• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Peristaltic Flow of Dusty Nanofluids in Curved Channels

    2021-12-14 03:51:36RashedandSamehAhmed
    Computers Materials&Continua 2021年1期

    Z.Z.Rashed and Sameh E.Ahmed

    1Mathematics Department,Jouf University,Qurayyat,Saudi Arabia

    2Department of Mathematics,King Khalid University,Abha,Saudi Arabia

    Abstract:In this paper,numerical investigations for peristaltic motion of dusty nanofluids in a curved channel are performed.Two systems of partial differential equations are presented for the nanofluid and dusty phases and then the approximations of the long wave length and low Reynolds number are applied.The physical domain is transformed to a rectangular computational model using suitable grid transformations.The resulting systems are solved numerically using shooting method and mathematical forms for the pressure distributions are introduced.The controlling parameters in this study are the thermal buoyancy parameter Gr,the concentration buoyancy parameter Gc,the amplitude ratio ,the Eckert number Ec,the thermophoresis parameter Nt and the Brownian motion parameter Nb and the dusty parameters Ds,s.The obtained results revealed that an increase in the Eckert number enhances the temperature of the fluid and dusty particles while the nanoparticle volume fraction is reduced.Also,both of the temperature and nanoparticles volume fraction are supported by the growing of the Brownian motion parameter.

    Keywords:Peristaltic motion;dusty particles;nanofluid;curved channels

    1 Introduction

    Study of the peristalsis flow has many applications such as movement of the food in the intestine tract,the urine passage from a kidney to the bladder blood flow in small veins and arteries of the blood circulation,transferring the ovum in the Fallopian tube and the movement of sperm in the channels.Also,there are many applications of peristaltic motion in the biomedical devices,such as blood pumps and heart lung machines.The physiology of the gastrointestinal tract discussed by Latham[1],Mishra et al.[2].Also,many studies interested with peristaltic flow in a curved channel[3–11].Sato et al.[3]discussed the peristaltic flow in a curved channel.Ali et al.[4]studied the peristaltic flow in a curved channel with a long wavelength approximation.Ali et al.[5,6]examined effects of the heat transfer and fluid flow of a non-Newtonian third grade fluid in a curved channel.Hayat et al.[7]discussed the Newtonian fluid peristaltic flow,heat and mass transfer in a curved channel with compliant walls.The investigation in[7]was extended by Hayat et al.[8]and Hina et al.[9]to include case of a third grade fluid.Hina et al.[9]considered case of the peristaltic motion in curved channels contain compliant walls using Johnson-Segalman fluid.Hina et al.[10,11]studied the combined heat and mass transfer effects as well as the influence of wall properties on the peristaltic flow of Johnson-Segalman and the peristaltic flow of pseudoplastic fluid,respectively.

    In the recent years,the researchers focused on studying the nanofluids due to their applications in various fields.The first study was introduced by Choi[12]who studied the pure fluids with suspended nanoparticles.He discussed the substantial augmentation of the heat transported in suspensions of copper or aluminum nanoparticles in water or other liquids.Buongiorno[13]takes into his account the Brownian diffusion as well as thermophoresis in writing the transport equations.The literature survey indicates that attempts on peristalsis of the nanofluid model in a curved channel are little.Hina et al.[14]discussed numerically the peristaltic flow of a nanofluid in a curved channel.Ayub et al.[15]studied the mixed convection in the presence of a thermal radiation and a chemical reaction,analytically.The results indicated that the heat transfer rate decreases with the increase in thermophoresis parameter.Narla et al.[16]studied the peristaltic transport of a Jeffrey nanofluid in a curved channel and examined effects of various parameters on the fluid flow and the temperature distributions.Noreen et al.[17]discussed the induced magnetic field effects on the peristaltic flow in a curved channel.They found that an increase in the Brownian motion and thermophoresis parameters causes an increase in the temperature profiles.Hayat et al.[18]studied the peristaltic motion of a copper-water based nanoliquid with the thermal slip conditions.Hayat et al.[19]studied the MHD peristaltic flow of Sisko nanofluids with the Joule heating effects.They used a numerical treatment for the governing equations.They found that the increasing values of the curvature parameter results in symmetric behaviors at the centerline of the channel for the velocity,temperature and concentration distributions.Tanveer et al.[20]studied the peristaltic motion of a Sisko fluid with homogeneous-heterogeneous reaction effects.The results revealed that the lower velocity,temperature and concentration profiles are obtained in case of the higher bending.Tanveer et al.[21]studied the peristaltic flow of Eyring-Powell nanofluids in a curved channel with compliant walls.They found that the Eyring-Powell parameters tend to decrease the velocity and temperature of the nanofluid while the concentration bears a dual response.Hayat et al.[22]discussed the peristalsis of MHD Jeffery nanofluids in a curved channel with a porous medium.

