• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Physical Layer Network Coding Based Tag Anti-Collision Algorithm for RFID System

    2021-12-14 03:51:14CuixiangWangXingShaoYifanMengandJunGao
    Computers Materials&Continua 2021年1期

    Cuixiang Wang,Xing Shao,2,3,*,Yifan Meng and Jun Gao

    1School of Information Engineering,Yancheng Institute of Technology,Yancheng,224000,China

    2School of Computer,Nanjing University of Posts and Telecommunication,Nanjing,210003,China

    3Modern Agricultural Resources Intelligent Management and Application Laboratory,Huzhou Normal University,Huzhou,313000,China

    4School of Science and Technology,Troy University,Troy,36082,USA

    Abstract:In RFID(Radio Frequency IDentification)system,when multiple tags are in the operating range of one reader and send their information to the reader simultaneously,the signals of these tags are superimposed in the air,which results in a collision and leads to the degrading of tags identifying efficiency.To improve the multiple tags’identifying efficiency due to collision,a physical layer network coding based binary search tree algorithm(PNBA)is proposed in this paper.PNBA pushes the conflicting signal information of multiple tags into a stack,which is discarded by the traditional anti-collision algorithm.In addition,physical layer network coding is exploited by PNBA to obtain unread tag information through the decoding operation of physical layer network coding using the conflicting information in the stack.Therefore,PNBA reduces the number of interactions between reader and tags,and improves the tags identification efficiency.Theoretical analysis and simulation results using MATLAB demonstrate that PNBA reduces the number of readings,and improve RFID identification efficiency.Especially,when the number of tags to be identified is 100,the average needed reading number of PNBA is 83% lower than the basic binary search tree algorithm,43% lower than reverse binary search tree algorithm,and its reading efficiency reaches 0.93.

    Keywords:Radio frequency identification(RFID);tag anti-collision algorithm;physical layer network coding;binary search tree algorithm

    1 Introduction

    As a kind of automatic identification technology,radio frequency identification(RFID)[1]system can identify object even when the object is not in its visual range.Compared with other automatic identification technologies,RFID has the advantages of high accuracy,long reading distance,large amount of data storage,strong robustness and so on.In addition,as one of the key technologies of Internet of Things(IoT),RFID technology is widely used in warehousing logistics,goods tracking,identity recognition,access control and many other fields.

    A typical RFID system[2]consists of a reader and a number of tags.Information about an object is stored in the tag,while the reader is used to read and write the information in the tag.When a plurality of tags is in the working range of a reader,and these tags use the same communication frequency to send information to the reader,the transmission signals of these tags interfere with each other.Once the signal interference is detected by a reader,the reader will not be able to read the information in the tags correctly,which is called the tag collision problem of RFID system[3–6].Actually,the tag collision problem seriously restricts the reading and writing efficiency of RFID system.Therefore,the research on tag collision problem is one hot topic of RFID research and of great significance to the application of RFID systems.

    2 Related Works and Motivation

    Actually,in order to solve the tag collision problem of RFID system,some tag anti-collision algorithms have been proposed.These algorithms can be divided into two categories:ALOHA based indeterminate algorithm[5]and tree based deterministic algorithm[6].

    ALOHA based algorithm controls tags access the channel to reduce the tag collision possibility.Typical ALOHA based algorithms includes slotted ALOHA algorithm[7],frame slotted algorithm[8–10],and bit slot algorithm[11],etc.In addition,the tags’ number estimation algorithm[12]is also an important improvement of ALOHA based algorithms.As a kind of random algorithm,ALOHA based algorithm cannot ensure that a tag is read in a certain period of time and some tags may not be read for a long time,which is called the problem of “tag starvation”.

    In tree based algorithm,tags are divided into groups continuously when a collision occurs.When there is only one tag in a group,the tag will be read correctly without collision.And all tags using tree based algorithm will be read in this way.In the binary search tree based algorithms,once tag collision is detected,tags will be divided into 2 groups and finally,the reader will read all tags’information without collision.

    Typical tree based algorithms include tree splitting algorithm(TS)[13],query tree algorithm(QT)[14,15],binary search tree algorithm(BST)[6],dynamic binary search tree(DBST)[16],regressive binary search tree algorithm(RBST)[17,18].As a deterministic algorithm,tree based algorithm is able to avoid the problem of “tag starvation”.Therefore,more and more attention has been paid to the research on tree based anti-collision algorithm for RFID system.

    In existing tree based algorithms,the collision signal will be discarded directly when a collision is detected.However,the conflicting signal is usually the superposition of multiple tags’ information.If the collision signal in tree based algorithm could be exploited to obtain the original tag information,the performance of tree based algorithm will be further improved significantly.

    In recent years,the emergence of network coding technology[19,20]provides an opportunity to exploit collision information of multiple tags to improve the efficiency of the tree based algorithm.

    Network coding[19]allows the intermediate nodes in the network to encode the received data.Using network coding,the multicast transmission rate can reach the theoretical upper limit value according to the maximum flow minimum cut theory.

    Network coding can be applied to physical layer,which is called physical network coding[21]and exploits the additive nature of simultaneously arriving electromagnetic waves for equivalent coding operation.Exactly,the conflicting signal of multiple tags in RFID system is the superposition signal of multiple tags.Therefore,the conflicting signal can be treated as a kind of physical network coding,and the original information of each tag can be obtained through decoding operation at the reader.

    Fig.1 shows an example of physical layer network coding.There are three nodes in Fig.1,node 1,node 2 and node 3.And node 1 intends to send packetP1to node 3 through node 2,while node 3 wants to send packetP2to node 1 through node 2.If these nodes work in the traditional store-forward mode,4 time slots are needed to complete the transmission ofP1andP2as shown in Fig.1(A).

