• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Self-Management of Low Back Pain Using Neural Network

    2021-12-14 03:51:06PurushottamSharmaMohammedAlshehriRichaSharmaandOsamaAlfarraj
    Computers Materials&Continua 2021年1期

    Purushottam Sharma,Mohammed Alshehri,Richa Sharma and Osama Alfarraj

    1ASET,Amity University Uttar Pradesh,Noida,201301,India

    2Department of Information Technology,College of Computer and Information Sciences,Majmaah University,Majmaah,11952,Saudi Arabia

    3Computer Science Department,Community College,King Saud University,Riyadh,Saudi Arabia

    Abstract:Low back pain(LBP)is a morbid condition that has afflicted several citizens in Europe.It has negatively impacted the European economy due to several man-days lost,with bed rest and forced inactivity being the usual LBP care and management steps.Direct models,which incorporate various regression analyses,have been executed for the investigation of this premise due to the simplicity of translation.However,such straight models fail to completely consider the impact of association brought about by a mix of nonlinear connections and autonomous factors.In this paper,we discuss a system that aids decision-making regarding the best-suited support system for LBP,allowing the individual to avail of reinforcement and improvement in its self-management.These activities are monitored with the help of a wearable sensor that helps in their detection and their classification as those that soothe or aggravate LBP and hence,should or should not be performed.This system helps the patients set their own boundaries and milestones with respect to suitable activities.This system also does windowing and feature extraction.The present study is an empirical and comparative analysis of the most suitable activities that patients suffering from low back pain can select.The evaluation shows that the system can distinguish between nine common daily activities effectively and helps self-monitor these activities for the efficient management of LBP.

    Keywords:Low back pain;neural networks;sensor;classification;time series

    1 Introduction

    Low back pain[LBP][1]is the most common health problem in all age groups.At one point or the other,as many as 90% people have suffered from this disorder.LBP is more pervasive in European nations as compared to other countries.The foremost condition in nonspecific LBP is seen in primary care.Mostly,general practitioners observe the muscular-skeletal situation and advise bed rest,resulting in man-days lost and loss to the economy.The cost to economies due to low back pain has been estimated in different studies.As per one study,the cost is around 1.65–3.22% of all health expenditures[2],and as per another,it is 0.4–1.2% of GDP in the European Union[3].The cost,which is indirect due to substantial absence from work,has been approximately$50 billion in the USA and around$11 billion in the U.K.With bed rest and forced inactivity observed at the individual level,LBP is largely managed within the comforts of one’s home.A carefully selected list of dos and don’ts,including stretching exercises for strengthening,are recommended to avoid long time inactivity.

    This model allows users to be aware of their activities[4],and helps manage them[5]by consulting with a specialist doctor so that proper action can be taken once the analysis is done.The data is recorded with a wearable sensor,which helps in the detection of the actions performed by the individual.The activities are recognized in real-time and the model shows how the system records information about the events.The patients are also advised not to be sedentary for an extended period.The notification regarding the activities is sent to alert the user.

    The routine activities are recorded and summarized at the end of the day.In these records,the duration of operations and the counts of steps are included.Then these recorded activities are compared to the recommended exercises.Finally,feedback is generated to inform the user about his activities.

    2 Activity Recognition Exploration

    Recognition of sensor-based activities is gaining heightened interest in the area of fitness.Sensor data can help in computing various physical activities[6–9]of an individual.A sensor is worn around a person’s wrist,and the input is received from the tri-axial accelerometer.These technologies are designed to motivate people about physical health.It can be a creative way to encourage physical activities[10]and make individuals more aware of their everyday physical actions,with the aim of health improvement.The system provides guidelines based on the analysis of a person’s daily activities according to his back pain situation.It helps by alerting the individuals with respect to activities that should or should not be performed.Tri-axial features of the accelerometer sensor measure the changes in acceleration in 3D space.