    On the other hand,the practical applications of the dusty fluid flow can be found in atmospheric,engineering and physiological fields,for example,conveying of powdered materials,purification of crude oil,environmental pollutants,dust in gas cooling systems,petroleum industry.Many other applications are included in the valuable book written by Rudinger[23].Farbar et al.[24]studied the heat transfer by flow of the gas-solid mixtures in a circular tube.Saffman[25]presented a dusty fluid model in the laminar flow.Many researchers[26–33]extended the dusty fluid topic with different physical circumstance.Recently,this topic is generalized to case of the dusty nanofluid by many researchers.Siddiqa et al.[34]conducted an analysis of a two-phase natural convection flow of dusty nanofluid along a vertical wavy surface.They found that presence of the dust particles have a notable influence on the temperature distribution as the isotherms get stronger for the dusty water.Begum et al.[35]studied the gyrotactic bioconvection of the dusty nanofluid along an isothermally heated vertical wall.They applied a numerical treatment for the mathematical model using the two-point implicit finite difference method.Gireesha et al.[36],Gireesha et al.[37]studied the Hall effect on a two-phase transient flow with stretching sheet using KVL model and irregular heat generation/consumption,respectively.Good recently studies in the nanofluid topics are found in[38–43].

    The authors in all the mentioned papers disregarded case of the peristaltic motion of the dusty nanofluids in complex shapes.Therefore the main objective of this paper is to study the peristaltic flow in a curved channel using the dusty nanofluids.The two-phase nanofluid model is used to simulate this case and approximations of the long wave length and low Reynolds number are applied.Also,one of the objectives of this study is to express the pressure distributions in the flow domain and examining effects of the dusty and geometry parameters on the nanofluid flow,heat and nanoparticles distributions.

    2 Discerption of the Problem and Mathematical Formulation

    Consider an unsteady two dimensional peristaltic motion of a dusty nanofluid inside a curved channel.Fig.1 shows conditions of the problem and coordinates system.In this figure,theR-axis is taken normal to surface of the channel and theX-axis is taken along walls of the channel.Width of the channel is 2d1 surrounded in a circle of a radiusR*and a centerO.Boundaries of the channel walls are determined as:wherec,aand λ are the speed,amplitude and length of the wave.In addition,the nanofluid is modeled using the two-phase model in which effects of the Brownian motion and thermophoresis are included.The base fluid,dusty particles and nanoparticles are in a thermal equilibrium model.Viscous dissipation effect is considered and a linear Boussinesq approximation is taken into account.A uniform size of the dusty particles is assumed and they distribute equally in the mixture.

    Figure 1:The physical model of the channel

    Under all the mentioned assumptions,the governing equations of the problem are introduced as,see[14,26,27]

    2.1 Nanofluid Phase

    2.2 Dusty Particles

    In Eqs.(1)–(9),U,V,Us,Vsare the velocity components of the fluid and dust phase,in the laboratory frame(R,X);P,Psis the pressure,of the fluid and dust phase,ρf,ρsis density of the fluid and dust phase,μ is the dynamic Viscosity,ν is the kinematic viscosity,κ is the thermal conductivity,cpis the specific heat at constant pressure,Cis the concentration andTis the temperature of the fluid,α is the coefficient of linear thermal expansion of the fluid,β is the coefficient of expansion with concentration,andgis acceleration due to gravity,Ifr,(x)andu,(v),us,(vs)are the coordinates and velocity components in the wave frame then

    Also,the following non-dimensional quantities are introduced:

    In Eq.(11),the subscriptsrefers to the dusty phase and 0 refers to the conditions at the channels walls.Moreover,definitions the stream function for the nanofluid phase ψ and the dusty particles phase ˉψ are expressed as:

    Substituting Eqs.(10)–(12)in the systems of Eqs.(1)–(5)and(6)–(9)and applying the approximations of the low Reynolds number and long of the wave length,the governing equations become:

    2.3 Nanofluid Phase

    2.4 Dusty Particles

    where

    In Eq.(20),Pris the Prandtl number,Reis the Reynolds number,Ecis the Ekert number,Gris the thermal buoyancy parameter,Gcis the concentration buoyancy parameter,Nbis the dimensionless Brownian motion,Ntis the dimensionless thermophores parameter,γ is the specific heat ratio of the mixture,Dsis the mass concentration of particle phase and αdis the dust parameter.

    Eqs.(13),(14),(17)and(18)after eliminating the pressure terms are written as:The corresponding boundary conditions are given by:

    On the other hand,rate of the volume flows in the laboratory frame and in the wave frame are,respectively,given by:

    The dimensionless mean flows in the laboratory and in the wave frameFare defined as:

    From the previous equations,the following relations are obtained:

    3 Method of Solution

    To solve the governing Eqs.(15),(16),(19),(21)and(22),it is needed to map the wavy boundaries into a rectangular computational domain.Therefore,the following new independent variables are introduced:

    The partial derivatives for the dependent variables are obtained as follows:

    Using Eqs.(31),(32),the computational domain is transformed to -1 ≤η′≤1 which makes the applying of the numerical method is available.Here the Runge-Kutta method with shooting technique is used to solve the resulting system of the equations.The number of the grid points are taken to be equal 401 and the convergence criteria is 10-6.In addition,a validation test consisting of comparisons with previously published results is performed and presented in Fig.2.It is found very good agreements are observed between the presented study(in special cases)and those obtained by Hina et al.[14].