    Figure 1:Illustration of physical layer network coding.(A)Store-forward manner,(B)network layer network coding manner,(C)physical layer network coding manner

    Nevertheless,if network layer network coding is exploited,3 time slots are required as shown in Fig.1(B).Node 1 sendsP1and node 3 sendsP2both to node 2 consuming 1 time slot respectively.Then node 2 codesP1andP2(XOR operation)and sends outP1 ⊕P2.Due to the broadcast nature of the wireless channel,node 1 will receiveP1 ⊕P2 and obtainP2through decoding operation(P1 ⊕P2)⊕P1.Similarly,node 3 will obtainP1.

    However,if physical layer network coding is exploited,the total number of time slots can be further reduced to 2.Inslot 1,node 1 sendsP1and node 3 sendsP2simultaneously.The magnetic wave ofP1andP2overlays in the space and forms the superimposed signalP1+P2.The overlaying can be considered as physical layer network coding operation.Then node 2 sends outP1+P2.Node 1 will getP2through decoding operation(P1+P2)-P1.Similarly,node 2 will obtainsP1as shown in Fig.1(C).

    It is evident from Fig.1 that using physical network coding,the number of time slots is reduced by 50% compared with the store-forward mode,and reduced by 33% compared with the network layer network coding.Physical layer network coding can reduce data transmission time and improve transmission efficiency.

    In RFID system,when tag collision occurs,the conflicting signal is the superposition of multiple tags’signals,which can exactly be treated as physical layer network coding operation.However,traditional RFID tag anti-collision algorithms discard conflicting signals,which can be used for decoding to obtain original tag information.Therefore,the characteristics of physical layer network coding make it suitable for dealing with the tag collision problem of RFID system.

    In this paper,a physical layer network coding based binary algorithm(PNBA)is proposed to solve multiple tags collision problem in RFID.Compared with existing mechanisms,PNBA exploits physical layer network coding to obtain information from the conflicting signal,which is discarded by the traditional method.Therefore,PNBA improves the tags identifying speed and reduce interaction costs between reader and tags.Simulation results demonstrate that,when the number of tags is 100,the average needed reading number of PNBA algorithm is 83% lower than that of BST,and 43% lower than that of RBST,and its reading efficiency is 0.93.

    3 Details of PNBA

    3.1 Conflicting Bit Recognition

    To solve the tags collision problem,it is essential for the PNBA algorithm to judge whether there exits collision in the received signal,and further detects which bit occurs collision.As other binary algorithms,the PNBA algorithm exploits the Manchester code.Fig.2 illustrates an example of the conflicting bits identification when signals of three tags are superimposed.

    It can be found from Fig.2 that PNBA algorithm needs to check the first half and latter half of each bit in the superimposed signal to identify the conflicting bits.In Manchester code,‘01’ represents the original information ‘0’,and ‘10’ represents the original information ‘1’.Using the Manchester code,the overlaying of multiple ‘01’ or multiple ‘10’ still ensure a half bit is 0.Therefore,if the first half or the latter half is zero,then there is no conflicting in this bit.Otherwise,conflict occurs in this bit,which is marked with “X”.

    3.2 Relevant Agreement

    Before delving into the introduction of the detailed process of the PNBA algorithm,related concepts and commands used in the PNBA algorithm are presented.

    Request Command:REQ(RSN)

    Request command which contains reference sequence number(RSN),is sent by reader to tags.The tag whose sequence number is larger thanRSNdoes not respond the command,while the tag whose sequence number is less than or equal toRSNwill respond.In this way,the number of conflicting tags will be reduced.

    Select Command:SEL(RSN)

    Select command is sent by the reader.The tag whose sequence number is equal toRSNwill be selected by the reader to prepare for subsequent reading and writing operations.

    Read Command:RD-DATA

    Read command means that the reader reads the sequence number returned by the selected tag.

    Sleep Command:UNSEL(RSN)

    The status of the tag whose sequence number is equal to theRSN,is set SLEEP,which means the tag will no longer respond to the reader’s any command.

    Conflicting Stack:

    In the PNBA algorithm,the reader maintains a conflicting information stack,which is used to store the overlapping conflict signal information of multiple tags.

    Figure 2:Illustration of conflicting bit identification using Manchester Code

    3.3 Process of PNBA in Detail

    PNBA algorithm introduces physical layer network coding into the RFID tag anti-collision algorithm.PNBA analyses and uses the conflict signal information discarded by the traditional tag anti-collision algorithm,which improves the efficiency of tag identification.The detailed process of PNBA is as follows.

    Step 1.InitializeRSNand each bit ofRSNis set to 1.For example,if the sequence number of a tag is 8 bits,the RSN is initialized as11111111.Then initialize the backward variablei,which is set 0.

    Step 2.The reader sends Request Command,REQ(RSN).The tag whose sequence number is less than or equal toRSNwill respond and return its sequence number.

    Step 3.Receiving magnetic waves,the reader will demodulate the received signal and detect whether conflict occurs in the received signal according to the Manchester Code principle.If the first half and the second half of a bit in the received signal are not zero,conflicting occurs in this bit.And it also means that the received signal contains conflicting.The conflicting signal is pushed into the Conflicting Stack.Find the highest conflicting bit in the conflicting signal and set it as 0.In addition,the bits lower than these bits are all set to 1,and the bits higher than these bits remain unchanged.Then the new modified conflicting signal is used as theRSNparameter of the next Request Command and Step 2 is executed.If the first half and the second half of each bit,one is high level,another is zero,there is no conflict in the received signal.

