| 国产不卡一卡二| 后天国语完整版免费观看| 亚洲一区二区三区不卡视频| 草草在线视频免费看| 久99久视频精品免费| 欧美日韩黄片免| 国产精品久久久久久人妻精品电影| 男男h啪啪无遮挡| 国产精品免费一区二区三区在线| 婷婷丁香在线五月| 男人舔女人的私密视频| a在线观看视频网站| 国产精品亚洲一级av第二区| 黄色视频,在线免费观看| 久久人妻av系列| 丁香欧美五月| 国内精品久久久久久久电影| 精品国产亚洲在线| 亚洲五月天丁香| 成年版毛片免费区| 国产精品 国内视频| 欧美日韩瑟瑟在线播放| 日日干狠狠操夜夜爽| 国产亚洲精品av在线| 精品乱码久久久久久99久播| 午夜成年电影在线免费观看| 男人舔女人下体高潮全视频| 国产单亲对白刺激| 午夜福利欧美成人| 国产精品 欧美亚洲| 搡老岳熟女国产| 18禁黄网站禁片午夜丰满| 全区人妻精品视频| a级毛片在线看网站| 9191精品国产免费久久| 国产私拍福利视频在线观看| 欧美丝袜亚洲另类 | 我的老师免费观看完整版| 欧美日韩乱码在线| 日本一本二区三区精品| 村上凉子中文字幕在线| 在线观看免费日韩欧美大片| 久久久久久久久中文| 少妇被粗大的猛进出69影院| 女警被强在线播放| 亚洲专区国产一区二区| 一个人免费在线观看的高清视频| 日本在线视频免费播放| 波多野结衣高清无吗| 久久天躁狠狠躁夜夜2o2o| 真人做人爱边吃奶动态| 久久99热这里只有精品18| x7x7x7水蜜桃| 亚洲 欧美 日韩 在线 免费| 精品免费久久久久久久清纯| 久久久精品大字幕| 久久久国产欧美日韩av| 1024手机看黄色片| 午夜激情av网站| 亚洲性夜色夜夜综合| 精品一区二区三区av网在线观看| 亚洲成人中文字幕在线播放| av福利片在线| 国产亚洲av高清不卡| 午夜亚洲福利在线播放| 丁香六月欧美| 久久天堂一区二区三区四区| 国产成人欧美在线观看| 午夜福利高清视频| www.www免费av| 日本熟妇午夜| 国产一区二区三区在线臀色熟女| xxx96com| 国产高清激情床上av| 亚洲人成伊人成综合网2020| 亚洲精品在线美女| 欧美黑人巨大hd| 久久精品亚洲精品国产色婷小说| 亚洲熟妇熟女久久| 午夜久久久久精精品| 国产一区二区在线观看日韩 | 可以免费在线观看a视频的电影网站| 黄色 视频免费看| av超薄肉色丝袜交足视频| 黑人操中国人逼视频| 床上黄色一级片| 久久热在线av| 国产av一区二区精品久久| 亚洲免费av在线视频| 12—13女人毛片做爰片一| 色精品久久人妻99蜜桃| 天天一区二区日本电影三级| or卡值多少钱| 黄色毛片三级朝国网站| 99精品欧美一区二区三区四区| 国产精品永久免费网站| 欧美在线黄色| 又爽又黄无遮挡网站| 亚洲全国av大片| 国产亚洲av嫩草精品影院| 欧美性长视频在线观看| 丝袜美腿诱惑在线| 国产亚洲精品综合一区在线观看 | 少妇的丰满在线观看| 国产男靠女视频免费网站| 无人区码免费观看不卡| 国产高清视频在线播放一区| 久久午夜亚洲精品久久| 国产精品久久久久久久电影 | 亚洲第一电影网av| av国产免费在线观看| 午夜激情福利司机影院| 亚洲全国av大片| 在线观看日韩欧美| 免费在线观看影片大全网站| 两性夫妻黄色片| 三级男女做爰猛烈吃奶摸视频| 精品国产乱码久久久久久男人|