    Figure 2:Validation tests at αd =0 and Ds =0

    4 Results and Discussion

    Discussion of the obtained results is notified in this section.A set of graphical results in terms of the velocity profiles for the dusty particles,temperature distributions and nanoparticle volume fraction are presented in Figs.3–15.During these computations,the governing parameters are considered in wide ranges,i.e.,range of the thermal buoyancy parameter 1 ≤Gr≤4,range of the concentration buoyancy parameterGcis 1 ≤Gc≤4,range of amplitude ratio ? is 1 ≤? ≤5,range the Eckert number is 0.1 ≤Ec≤0.5,range of the thermophoresis parameterNtis 0.1 ≤Nt≤0.5 and the Brownian motion parameterNbis varying from 0.1 to 0.5.Here it should be mentioned that from Eq.(19),the profiles of the temperature of the dusty particles are the same of nanofluid temperature.Also,values of the mass concentration of the dusty particlesDsand the dusty parameters αdare assumed 0.1 and 10,respectively.

    Figure 3:Profiles of the fluid temperature for variations of Gr at Gc=1,k =100,?=0.2,Ec=1,Nt =0.5,Nb=0.5,αd =10 and Ds =0.1

    Figure 4:Profiles of the nanoparticles volume fraction for variations of Gr at Gc=1,k =100,?=0.2,Ec=1,Nt =0.5,Nb=0.5,αd = 10 and Ds =0.1

    Figs.3 and 4 display profiles of the temperature distributions for both fluid and dusty particles and nanoparticles volume fraction for different values of the thermal buoyancy parametersGratGc=1,k=100,?=0.2,Ec=1,Nt=0.5,Nb=0.5,αd=10 andDs=0.1.It is found that,in the curvature domain,the temperature distributions are enhanced as the thermal buoyancy parameter increases.The interpretation of this behavior,physically,related to the temperature differences inside the flow domain that is enhanced asGrincreases and hence the fluid and dusty particles temperature are supported.In addition,it is noted that profiles of the nanoparticles volume fraction are reduced asGris growing due to the fact that the increase in the temperature differences diminishes the concentration distributions.

    Figure 5:Profiles of the fluid temperature for variations of Gc at Gr=1,k =100,?=0.2,Ec=1,Nt =0.5,Nb=0.5,αd =10 and Ds =0.1

    Figure 6:Profiles of the fluid temperature for variations of Gc at Gr=1,k =100,?=0.2,Ec=1,Nt =0.5,Nb=0.5,αd =10 and Ds =0.1

    In Figs.5 and 6,variations of the concentration buoyancy parameterGcand their effects on the dusty particles and fluid temperature and nanoparticles volume fraction are presented.The other parameters are fixed atGr=1,k=100,?=0.2,Ec=1,Nt=0.5,Nb=0.5,αd=10 andDs=0.1.The results revealed that the increase inGccauses a clear reduction in the temperature distributions.The physical explanation of this behavior is due to the buoyancy forces due to the concentration differences that minimize profiles of the temperature.However,an obvious enhancement in the nanoparticles volume fraction is seen asGcincreases due to the support in concentration differences in the curvature domain.

    Profiles of velocity of the dusty particles,the fluid and dusty particles temperature and the nanoparticles volume fraction for different values of the amplitude ratio ? atGr=Gc=1,k=100,Ec=1,Nt=0.5,Nb=0.5,αd=10 andDs=0.1 are shown in Figs.7,8 and 9,respectively.It is observed that an obvious reduction in the velocity profiles is seen as ? is increased due to an increase in area of the channel.Also,based on the fact that the decrease in the fluid velocity enhances the fluid temperature,the fluid temperature is supported as ? increases.Additionally,the nanoparticles volume fraction distributions are wasted as the amplitude ratio increases due to the increase in the temperature difference inside the flow domain.

    Figure 7:Dusty velocity for different values of ? at Gc=Gr=1,k =100,Ec=1,Nt =0.5,Nb=0.5,αd =10 and Ds =0.1

    Figure 8:Profiles of the temperature for variations of ? at Gr=Gc=1,k =100,Ec=1,Nt =0.5,Nb=0.5,αd =10 and Ds =0.1

    Figure 9:Profiles of the nanoparticles volume fraction for variations of ? at Gr=Gc=1,k =100,Ec=1,Nt =0.5,Nb=0.5,αd =10 and Ds =0.1

    Figure 10:Profiles of the temperature for variations of Ec at Gr=Gc=1,k =100,?=0.2,Nt =0.5,Nb=0.5,αd =10 and Ds =0.1