    Step 4.The reader sends Select CommandSEL(RSN).The tag whoseIDequals toRSN,responds and returns itsIDto the reader.

    Step 5.The Read Command RD-DATA is executed by the reader to read and save the tag’sID.Then the reader sends Sleep CommandUNSEL(RSN),and the tag whoseIDhas just been read will be set SLEEP.

    Step 6.Detect whether the Conflicting Stack is empty.If the stack is empty,it indicates that all the tags’information has been read,and PNBA algorithm ends.Otherwise,the reader pops the element at the top of the Conflicting Stack and uses it minus the tag information the reader just read(decoding operation of physical layer network coding).Besides,i=i+1.

    Step 7.Detect whether the result of the subtraction operation contains conflicting according to the Manchester Code.If the subtraction result contains conflicting,Step 8 is executed.If there is no conflicting in the subtraction result,it indicates that the subtraction result is one tag’s ID.The reader obtains the tag’s ID through physical network coding and will send SLEEP Command and let the tag enter the SLEEP state.Pop-up the element at the top of the Conflicting Stack,and Step 6 is executed.If each bit of the subtraction result is zero,it indicates that all the conflicting tags of the conflicting signal have been correctly read.Pop-up the top element of the Conflicting Stack,and Step 6 is executed.

    Step 8 TheRSNused in lastith interaction between reader and tag is taken as the parameter of the next Request CommandREQ(RSN).iis reset to 0.Return to Step 2 until all tags are correctly read.

    The flow chart of the PNBA algorithm is shown in Fig.3.

    3.4 An Application Example of PNBA

    In order to clearly illustrate the principles of PNBA,an example scenario is given to analyse the working process of the PNBA.In this scenario,there is a reader and 4 tags in its working range:Tag1,Tag2,Tag3 and Tag4.The ID of each tag is formulated asD7D6D5D4D3D2D1D0with 8 bits and is as follows:Tag1 with ID=10110010,Tag2 with ID=10100011,Tag3 with ID=10110011and Tag4 with ID=11100011.Then PNBA is executed:

    Figure 3:Flow chart of PNBA

    1.InitialRSNis set11111111.The reader sendsREQ(11111111)and all 4 tags return their IDs.According to Manchester Coding,the reader receives 1X1X001X(X means conflicting bit.),which means there occurs collision and the conflicting demodulation signal(Tag1+Tag2+Tag3+Tag4)is pushed into the Conflicting Stack.AndD6is the highest collision bit.Therefore,D6is set 0 and all bits lower thanD6are set 1 and the nextRSNis10111111.

    2.The reader sendsREQ(10111111).Tag1,Tag2 and Tag3,whose ID is less than10111111respond and return their IDs.The reader receives 101X001X.Since collision still occurs,the conflicting demodulation signal(Tag1+Tag2+Tag3)is pushed into the Conflicting Stack.D4is the highest bit with collision.Therefore,D4is set 0 and all bits lower thanD4are set 1 and the next RSN is10101111.

    3.The reader sendsREQ(10101111),and only Tag2 returns its ID.The reader demodulates and decodes the received signal and gets10100011which contains no collision.The reader identifies Tag2 correctly and sendSLEEP(10101111)to let Tag2 enter the state ofSLEEP.

    4.The reader sendsREQ(10111111).Tag1 and Tag3 return their IDs.The reader demodulates and decodes the received signal and gets1011001X.Since collision occurs atD0,the conflicting demodulation signal(Tag1+Tag3)is pushed into the Conflicting Stack.D0is set 0 and10110010is the parameter of the nextREQ(RSN).

    5.The reader sendsREQ(10110010)and only Tag1 returns its ID.The reader demodulates and decodes the received signal and gets10110010which contains no collision.The reader identifies the Tag1 correctly and sendsSLEEP(10110010)to let the Tag1 enter into the state ofSLEEP.The reader pops up the top element(Tag1+Tag3)of the Conflicting Stack.The top element minus the10110010(Tag1)and get10110011with no collision.The10110011is the ID of Tag3 obtained through physical layer network coding.The reader sendsSLEEP(10110011)to let Tag3 enter into the state ofSLEEP.The reader pops up top element(Tag1+Tag2+Tag3)of the Conflicting Stack.Subtract the information of Tag1,Tag2 and Tag3 from the top element.And then the result is 00000000.The reader pops up top element(Tag1+Tag2+Tag3+Tag4)of the Conflicting Stack.Subtract the information of Tag1,Tag2 and Tag3 from the top element.And then the result is11100011.The11100011is just the ID of Tag4 obtained through physical layer network coding.So far,all the tags have been correctly obtained.It is obvious that only Tag2 and Tag1 are read by the reader,while the IDs of Tag3 and Tag4 are obtained by physical layer network coding,which reduces the number of reading times between reader and tags and improves reading efficiency.

    Fig.4 shows the entire recognition process of the example and the change of the demodulated signal stack.

    4 Theoretical Analysis of PNBA

    4.1 Theoretical Analysis of Reading Times

    For binary search tree algorithm(BST),when there areNtags to be identified,the needed reading times for the first tag to be identified is log2N+1.Therefore,the number of the total needed reading times of BST(abbreviated as RT-BST)to identify allNtags is as Eq.(1).

    Since the key process of the dynamic binary search tree algorithm(DBST)is similar to BST,the total number of reading times of DBST(abbreviated as RT-DBST)is the same as that of BST,and is shown in Eq.(2).

    The process of regressive-style binary search tree algorithm(RBST)to identifyNtags is equivalent to the complete search of binary tree withNnode.Therefore,the required reading number of RBST is 2×N.