    For accurate activity recognition,some of the sensors include accelerometers,magnetometers,and gyroscopes.While the gyroscope and accelerometer are quite efficacious for the recognition of activities when used individually,the magnetometer is not quite.Other sensors are used to measure heart rate,light and temperature.Hence,all these are used in conjugation with the accelerometer rather than independently.

    The combination of accelerometer and sensor types is placed at different points.Some of the studies have also proposed the use of accelerometer multiplicity.Outside the laboratory,settings have a minimal practical use.Some improvements have been reported by the use of multiple sensors for activity recognition[11],which have not justified the inconvenience yet.The use of an accelerometer is explicable because of the point where it is placed[12].Thigh,hip,back,wrist,and ankle are examples of these body points.The wrist is considered to be the position where the highest accuracy has been reported for ambulation and upper body activities.Hence,this location was chosen for our system.There are several approaches for extracting data,including extraction statistics like mean,standard deviation,and percentiles.The frequency feature,which is derived by applying the fast fourier transforms(FFT)to the raw data,is transformed into information.

    Further steps are required after the results of FFT coefficients to ensure reliable results.Application of discrete cosine transform(DCT)to the raw accelerometer data as a feature has been reported.

    3 Data Collection

    The Selfback[13]dataset is an activity recognition[14,15]system that allows 9 activity sets,which have been recorded by the accelerometer,including 6 ambulatory and 3 sedentary activities.These were performed by 33 participants who volunteered from Sadiq Sani,Nirmalie Wiratunga,Kay Cooper Robert Gordon University,Aberdeen,U.K.,the data donated on 2020-06-15.

    Data were recorded with two tri-axial accelerometers sampling at 100 Hz,mounted on the dominant side wrist,and the thigh of the participants.Activity AX3 3-Axis Logging Accelerometer Sensors were used with a sampling frequency of 100 Hz range.Each participant performed an activity for approximately 3 min.The dataset had a sensor modality named“w”for wrist and“t”for thigh,with an additional one where two sensor modalities were merged using timestamp named“wt”for wrist and thigh.Data collection concentrated on the activities provided in Tab.1.

    Table 1:Details of activities used in the data collection script

    It is represented as the range of healthy activities performed by most people.The measurements of strolling,normal or fast,were recorded for the accurate estimation of the intensity of the activities performed by the user.The intensity of the activities was essential to measure because it helps to provide the necessary guidelines.The participant was guided for activities like sitting and lying.The study suggested the duration of each activity for the individual.It also detailed the position of hands,either on the desk or not.

    4 Activity Monitoring Using Feedforward Artificial Neural Network

    The model of the artificial neuron was proposed by McCulloch and Pitts,generalized later in several ways[16].The most popular approach is:the neuron computes the weighted sum ofninputs,adds a threshold value,and then applies an activation function to the result to compute the output,as shown in Fig.1.

    Figure 1:Artificial neuron

    The neuron computes the weighted sum ofninputs,adds a threshold value,and then applies an activation function to the result to compute the output as per Eq.(1).

    The most commonly used activation function is the sigmoid function,defined as Eq.(2).

    The nonlinearity of this function is essential for the robustness of the neural networks model.Also,the function scales the output within the 0–1 range.

    The previously described perceptron can classify only linear separable input vectors(XOR being the classic counterexample).It has been proven since 1969 by Minsky and Papert,with declining research interest in the field of neural networks.In order to solve the problem,a multilayer perceptron was used,but it was not known how to update the weights of hidden(intermediate)layers.The updating rule for the weights(briefly described below)was discovered in the late 80s,forming the basis of the boom in the field of neural networks.

    The majorly used architecture for neural networks is the multilayer perceptron,where each neuron is connected to all the neurons from the previous layer.The only exception is the first layer,whose units only repeat their inputs.In Fig.2,we exemplify the most common approach,with one single hidden layer(proven theoretically to be enough).