    Figure 11:Profiles of the nanoparticles volume fraction for variations of Ec at Gr=Gc=1,k =100,?=0.2,Nt =0.5,Nb=0.5,αd =10 and Ds =0.1

    Figure 12:Profiles of the temperature for variations of Nt at Gr=Gc=1,k =100,?=0.2,Ec=1,Nb=0.5,αd =10 and Ds =0.1

    Figure 13:Profiles of the nanoparticles volume fraction for variations of Nt at Gr=1,Gc=1,k =100,?=0.2,Ec=1,Nb=0.5,αd =10 and Ds =0.1

    Effects of the viscous dissipation represented by variation of the Eckert numberEcon the temperature distributions and nanoparticles volume fraction are examined with help of Figs.10 and 11.These figures are plotted atGr=Gc=1,k=100,?=0.2,Nt=0.5,Nb=0.5,αd=10 andDs=0.1.As it expected,a clear enhancement in profiles of the temperature is obtained asEcincreases.Physically,the fluid is heated up asEcincreases due to the kinetic energy in the flow area.On the other hand,the temperature differences are increased and hence the nanoparticles volume fraction is detracted asEcis growing.

    Figs.12 and 13 analyzed effects of the thermophoresis parameterNton the temperature distributions and nanoparticles volume fraction atGr=Gc=1,k=100,?=0.2,Ec=1,Nb=0.5,αd=10 andDs=0.1 The results show that effects ofNton the temperature are clearer than the nanoparticles volume fraction.In addition,both the temperature and concentration profiles are reduced asNtincreases.In fact,this outcome agrees with the previous study reported by Hina et al.[14].

    Figure 14:Profiles of the temperature for variations of Nb at Gr=Gc=1,k =100,?=0.2,Ec=1,Nt =0.5,αd =10 and Ds =0.1

    Figure 15:Profiles of the nanoparticles volume fraction for variations of Nb at Gr=1,Gc=1,k =100,?=0.2,Ec=1,Nt =0.5,αd =10 and Ds =0.1

    Effects of the Brownian motion parameterNbon the temperature distributions and profiles of the nanoparticles volume fraction are displayed in Figs.14 and 15.It is found that the increase inNbresults in an increase in both of the temperature and nanoparticles volume fraction.Also,the results revealed that the concentration distribution is higher at the walls in comparison with the central part of the curved channel.All these effects are examined the a referenced caseGr=1,Gc=1,k=100,?=0.2,Ec=1,Nt=0.5,αd=10 andDs=0.1.

    5 Conclusions

    In this investigation,a peristaltic flow of a dusty nanofluid in a curved channel was,numerical studied.Approximations of the low Reynolds number and the long wave length are considered.Two systems of the equations are presented for the nanofluid phase and the dusty particles phase.A mathematical form for the pressure distributions is introduced and validation tests with previously published results are performed.The following findings can be summarized:

    Values of the dusty temperature are equal values of the nanofluid temperature regardless variations of the governing parameter.

    An increase in the thermal buoyancy parameter causes an enhancement in the temperature distributions while a clear reduction in profiles of the nanoparticles volume fraction is noted.

    The nanoparticles volume fractions are supported by the increase in the concentration buoyancy parameter but the both the nanofluid and the dusty particles are decreased.

    The viscous dissipation helps in the increase of temperature of the nanofluid and the dusty particles while it decreases the nanoparticles volume fraction.

    Velocity of the dusty particles is reduced as the amplitude ratio increases(particularly at the midsection of the channel.