    For the PNBA algorithm,the required reading number to identify the first tag is log2N+1.Since the PNBA algorithm exploits physical layer network coding,the conflicting signals can be decoded layer by layer.For the rest(N-1)tags,each tag only needs one time reading.Therefore,the total required reading time by the PNBA(abbreviated as RT-PNBA)is as Eq.(3).

    Figure 4:Application example of PNBA

    The comparison of the required reading number to identifyNtags for the algorithms mentioned above is shown in Tab.1.

    The reading efficiency is defined asNdivided by the reading times.The reading efficiency comparison of the algorithms is shown in Tab.2.

    4.2 Theoretical Analysis of Transmission Bits Number

    The transmission bit number is the bit number of each transmission multiplied by the transmission number.AssumeNis the number of tags to be identified andKis the bit number of each tag.For DBST,the bit number of each transmission depends on the position of the conflicting bit.Assume the conflicting bit is random and the probability of collision at each bit is the same as 1/K.Then,the expectation of each transmission bit number for DBST(abbreviated as TB-DBST)is as Eq.(4).

    The transmission bits number comparison of the 4 algorithms is shown in Tab.3.

    The transmission efficiency is defined asK×Ndivided by the expectation of transmission bit number.The transmission efficiency comparison of the 4 algorithms is shown in Tab.4.

    Table 1:Comparison of reading times

    Table 2:Comparison of reading efficiency

    Table 3:Comparison of transmission bits number

    Table 4:Comparison of transmission efficiency

    5 Simulation Analysis of PNBA

    In order to analyze the performance of the PNBA algorithm,the BST,DBST,RBST and PNBA are simulated using MATLAB.

    Fig.5 shows the required reading times for the four algorithms when the number of tags to be identified is between 5 and 100.It is clear that BST and DBST are always the same.Compared with BST and DBST,RBST is significantly lower,and the advantage is more obvious with the increasing of the tags’ number.When the number of tags to be identified is less than 25,PNBA is close to RBST.When the number of tags to be identified is greater than 25,the required reading number of PNBA is significantly lower than that of RBST,and the advantage is more obvious with the growth of the tags’ number.When the number of tags is 100,the PNBA is 45%lower than RBST.

    Figure 5:Comparison of required reading times under different number of tags to be identified for 4 algorithms

    Fig.6 illustrates the comparison of reading efficiency when the tags number to be identified is between 5 and 100 for the 4 algorithms.The so-called read efficiency is calculated as the number of tags divided by the number of required reading times.It is evident from Fig.6 that the PNBA algorithm is more efficient than the other 3 algorithms.BST and DBST are always the same.When the number of tags is between 5–40,BST and DBST gradually reduce to 0.2,and RBST is always maintained at 0.5.However,the PNBA algorithm gradually increases to 0.8.When the number of tags is larger than 40,the reading efficiency of the 4 algorithms changes slowly.BST and DBST are between 0.16–0.19,PNBA is between 0.89–0.93,and RBST is at 0.5.

    Figs.7–10 illustrates the number comparison of needed transmission bits number when the tags’number to be identified is between 5 and 100 for the 4 algorithms underK=8,K=16,K=24 andK=32 respectively.

    It can be found that in the cases with different values ofK,the relative relationship and changing trend of the 4 algorithms in the transmission bit number is consistent.

    With the increase of the tags number to be identified,the needed transmission bits number for the 4 algorithms increases gradually.And the gap between the 4 algorithms is widened gradually.Besides,with the growing ofKvalue,the gap between the 4 algorithms increases gradually as well.

    Figure 6:Comparison of reading efficiency under different number of tags to be identified for 4 algorithms

    Figure 7:Comparison of number of bits transmitted of 4 algorithms with K =8 for DBST

    Figure 8:Comparison of number of bits transmitted of 4 algorithms with K= 16 for DBST

    Figure 9:Comparison of number of bits transmitted of 4 algorithms with K= 24 for DBST

    Figure 10:Comparison of number of bits transmitted of 4 algorithms with K =32 for DBST

    It is clear from Figs.7–10 that BST needs the greatest transmission bits number,DBST takes the second place.Since RBST can reduce the transmitted bits number of each identifying procedure,it is lower than DBST,but higher than PNBA.The reason is that PNBA needs lower identifying number than RBST,and PNBA can exploit the conflicting information in the stack to avoid the transmission of a large number of duplicate data.PNBA is always the lowest under the differentKvalues.

    Fig.11 depicts the comparison of the transmission efficiency of the 4 algorithms when the number of tags to be identified is between 5 and 100.According to Tab.4,the transmission efficiency of DBST is only related to the value ofK.Therefore,the simulations of DBST underK= 8,16,24,32 are carried out respectively.The so-called transmission efficiency is calculated asK × Ndivided by the total number of transmission bits.It is obvious from Fig.11 that the relationship of BST,RBST and PNBA in transmission efficiency is consistent with that in reading efficiency from Fig.6,and PNBA is greater than BST and RBST significantly.When the tag number is 5,DBST is higher than PNBA,DBST withK=8 is 9% greater than PNBA,DBST withK=32 is 19%greater than PNBA.

    Figure 11:Comparison of the transmission efficiency of the 4 algorithms

    However,with the increase of tags number,DBST declines dramatically.When the tags number is 15,DBST is lower than PNBA and close to RBST.The reason is the sharp increase in the number of transmissions required by the DBST with the increase of the tags number.When the tags number is greater than 15,the DBST is less than RBST.And for DBST with differentKvalues,the greater the value ofK,the higher the transmission efficiency is.However,the greater theKvalue,the smaller the improvement of the transmission efficiency.As shown in Fig.11,DBST withK= 8 is significantly lower than that of the DBST withK=16,while the transmission efficiency is close for the DBST withK=16,24,32.