    Figure 2:Architecture for neural networks is the multilayer perceptron

    In the forward step,Eq.(1)is applied for each neuron,first for the hidden layer[17]and then for the output layer(therefore,the name “feedforward”)to obtain the output value.In the case of supervised learning,we also have the desired output for each input vector.Therefore,the representation error E that appears can also be computed(defined as standard Euclidian distance between obtained output and desired output vectors).The learning rule falls in the category of “error-correction rules”.The most general rule to update a weight w(from any layer)is given in Eq.(3).

    where E is the error(as a function of w),and η is the learning rate.The evolution is opposite to the gradient of the error,thereby decreasing the error.Even if not plausible from the biological point of view,it looks like the error propagates back through the network(in the backward step)and updates the weights,hence the name“backpropagation”for the learning algorithm.The forward and backward steps are repeated until the error is reduced sufficiently.Sometimes,to increase the chance of finding the global minima,a(selectable)fraction of Δw from the previous step of the learning is added to the Δw for the current step(the added part known as the momentum term)[18].

    Results achieved through the multilayer perceptron are given in this section.The weights and the threshold values for different sigmoid nodes are also given in Tabs.2 and 3.

    Table 2:Generated sigmoid node and threshold values

    Table 2(continued).Sigmoid node(S-N)sequence and threshold(T-Val)N 11 -1.4561922110146552 N 12-18.78096489950652 N 13-2.9191588951090046 N 14 1.78184151885978 N 15-0.08521766723856897 S-N 8 I/P Wts T-Val-2.280067316403469 N 9-3.00694430443101 N 10-5.630524700566642 N 11 6.120545311246614 N 12-21.77102674682948 N 13 5.376857689397377 N 14-5.4504376117556 N 15-5.992858032642883 S-N 10 I/P Wts T-Val 27.87864439848664 Attrib wx-25.857197174213802 Attrib wy-24.768250120960065 Attrib wz-37.00897772120666 Attrib tx-9.713736604963287 Attrib ty 7.5389281669280495 Attrib tz 3.354351987092661 S-N 12 I/P Wts T-Val-17.586427062920226 Attrib wx 5.236026830914749 Attrib wy 19.5929319547359 Attrib wz 13.012599400423708 Attrib tx 4.700606965848229 Attrib ty 2.1231907088192217 Attrib tz-0.748942302544866 S-N 14 I/P Wts T-Val 18.50521733494853 Attrib wx-13.272652491852877 Attrib wy-1.6669852816897677 Attrib wz 12.20246514966949 Attrib tx-28.571971576327414 Attrib ty-7.798505842578719 Attrib tz 3.96607061473986 Sigmoid node(S-N)sequence and threshold(T-Val)N 11 -1.3436739564800178 N 12-6.493538361124438 N 13-2.9401355125416946 N 14 1.2708817589176264 N 15-0.008487523838406794 S-N 9 I/P Wts T-Val-27.50949584354017 Attrib wx 27.824156487013685 Attrib wy -16.74963345106254 Attrib wz -9.625501893706762 Attrib tx 27.593407326118513 Attrib ty -1.8724429134899527 Attrib tz 4.9366154643637135 S-N 11 I/P Wts T-Val 10.879232571083461 Attrib wx -15.796837792855493 Attrib wy -10.130153972943651 Attrib wz 11.45771252876167 Attrib tx -0.34741485418887375 Attrib ty 4.799025768096919 Attrib tz 2.536084639149846 S-N 13 I/P Wts T-Val 6.854179912026374 Attrib wx -14.674138680184198 Attrib wy 3.2816039534582555 Attrib wz -16.157352183942315 Attrib tx -3.8835280205637757 Attrib ty 2.3696756210131125 Attrib tz -1.6135802856667423 S-N 15 I/P Wts T-Val-9.301346344012737 Attrib wx -10.611612051247352 Attrib wy -6.041422454318928 Attrib wz 2.821496492368933 Attrib tx 15.292478795727945 Attrib ty 15.746323743844673 Attrib tz -12.918838986016103