    Funding Statement:The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under Grant Number(R.G.P2/72/41).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    精品少妇一区二区三区视频日本电影| 亚洲熟女毛片儿| 夜夜骑夜夜射夜夜干| 91老司机精品| 黑人欧美特级aaaaaa片| 国产精品欧美亚洲77777| 桃花免费在线播放| 中文字幕色久视频| 可以免费在线观看a视频的电影网站| 一级片'在线观看视频| 大片免费播放器 马上看| 飞空精品影院首页| 国产欧美日韩精品亚洲av| 久久精品成人免费网站| 伦理电影免费视频| 国产无遮挡羞羞视频在线观看| 免费黄频网站在线观看国产| 精品国产一区二区三区久久久樱花| 最黄视频免费看| 国产日韩一区二区三区精品不卡| 国产视频一区二区在线看| 欧美黑人精品巨大| 久久天躁狠狠躁夜夜2o2o | 亚洲av在线观看美女高潮| 亚洲久久久国产精品| 亚洲精品日韩在线中文字幕| 久久热在线av| 黄色 视频免费看| 亚洲,欧美精品.| 一级,二级,三级黄色视频| 2018国产大陆天天弄谢| 国产精品久久久久久精品电影小说| 国产亚洲av片在线观看秒播厂| av有码第一页| 免费不卡黄色视频| 两人在一起打扑克的视频| 91精品伊人久久大香线蕉| 亚洲国产成人一精品久久久| 精品久久久久久久毛片微露脸 | 国产精品人妻久久久影院| 女人爽到高潮嗷嗷叫在线视频| www.自偷自拍.com| 亚洲九九香蕉| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品国产av成人精品| videos熟女内射| 人人妻人人澡人人爽人人夜夜| 美女主播在线视频| 午夜91福利影院| 乱人伦中国视频| 免费高清在线观看日韩| 亚洲欧美成人综合另类久久久| 日日爽夜夜爽网站| 久久久久久人人人人人| 美女高潮到喷水免费观看| 观看av在线不卡| 亚洲欧美日韩高清在线视频 | xxxhd国产人妻xxx| 国产成人欧美| 美女高潮到喷水免费观看| 在线观看免费午夜福利视频| 好男人视频免费观看在线| av线在线观看网站| 亚洲国产精品一区二区三区在线| svipshipincom国产片| 九色亚洲精品在线播放| 一二三四社区在线视频社区8| 免费观看a级毛片全部| xxxhd国产人妻xxx| 欧美日韩亚洲高清精品| 最近中文字幕2019免费版| 99久久精品国产亚洲精品| 欧美日韩国产mv在线观看视频| 十八禁高潮呻吟视频| 国产精品av久久久久免费| 国产成人91sexporn| 91九色精品人成在线观看| 精品人妻1区二区| 人体艺术视频欧美日本| 爱豆传媒免费全集在线观看| 久久国产精品影院| 亚洲精品一二三| 国产黄频视频在线观看| 中文字幕高清在线视频| 国产在线观看jvid| 最近最新中文字幕大全免费视频 | 精品少妇黑人巨大在线播放| 国产麻豆69| 亚洲av片天天在线观看| 国产无遮挡羞羞视频在线观看| 国产一卡二卡三卡精品| 欧美在线一区亚洲| 中文字幕色久视频| 777久久人妻少妇嫩草av网站| 久久久精品免费免费高清| 日韩av不卡免费在线播放| 久久ye,这里只有精品| 黄网站色视频无遮挡免费观看| 99国产精品免费福利视频| 最黄视频免费看| 色播在线永久视频| 在线观看免费视频网站a站| 亚洲黑人精品在线| 人人澡人人妻人| 欧美 日韩 精品 国产| 久久精品人人爽人人爽视色| 久久久久国产一级毛片高清牌| 亚洲国产精品成人久久小说| 十八禁网站网址无遮挡| 可以免费在线观看a视频的电影网站| 久久久久网色| 中文字幕人妻丝袜一区二区| 十分钟在线观看高清视频www| 免费日韩欧美在线观看| 亚洲,欧美,日韩| 精品熟女少妇八av免费久了| 国产精品久久久久久精品电影小说| 久久久欧美国产精品| 国产精品偷伦视频观看了| 日日爽夜夜爽网站| 久久狼人影院| 日本色播在线视频| 色婷婷久久久亚洲欧美| 人妻一区二区av| 在线观看免费午夜福利视频| 又黄又粗又硬又大视频| 亚洲男人天堂网一区| 日本av免费视频播放| 黄色毛片三级朝国网站| avwww免费| 免费高清在线观看视频在线观看| 咕卡用的链子| 国产主播在线观看一区二区 | 国产亚洲精品第一综合不卡| 国产黄色免费在线视频| 高清不卡的av网站| 丝瓜视频免费看黄片| 免费女性裸体啪啪无遮挡网站| 国产激情久久老熟女| 日韩中文字幕欧美一区二区 | 