    6 Conclusion

    Aiming the multiple tags collision problem in the RFID system,this paper exploits physical layer network coding and presents physical layer network coding based binary search tree algorithm(PNBA).In PNBA,the multiple tags collision signal is exploited to reduce the times of identifying and improve reading efficiency.In addition,the physical layer network coding usually needs strict synchronization.The decoding of multiple tags conflicting information with non-strict synchronization will be the future work.

    Acknowledgement:The authors wish to thank anonymous reviewers for their valuable comments and suggestions for the improvement of this paper.

    Funding Statement:This work was supported by the National Natural Science Foundation of China under Grant 61502411;Natural Science Foundation of Jiangsu Province under Grant BK20150432 and BK20151299;Natural Science Research Project for Universities of Jiangsu Province under Grant 15KJB520034;China Postdoctoral Science Foundation under Grant 2015M581843;Jiangsu Provincial Qinglan Project;Teachers Overseas Study Program of Yancheng Institute of Technology;Jiangsu Provincial Government Scholarship for Overseas Studies;Talents Project of Yancheng Institute of Technology under Grant KJC2014038;“2311” Talent Project of Yancheng Institute of Technology;Open Fund of Modern Agricultural Resources Intelligent Management and Application Laboratory of Huzhou Normal University.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    在线观看一区二区三区| 欧美bdsm另类| 国产av在哪里看| 日本色播在线视频| av在线观看视频网站免费| 蜜臀久久99精品久久宅男| 亚洲成人中文字幕在线播放| 26uuu在线亚洲综合色| 久久久成人免费电影| 高清日韩中文字幕在线| 国产国拍精品亚洲av在线观看| 综合色av麻豆| 久久韩国三级中文字幕| 在现免费观看毛片| 欧美一级a爱片免费观看看| 欧美不卡视频在线免费观看| 男女做爰动态图高潮gif福利片| 国产一区二区三区在线臀色熟女| 51国产日韩欧美| 欧美一级a爱片免费观看看| 人体艺术视频欧美日本| 久久久成人免费电影| 久久6这里有精品| 夜夜夜夜夜久久久久| 波多野结衣巨乳人妻| 99久久久亚洲精品蜜臀av| 99热只有精品国产| 成人av在线播放网站| 最近最新中文字幕大全电影3| 国语自产精品视频在线第100页| 又粗又爽又猛毛片免费看| 欧美日本亚洲视频在线播放| 一区二区三区高清视频在线| 永久网站在线| 男女做爰动态图高潮gif福利片| 69av精品久久久久久| 婷婷色av中文字幕| 国产精品.久久久| 亚洲成人中文字幕在线播放| 亚洲欧美日韩卡通动漫| 在线免费观看的www视频| 亚洲国产精品成人综合色| 久久人人爽人人片av| 99久久精品一区二区三区| 身体一侧抽搐| 欧美一区二区国产精品久久精品| 久久99热6这里只有精品| 亚洲成av人片在线播放无| 欧美+亚洲+日韩+国产| 亚洲国产欧美人成| 狂野欧美白嫩少妇大欣赏| 免费一级毛片在线播放高清视频| 此物有八面人人有两片| 久久综合国产亚洲精品| 麻豆av噜噜一区二区三区| 亚洲国产日韩欧美精品在线观看| 97人妻精品一区二区三区麻豆| 欧美性猛交╳xxx乱大交人| 国产中年淑女户外野战色| 天堂av国产一区二区熟女人妻| 成人毛片60女人毛片免费| 色吧在线观看| 简卡轻食公司| av在线亚洲专区| 亚洲成人精品中文字幕电影| 偷拍熟女少妇极品色| 桃色一区二区三区在线观看| 国产精品一区二区三区四区免费观看| 久久精品久久久久久噜噜老黄 | 亚洲七黄色美女视频| 久久久久网色| 97超视频在线观看视频| 三级国产精品欧美在线观看| 看免费成人av毛片| 午夜福利在线观看免费完整高清在 | 婷婷精品国产亚洲av| 国产精品1区2区在线观看.