国产精品熟女久久久久浪| 久久久精品免费免费高清| 国产精品一国产av| 亚洲中文日韩欧美视频| 国产亚洲av片在线观看秒播厂| av网站免费在线观看视频| 精品第一国产精品| 午夜福利视频在线观看免费| 精品福利永久在线观看| 丁香六月欧美| 国产精品久久久人人做人人爽| 欧美精品一区二区免费开放| 99九九在线精品视频| 精品国产一区二区三区四区第35| 欧美人与性动交α欧美精品济南到| 9191精品国产免费久久| 亚洲精品一二三| 18禁黄网站禁片午夜丰满| 老司机深夜福利视频在线观看 | 嫁个100分男人电影在线观看 | 欧美在线一区亚洲| 日日爽夜夜爽网站| 成年动漫av网址| 国产精品成人在线| 欧美人与性动交α欧美软件| 亚洲国产日韩一区二区| 99热网站在线观看| 欧美日韩黄片免| 色94色欧美一区二区| 亚洲国产欧美在线一区| 亚洲成人免费电影在线观看 | 97人妻天天添夜夜摸| 日本黄色日本黄色录像| 久久久久久人人人人人| 亚洲一区二区三区欧美精品| 女人爽到高潮嗷嗷叫在线视频| 成人午夜精彩视频在线观看| 国产成人免费观看mmmm| 国产精品久久久久久精品古装| 天天添夜夜摸| 两个人看的免费小视频| 天天影视国产精品| 18禁黄网站禁片午夜丰满| 国产精品熟女久久久久浪| 欧美黄色片欧美黄色片| 桃花免费在线播放| 老司机靠b影院| 51午夜福利影视在线观看| 成人18禁高潮啪啪吃奶动态图| 成年av动漫网址| 国产成人精品久久二区二区91| 50天的宝宝边吃奶边哭怎么回事| 久久狼人影院| 亚洲av男天堂| 激情视频va一区二区三区| 成人亚洲欧美一区二区av| 国产男女内射视频| 日本五十路高清| 日韩av在线免费看完整版不卡| 国产免费视频播放在线视频| 久久毛片免费看一区二区三区| 成人手机av| 中文字幕高清在线视频| 男女床上黄色一级片免费看| 国产男女内射视频| 新久久久久国产一级毛片| 国产黄色免费在线视频| 色婷婷久久久亚洲欧美| 国产男女超爽视频在线观看| 亚洲精品国产色婷婷电影| 嫩草影视91久久| 亚洲国产欧美一区二区综合| 天天躁日日躁夜夜躁夜夜| 国产午夜精品一二区理论片| 一本色道久久久久久精品综合| 国产亚洲av高清不卡| 天天添夜夜摸| 久久综合国产亚洲精品| 日韩电影二区| 两人在一起打扑克的视频| 亚洲三区欧美一区| 男的添女的下面高潮视频| 丁香六月欧美| 一本一本久久a久久精品综合妖精| 桃花免费在线播放| 国产成人欧美| 性高湖久久久久久久久免费观看| 久久99一区二区三区| 一级黄片播放器| 777久久人妻少妇嫩草av网站| 精品亚洲成国产av| 90打野战视频偷拍视频| 免费观看a级毛片全部| 丰满人妻熟妇乱又伦精品不卡| 色视频在线一区二区三区| 精品国产国语对白av| 国产高清视频在线播放一区 | 十八禁高潮呻吟视频| 亚洲中文av在线| 精品一区在线观看国产| 亚洲精品在线美女| 国产精品一区二区精品视频观看| 男女床上黄色一级片免费看| 欧美精品一区二区免费开放| 高清不卡的av网站| 精品人妻一区二区三区麻豆| 女人久久www免费人成看片| 又大又黄又爽视频免费| 男男h啪啪无遮挡| 丝袜在线中文字幕| 黑丝袜美女国产一区| 伦理电影免费视频| 婷婷成人精品国产| www.av在线官网国产| 久久久精品国产亚洲av高清涩受| 亚洲欧美日韩高清在线视频 | 人人妻人人爽人人添夜夜欢视频| 久久九九热精品免费| 一区二区三区四区激情视频| 成年av动漫网址| 少妇裸体淫交视频免费看高清 | 麻豆乱淫一区二区| 国产欧美日韩一区二区三 | 波野结衣二区三区在线| 久久这里只有精品19| 精品久久久精品久久久| 国产成人系列免费观看| 亚洲一码二码三码区别大吗| 午夜久久久在线观看| 少妇 在线观看| 男女床上黄色一级片免费看| 久久精品久久久久久噜噜老黄| 一区二区三区乱码不卡18| 亚洲欧美色中文字幕在线| 精品免费久久久久久久清纯 | 一边摸一边抽搐一进一出视频| 久久天堂一区二区三区四区| 在线观看免费日韩欧美大片| 真人做人爱边吃奶动态| 久久精品国产a三级三级三级| 久久精品人人爽人人爽视色| 性少妇av在线| 欧美国产精品va在线观看不卡| 国产淫语在线视频| 久久久亚洲精品成人影院| 黄色a级毛片大全视频| 亚洲国产欧美日韩在线播放| 黄色一级大片看看| 性少妇av在线| a级毛片黄视频| 人妻一区二区av| 日本一区二区免费在线视频| 国产在视频线精品| 80岁老熟妇乱子伦牲交| 免费高清在线观看视频在线观看| 国产精品一区二区免费欧美 | 新久久久久国产一级毛片| 丝袜美腿诱惑在线| 