| 久久亚洲国产成人精品v| 国产伦理片在线播放av一区 | 成人三级黄色视频| 午夜a级毛片| 国产精品人妻久久久影院| 综合色av麻豆| 91久久精品国产一区二区成人| 国产亚洲精品久久久com| 国产日本99.免费观看| 免费黄网站久久成人精品| 精品人妻一区二区三区麻豆| 亚洲精华国产精华液的使用体验 | 国产高清有码在线观看视频| 在现免费观看毛片| 成熟少妇高潮喷水视频| 精品人妻一区二区三区麻豆| 亚洲av中文字字幕乱码综合| 搞女人的毛片| 婷婷精品国产亚洲av| 亚洲精品日韩在线中文字幕 | 亚洲久久久久久中文字幕| 美女被艹到高潮喷水动态| 99久久九九国产精品国产免费| 天天躁夜夜躁狠狠久久av| 日韩制服骚丝袜av| 黄色视频,在线免费观看| 春色校园在线视频观看| 国产精品一二三区在线看| 日本一本二区三区精品| 亚洲国产精品合色在线| 亚洲精品亚洲一区二区| 国产一区二区亚洲精品在线观看| 国产v大片淫在线免费观看| 国产白丝娇喘喷水9色精品| 菩萨蛮人人尽说江南好唐韦庄 | 日韩 亚洲 欧美在线| 国产精品人妻久久久久久| 亚洲成人精品中文字幕电影| 岛国在线免费视频观看| 日韩大尺度精品在线看网址| 少妇人妻一区二区三区视频| 高清毛片免费观看视频网站| 97超碰精品成人国产| 成人三级黄色视频| 男人和女人高潮做爰伦理| 丝袜喷水一区| 国产白丝娇喘喷水9色精品| 国产高清激情床上av| 国产精品精品国产色婷婷| 欧美色视频一区免费| 成人午夜精彩视频在线观看| 只有这里有精品99| 亚洲高清免费不卡视频| 亚洲av中文字字幕乱码综合| 婷婷六月久久综合丁香| 精品一区二区三区视频在线| 黄色一级大片看看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 看免费成人av毛片| АⅤ资源中文在线天堂| 国产v大片淫在线免费观看| av福利片在线观看| 噜噜噜噜噜久久久久久91| 国产精品久久久久久久久免| 1000部很黄的大片| 精品免费久久久久久久清纯| 日韩大尺度精品在线看网址| 看非洲黑人一级黄片| 日韩欧美精品免费久久| 人人妻人人看人人澡| 美女大奶头视频| 18禁在线无遮挡免费观看视频| 国产色婷婷99| 黄片wwwwww| 18禁裸乳无遮挡免费网站照片| 黄色欧美视频在线观看| 日本五十路高清| 免费人成视频x8x8入口观看| 小蜜桃在线观看免费完整版高清| 国产蜜桃级精品一区二区三区| 午夜精品在线福利| 亚洲性久久影院| 国产高清激情床上av| 欧美色视频一区免费| 亚洲无线观看免费| 亚洲欧美日韩高清在线视频| 欧美变态另类bdsm刘玥| 欧美激情久久久久久爽电影| 久久欧美精品欧美久久欧美| 中文精品一卡2卡3卡4更新| 性色avwww在线观看| 亚洲不卡免费看| 熟妇人妻久久中文字幕3abv| 国产极品天堂在线| 精品久久久久久久久av| 国内精品宾馆在线| 国产亚洲av片在线观看秒播厂 | 黄色视频,在线免费观看| 可以在线观看的亚洲视频| 精品国内亚洲2022精品成人| 美女大奶头视频| 99riav亚洲国产免费| 国产午夜精品一二区理论片| 高清日韩中文字幕在线| 国产v大片淫在线免费观看| 成人特级黄色片久久久久久久| 欧美性猛交黑人性爽| 精品日产1卡2卡| 亚洲国产高清在线一区二区三| 乱人视频在线观看| 久久久久久久亚洲中文字幕| 亚洲精品成人久久久久久| 国产精华一区二区三区| 精品少妇黑人巨大在线播放 | 99久久精品国产国产毛片| 97超碰精品成人国产| 国产伦精品一区二区三区视频9| 成人性生交大片免费视频hd| 成人亚洲欧美一区二区av| a级毛片免费高清观看在线播放| 一卡2卡三卡四卡精品乱码亚洲| 永久网站在线| 亚洲五月天丁香| 国产精品野战在线观看| 国产精品免费一区二区三区在线| 如何舔出高潮| 2022亚洲国产成人精品| 国产精华一区二区三区| 人妻制服诱惑在线中文字幕| 97在线视频观看| 成年av动漫网址| 边亲边吃奶的免费视频| 97热精品久久久久久| 久久久欧美国产精品| 搡女人真爽免费视频火全软件| 简卡轻食公司| 成人特级黄色片久久久久久久| 美女xxoo啪啪120秒动态图| 中文字幕人妻熟人妻熟丝袜美| 亚洲av中文av极速乱| 亚洲高清免费不卡视频| 免费看光身美女| 国产精品一区二区三区四区久久| 亚洲精品456在线播放app| 寂寞人妻少妇视频99o| 国产黄片视频在线免费观看| 欧美最黄视频在线播放免费| 我的女老师完整版在线观看| 亚洲久久久久久中文字幕| 大型黄色视频在线免费观看| 给我免费播放毛片高清在线观看| 搞女人的毛片| 国产一区二区激情短视频| 亚洲国产精品久久男人天堂| 亚洲欧美日韩无卡精品| 在线免费观看不下载黄p国产| 小说图片视频综合网站| av视频在线观看入口| 99热精品在线国产| 亚洲一级一片aⅴ在线观看| 国产69精品久久久久777片| 亚洲电影在线观看av| 精品免费久久久久久久清纯| 91精品一卡2卡3卡4卡| 丰满人妻一区二区三区视频av| 久久99热6这里只有精品| 国产午夜福利久久久久久| 狠狠狠狠99中文字幕| 久久这里有精品视频免费| 亚洲欧洲国产日韩| 国产精品蜜桃在线观看 | 在线观看午夜福利视频| 少妇高潮的动态图| 综合色丁香网| 看片在线看免费视频| 国产精品一及| 99热这里只有精品一区| 国产极品天堂在线| 老司机影院成人| 免费无遮挡裸体视频| 综合色av麻豆| av专区在线播放| 亚洲av.av天堂| 免费看日本二区| 日本免费一区二区三区高清不卡| 美女cb高潮喷水在线观看| 国产探花极品一区二区| 成人漫画全彩无遮挡| 久久久精品大字幕| 国产精品一及| 尤物成人国产欧美一区二区三区| 成人国产麻豆网| 亚洲成a人片在线一区二区| 不卡一级毛片| 春色校园在线视频观看| 成年版毛片免费区| 成人午夜高清在线视频| 国产亚洲精品av在线| 亚洲熟妇中文字幕五十中出| 最近最新中文字幕大全电影3| 五月伊人婷婷丁香| 一级av片app| 日本免费一区二区三区高清不卡| 麻豆国产av国片精品| 三级男女做爰猛烈吃奶摸视频| 日本免费a在线| 久久这里有精品视频免费| 久久精品国产清高在天天线| 亚洲久久久久久中文字幕| 自拍偷自拍亚洲精品老妇| 亚洲四区av| 日日摸夜夜添夜夜添av毛片| 国产成人精品婷婷| 国产精品久久电影中文字幕| 精品久久久久久久久亚洲| 秋霞在线观看毛片| 久久精品人妻少妇| 国产成人aa在线观看| 熟女电影av网| 18禁在线无遮挡免费观看视频| 久久精品国产亚洲av涩爱 | 国产精品一区二区三区四区免费观看| 亚洲七黄色美女视频| 日韩在线高清观看一区二区三区| 淫秽高清视频在线观看| 国产在线男女| 色综合站精品国产| 国产激情偷乱视频一区二区| 长腿黑丝高跟| 久久久久久久亚洲中文字幕| 深夜精品福利| 99热这里只有是精品50| 亚洲一级一片aⅴ在线观看| 女的被弄到高潮叫床怎么办| 成人三级黄色视频| 91精品国产九色| 免费看a级黄色片| 可以在线观看的亚洲视频| 你懂的网址亚洲精品在线观看 | 乱系列少妇在线播放| 看片在线看免费视频| 日韩欧美国产在线观看| 亚洲成人av在线免费| 高清午夜精品一区二区三区 | 欧美3d第一页| 国产白丝娇喘喷水9色精品| 男女边吃奶边做爰视频| 精品人妻一区二区三区麻豆| 亚洲精品日韩av片在线观看| 男人和女人高潮做爰伦理| 少妇熟女aⅴ在线视频| 国产国拍精品亚洲av在线观看| 人妻久久中文字幕网| 天天躁夜夜躁狠狠久久av| 好男人视频免费观看在线| 国产午夜精品一二区理论片| 国产一区二区在线观看日韩| 1024手机看黄色片| 成人高潮视频无遮挡免费网站| 深夜精品福利| 麻豆乱淫一区二区| 三级经典国产精品| 久久精品影院6| 99久国产av精品| 男人舔奶头视频| 日本欧美国产在线视频| 看免费成人av毛片| 噜噜噜噜噜久久久久久91| 中文在线观看免费www的网站| 久久人人精品亚洲av| 日本欧美国产在线视频| 内射极品少妇av片p| 哪里可以看免费的av片| 尤物成人国产欧美一区二区三区| 久久人人精品亚洲av| 简卡轻食公司| 亚洲中文字幕日韩| 偷拍熟女少妇极品色| 亚洲不卡免费看| 2022亚洲国产成人精品| 久久久久九九精品影院| 亚洲欧美日韩东京热| 综合色av麻豆| 亚洲在线观看片| 26uuu在线亚洲综合色| 国产视频内射| 国产精品一区二区性色av| 一夜夜www| 亚洲三级黄色毛片| 美女大奶头视频| 午夜爱爱视频在线播放| 婷婷亚洲欧美| a级毛片a级免费在线| 国内精品久久久久精免费| 美女大奶头视频| 午夜爱爱视频在线播放| 国产午夜福利久久久久久| 色播亚洲综合网| 国产精品人妻久久久久久| 精品久久久久久久久av| 久久人妻av系列| 欧美bdsm另类| 99riav亚洲国产免费| 国产精品99久久久久久久久| 精品久久国产蜜桃| 中文字幕人妻熟人妻熟丝袜美| 91午夜精品亚洲一区二区三区| 亚洲精品国产av成人精品| 成人高潮视频无遮挡免费网站| 精品久久国产蜜桃| 欧洲精品卡2卡3卡4卡5卡区| 只有这里有精品99| 精品人妻熟女av久视频| 插逼视频在线观看| 少妇裸体淫交视频免费看高清| 免费一级毛片在线播放高清视频| 日日撸夜夜添| 欧美极品一区二区三区四区| 日日啪夜夜撸| 日韩高清综合在线| 亚洲国产日韩欧美精品在线观看| 我的女老师完整版在线观看| 九九爱精品视频在线观看| 日韩精品青青久久久久久| 久久久色成人| .国产精品久久| 国产一区二区三区在线臀色熟女| 干丝袜人妻中文字幕| 欧美日韩一区二区视频在线观看视频在线 | 中文字幕久久专区| 亚洲精品日韩av片在线观看| 亚洲成人久久爱视频| 成人亚洲欧美一区二区av| 免费大片18禁| 国产激情偷乱视频一区二区| 国产精品国产三级国产av玫瑰| 国产v大片淫在线免费观看| 国产三级中文精品| 国产亚洲精品久久久com| 欧美不卡视频在线免费观看| 中文字幕熟女人妻在线| 成人综合一区亚洲| 国产精品久久久久久精品电影| 国产精品伦人一区二区| 久久热精品热| 亚洲va在线va天堂va国产| 成年女人看的毛片在线观看| 51国产日韩欧美| 自拍偷自拍亚洲精品老妇| 国产精品久久久久久久久免| 久久久久久伊人网av| 国产日韩欧美在线精品| 九九热线精品视视频播放| 亚洲性久久影院| 女人十人毛片免费观看3o分钟| 婷婷精品国产亚洲av| 国产精华一区二区三区| 亚洲精品亚洲一区二区| 99久国产av精品| 国产蜜桃级精品一区二区三区| av在线老鸭窝| 一级毛片电影观看 | 亚洲av二区三区四区| 男人的好看免费观看在线视频| 亚洲成人久久性| 少妇人妻精品综合一区二区 | 能在线免费观看的黄片| 亚洲乱码一区二区免费版| 国内精品宾馆在线| 国产精品1区2区在线观看.