国产极品粉嫩免费观看在线| 黄色怎么调成土黄色| 好男人电影高清在线观看| 久久人妻熟女aⅴ| 9热在线视频观看99| 久久久久久人人人人人| 色94色欧美一区二区| 亚洲国产欧美在线一区| 一级a爱视频在线免费观看| 亚洲,欧美,日韩| 18禁黄网站禁片午夜丰满| 日韩免费高清中文字幕av| 日韩视频在线欧美| 中国美女看黄片| 日日夜夜操网爽| av在线老鸭窝| 1024视频免费在线观看| xxxhd国产人妻xxx| 老熟女久久久| 国产女主播在线喷水免费视频网站| 国产精品一区二区在线不卡| 久久久久久久大尺度免费视频| 久久女婷五月综合色啪小说| 久久久久视频综合| 国产精品一二三区在线看| 90打野战视频偷拍视频| 2018国产大陆天天弄谢| 久热爱精品视频在线9| 在线精品无人区一区二区三| 老司机午夜十八禁免费视频| 无限看片的www在线观看| 国产精品香港三级国产av潘金莲 | 老司机在亚洲福利影院| 少妇被粗大的猛进出69影院| 欧美人与性动交α欧美精品济南到| 91精品伊人久久大香线蕉| 国产免费又黄又爽又色| 久久久久久久久久久久大奶| 青青草视频在线视频观看| 黑人巨大精品欧美一区二区蜜桃| 欧美xxⅹ黑人| 搡老乐熟女国产| 中文字幕制服av| 免费女性裸体啪啪无遮挡网站| 国产亚洲午夜精品一区二区久久| 亚洲精品在线美女| 亚洲中文av在线| 爱豆传媒免费全集在线观看| 亚洲精品第二区| 岛国毛片在线播放| 午夜激情久久久久久久| 一区二区三区激情视频| 性高湖久久久久久久久免费观看| 亚洲精品乱久久久久久| 国产精品一区二区精品视频观看| 在线天堂中文资源库| 18禁裸乳无遮挡动漫免费视频| 亚洲国产精品成人久久小说| 免费在线观看完整版高清| 操美女的视频在线观看| 久热爱精品视频在线9| 国产亚洲欧美在线一区二区| 首页视频小说图片口味搜索 | 亚洲av欧美aⅴ国产| 国产成人av激情在线播放| 午夜视频精品福利| 性色av乱码一区二区三区2| av天堂久久9| 午夜福利乱码中文字幕| av片东京热男人的天堂| 亚洲国产欧美日韩在线播放| 亚洲国产欧美一区二区综合| 咕卡用的链子| 两个人免费观看高清视频| 麻豆国产av国片精品| 99久久99久久久精品蜜桃| 国产又爽黄色视频| 日韩大码丰满熟妇| 黄色a级毛片大全视频| 好男人电影高清在线观看| 交换朋友夫妻互换小说| 国产精品欧美亚洲77777| 欧美日韩黄片免| 久久国产精品大桥未久av| 2018国产大陆天天弄谢| 亚洲国产欧美日韩在线播放| 黑丝袜美女国产一区| 久久久国产一区二区| 精品国产超薄肉色丝袜足j| 国产高清不卡午夜福利| 国产激情久久老熟女| 亚洲精品一卡2卡三卡4卡5卡 | 国产高清视频在线播放一区 | 亚洲av日韩在线播放| 成人影院久久| 男人舔女人的私密视频| 大型av网站在线播放| 国产精品一区二区免费欧美 | 国产精品麻豆人妻色哟哟久久| 日韩一本色道免费dvd| 50天的宝宝边吃奶边哭怎么回事| 新久久久久国产一级毛片| 婷婷色麻豆天堂久久| netflix在线观看网站| av视频免费观看在线观看| bbb黄色大片| 曰老女人黄片| 国产在线免费精品| 中文字幕色久视频| 激情视频va一区二区三区| 亚洲成色77777| 亚洲欧洲精品一区二区精品久久久| 久久人人97超碰香蕉20202| 亚洲av日韩在线播放| 黄色a级毛片大全视频| 男女午夜视频在线观看| 又大又爽又粗| 午夜福利视频精品| 精品一区二区三卡| 久久精品亚洲av国产电影网| 王馨瑶露胸无遮挡在线观看| 午夜福利乱码中文字幕| 亚洲人成电影观看| 热99国产精品久久久久久7| 亚洲av美国av| 国产黄频视频在线观看| 国产高清videossex| a 毛片基地| 午夜福利视频在线观看免费| 看十八女毛片水多多多| 午夜老司机福利片| 久久国产亚洲av麻豆专区| 免费在线观看影片大全网站 | av有码第一页| 亚洲人成电影观看| 国产精品一区二区在线不卡| 美女国产高潮福利片在线看| 久久精品熟女亚洲av麻豆精品| 美女大奶头黄色视频| 欧美日韩福利视频一区二区| 免费高清在线观看日韩| 久久久亚洲精品成人影院| 91精品伊人久久大香线蕉| 午夜福利乱码中文字幕| 男人操女人黄网站| 老司机亚洲免费影院| 人妻一区二区av| 大码成人一级视频| 晚上一个人看的免费电影| 大话2 男鬼变身卡| 久久99热这里只频精品6学生| av在线app专区| 亚洲五月婷婷丁香| 中文字幕精品免费在线观看视频| 亚洲精品美女久久久久99蜜臀 | 97精品久久久久久久久久精品| 成人亚洲精品一区在线观看| 