| 校园人妻丝袜中文字幕| 波野结衣二区三区在线| 老司机影院成人| 日韩精品青青久久久久久| 又爽又黄无遮挡网站| 色噜噜av男人的天堂激情| 国产在视频线在精品| 欧美精品国产亚洲| 18+在线观看网站| 91在线精品国自产拍蜜月| 在线a可以看的网站| 久久九九热精品免费| 国产精品综合久久久久久久免费| 国产视频内射| 久久精品夜夜夜夜夜久久蜜豆| 一本精品99久久精品77| 国产一区二区亚洲精品在线观看| 不卡视频在线观看欧美| 午夜免费激情av| 欧美一区二区精品小视频在线| 久久久国产成人免费| 人体艺术视频欧美日本| 亚洲欧美日韩卡通动漫| 亚洲在久久综合| 日韩欧美精品免费久久| 午夜视频国产福利| 精品午夜福利在线看| 国产在视频线在精品| 欧美日韩精品成人综合77777| 99热全是精品| 国产午夜福利久久久久久| 99国产精品一区二区蜜桃av| 中文字幕久久专区| 97超视频在线观看视频| 久久精品国产亚洲av天美| 亚洲欧美日韩无卡精品| 午夜爱爱视频在线播放| 成年女人看的毛片在线观看| 狠狠狠狠99中文字幕| 日韩视频在线欧美| 美女国产视频在线观看| 嘟嘟电影网在线观看| 神马国产精品三级电影在线观看| 日韩亚洲欧美综合| 女同久久另类99精品国产91| 日日摸夜夜添夜夜爱| 伦精品一区二区三区| 一级毛片电影观看 | 日日摸夜夜添夜夜爱| 91狼人影院| 舔av片在线| 赤兔流量卡办理| 色综合站精品国产| 欧美潮喷喷水| 色哟哟·www| 美女被艹到高潮喷水动态| 亚洲国产欧洲综合997久久,| 亚洲在线自拍视频| 在线免费观看的www视频| 国产激情偷乱视频一区二区| 亚洲aⅴ乱码一区二区在线播放| 亚洲人成网站在线播放欧美日韩| 免费在线观看成人毛片| 丰满的人妻完整版| kizo精华| 午夜老司机福利剧场| 亚洲av中文av极速乱| 亚洲美女搞黄在线观看| 久久久久久国产a免费观看| 岛国毛片在线播放| 精品一区二区三区视频在线| 亚洲精品成人久久久久久| 国产在线精品亚洲第一网站| 在线观看美女被高潮喷水网站| 中文亚洲av片在线观看爽| 免费在线观看成人毛片| 99热网站在线观看| 久久亚洲国产成人精品v| 国模一区二区三区四区视频| 亚洲精品久久久久久婷婷小说 | 免费观看精品视频网站| 天美传媒精品一区二区| 国内精品美女久久久久久| 久久草成人影院| 精品午夜福利在线看| 久久精品国产亚洲av涩爱 | 国产三级在线视频| 亚洲天堂国产精品一区在线| 99九九线精品视频在线观看视频| 在线天堂最新版资源| 国产精品一二三区在线看| 色吧在线观看| 亚洲,欧美,日韩| 春色校园在线视频观看| 深夜a级毛片| 欧美一级a爱片免费观看看| 日本av手机在线免费观看| 寂寞人妻少妇视频99o| 中出人妻视频一区二区| 国产国拍精品亚洲av在线观看| 看免费成人av毛片| 亚洲成人久久爱视频| 亚洲美女视频黄频| 久久久欧美国产精品| 日韩欧美精品免费久久| 亚洲欧美精品专区久久| 天堂网av新在线| 日本av手机在线免费观看| 我的老师免费观看完整版| 一卡2卡三卡四卡精品乱码亚洲| 色哟哟·www| 国产精品一区二区在线观看99 | 综合色av麻豆| 99视频精品全部免费 在线| 色视频www国产| 免费不卡的大黄色大毛片视频在线观看 | 国产精华一区二区三区| 国产 一区精品| 成人综合一区亚洲| 色播亚洲综合网| 男人舔奶头视频| 国产亚洲av片在线观看秒播厂 | 亚洲精品日韩av片在线观看| 亚洲三级黄色毛片| 一个人观看的视频www高清免费观看| 久久热精品热| 又爽又黄a免费视频| 免费大片18禁| 亚洲成人久久性| 内地一区二区视频在线| 中文字幕熟女人妻在线| 免费观看在线日韩| 亚洲av不卡在线观看| 99在线人妻在线中文字幕| 色综合色国产| 久久精品国产亚洲网站| 国产一区亚洲一区在线观看| 岛国毛片在线播放| 非洲黑人性xxxx精品又粗又长| 丰满人妻一区二区三区视频av| 日本熟妇午夜| 亚洲人与动物交配视频| 色吧在线观看| 国内精品一区二区在线观看| 国产美女午夜福利| 色吧在线观看| 国内精品一区二区在线观看| 少妇人妻精品综合一区二区 | 亚洲人成网站在线播| 91久久精品国产一区二区三区| 在线天堂最新版资源| 国产精品蜜桃在线观看 | 成人美女网站在线观看视频| 亚洲国产精品成人综合色| 国产av在哪里看| 国产色婷婷99| 好男人视频免费观看在线| 深夜a级毛片| 国产伦精品一区二区三区四那| 插阴视频在线观看视频| 国产精品福利在线免费观看| 日韩大尺度精品在线看网址| 午夜福利在线观看吧| 国产 一区精品| 少妇的逼水好多| 男人的好看免费观看在线视频| 色噜噜av男人的天堂激情| 国产亚洲精品av在线|