搡老乐熟女国产| 精品亚洲成国产av| 欧美精品一区二区免费开放| 一本久久精品| 一二三四社区在线视频社区8| 中文字幕色久视频| 晚上一个人看的免费电影| 亚洲精品自拍成人| av电影中文网址| 两个人免费观看高清视频| bbb黄色大片| 国产精品久久久久久精品古装| 欧美精品一区二区大全| 精品久久久精品久久久| 91精品三级在线观看| 国产一区亚洲一区在线观看| 天天躁夜夜躁狠狠躁躁| 精品福利永久在线观看| 日日爽夜夜爽网站| 欧美老熟妇乱子伦牲交| 日韩大片免费观看网站| 亚洲国产成人一精品久久久| 国产精品久久久久久人妻精品电影 | 亚洲色图综合在线观看| 赤兔流量卡办理| 亚洲av男天堂| 晚上一个人看的免费电影| 国产精品 国内视频| av国产久精品久网站免费入址| 一二三四社区在线视频社区8| 激情五月婷婷亚洲| 国产成人系列免费观看| 在线观看免费午夜福利视频| 国产日韩欧美视频二区| 亚洲欧美精品自产自拍| 日日爽夜夜爽网站| 久久久欧美国产精品| 国产成人欧美在线观看 | 女人精品久久久久毛片| 在现免费观看毛片| 18禁国产床啪视频网站| 最黄视频免费看| 超碰成人久久| a级片在线免费高清观看视频| 又大又黄又爽视频免费| 热99国产精品久久久久久7| 熟女av电影| 色婷婷av一区二区三区视频| 亚洲国产精品成人久久小说| www.999成人在线观看| 亚洲国产av影院在线观看| www日本在线高清视频| 亚洲第一青青草原| 亚洲av成人精品一二三区| 色婷婷久久久亚洲欧美| 国产伦理片在线播放av一区| 亚洲人成电影免费在线| 欧美精品啪啪一区二区三区 | 色播在线永久视频| 人妻 亚洲 视频| 欧美日韩一级在线毛片| www日本在线高清视频| 久久久国产精品麻豆| 日日摸夜夜添夜夜爱| 一二三四社区在线视频社区8| 人人妻人人添人人爽欧美一区卜| 亚洲,欧美精品.| 色视频在线一区二区三区| 久久鲁丝午夜福利片| av在线播放精品| 成人免费观看视频高清| 高清不卡的av网站| 国产亚洲欧美在线一区二区| 在线观看免费高清a一片| 九草在线视频观看| 中文字幕av电影在线播放| 亚洲中文av在线| netflix在线观看网站| 叶爱在线成人免费视频播放| 午夜福利影视在线免费观看| 欧美xxⅹ黑人| 美女国产高潮福利片在线看| cao死你这个sao货| 狂野欧美激情性bbbbbb| 国产成人影院久久av| 韩国高清视频一区二区三区| 91国产中文字幕| 女人被躁到高潮嗷嗷叫费观| 欧美日韩一级在线毛片| 亚洲图色成人| 国产成人91sexporn| 人人妻,人人澡人人爽秒播 | 丝袜美足系列| 国产三级黄色录像| 在线观看免费高清a一片| 国产高清不卡午夜福利| 老司机深夜福利视频在线观看 | 91国产中文字幕| 三上悠亚av全集在线观看| 国产精品秋霞免费鲁丝片| 免费黄频网站在线观看国产| 各种免费的搞黄视频| 午夜福利乱码中文字幕| 男女国产视频网站| 一二三四社区在线视频社区8| 亚洲,一卡二卡三卡| 国产高清不卡午夜福利| 免费在线观看视频国产中文字幕亚洲 | 午夜福利一区二区在线看| 久久影院123| 欧美老熟妇乱子伦牲交| 久久精品久久精品一区二区三区| 性高湖久久久久久久久免费观看| 精品卡一卡二卡四卡免费| 亚洲九九香蕉| 美女国产高潮福利片在线看| 亚洲人成电影观看| 999精品在线视频| 国产国语露脸激情在线看| 涩涩av久久男人的天堂| av网站在线播放免费| 考比视频在线观看| 人人澡人人妻人| 黄色一级大片看看| 王馨瑶露胸无遮挡在线观看| 国产伦人伦偷精品视频| 国产精品一区二区精品视频观看| 99国产精品一区二区蜜桃av | 精品人妻一区二区三区麻豆| 又粗又硬又长又爽又黄的视频| 欧美变态另类bdsm刘玥| 91老司机精品| 日韩制服丝袜自拍偷拍| 日本vs欧美在线观看视频| 日韩精品免费视频一区二区三区| 久久热在线av| 19禁男女啪啪无遮挡网站| 天天躁日日躁夜夜躁夜夜| 少妇裸体淫交视频免费看高清 | 亚洲av美国av| 免费一级毛片在线播放高清视频 | 欧美大码av| 欧美激情极品国产一区二区三区| 一本综合久久免费| 国产黄色免费在线视频| 免费在线观看影片大全网站 | 国产精品久久久久成人av| 欧美精品一区二区大全| 妹子高潮喷水视频| 午夜老司机福利片| 天天影视国产精品| 久久ye,这里只有精品| 亚洲中文av在线| 老司机亚洲免费影院| 中国美女看黄片| 18禁观看日本| 狂野欧美激情性xxxx| 91麻豆精品激情在线观看国产 | 首页视频小说图片口味搜索 | av一本久久久久|