    Table 3:Class input node details

    @attribute wx real[-1.203125,0.109375]

    @attribute wy real[-1.84375,-0.140625]

    @attribute wz real[-0.0625,1.03125]

    @attribute tx real[-3.1875,-0.109375]

    @attribute ty real[-1.828125,0.796875]

    @attribute tz real[-1.46875,0.96875]

    @attribute Class

    The critical thought is to assemble a partial decision tree rather than an entirely investigated one[19,20].An incomplete choice tree is a standard choice tree that contains branches to indistinct sub-trees.In order to create such a tree,the development and pruning activities are coordinated to locate a“steady”sub-tree that can be rearranged no further[21].Once the sub-tree is discovered,tree-building stops and a solitary standard is perused off.

    Some partial rules[15,16]generated by the model with respect to different classes are listed below:

    wy >-0.203125 AND wy>-0.078125:sitting(1002.0)

    wx >0.03125:lying(1001.0)

    wz >0.53125 AND wy>-0.734375 AND wx>-0.90625 AND wy>-0.65625:jogging(894.0)

    tz >0.21875 AND tx <= -0.9375 AND tx >-1 AND ty >-0.140625 AND ty <= 0 AND wy <=-0.765625 AND wx>-0.59375 AND wz>0.234375 AND wy<=-0.796875:standing(938.0/1.0)

    wy>-0.609375 AND wz<=0.3125 AND tx>-0.9375 AND wx>-0.359375 AND wy>-0.546875:downstairs(37.0)

    wy>-0.609375 AND wz<=0.3125 AND tx>-0.953125 AND wx>-0.359375 AND tz>-0.203125:downstairs(10.0/1.0)

    wy >-0.609375 AND wz<=0.3125 AND tx >-0.9375 AND ty <=-0.28125 AND wx <=-0.375:downstairs(33.0/1.0)

    wy >-0.609375 AND wz <= 0.3125 AND tx >-0.953125 AND wz <= -0.078125 AND tz <=0.203125:downstairs(19.0)

    wy >-0.609375 AND wz <= 0.3125 AND tx >-0.953125 AND tx <= -0.65625 AND wx <=-0.34375 AND ty<=0.375 AND ???wx>-0.8125 AND tz>-0.25 AND wy<=-0.53125:upstairs(35.0)

    wy>-0.625 AND wz<=0.296875 AND tx>-0.953125 AND wx>-0.359375 AND tx<=-0.5625:walk_fast(3.0)

    5 Monitoring Evaluation

    To evaluate the performance of the model,self-back dataset utilized the data of 33 participants and when we combined the wrist and thigh modalities together,every object was found to contain approximately 7000 transactions.Thus,total transactions were 33 * 7000 = 231000 per activity,with total 9 activities available.Therefore,the total transactions came out to be 231000 * 9 = 2079000.A sample of this dataset was used to evaluate the performance.

    The monitoring model evaluated on different types of parameters and the measurement[22]are as follows

    5.1 Monitoring Accuracy by Class

    TP RateFP RatePrecisionRecallF-MeasureROC AreaClass 0.7450.0260.7830.7450.7630.894downstairs 0.9760.0020.9810.9760.9780.989jogging 1 0 0.999111lying 1 0 0.999111sitting 0.9870.0030.9760.9870.9820.995standing 0.7320.0350.7220.7320.7270.882upstairs 0.6080.0490.6070.6080.6080.841walk_fast 0.6050.0490.6070.6050.6060.842walk_mod 0.7620.0330.7420.7620.7520.886walk_slow Weighted Avg.0.8240.0220.8240.8240.8240.925

    5.2 Confusion Matrix

    abcdefGhi<–classified as 74413010111613930| a= downstairs 99761004316| b= jogging 001001000000| c= lying 000100200000| d= sitting 000098802110| e= standing 1002001733556347| f=upstairs 4610046360920276| g= walk_fast 2310085621160696| h= walk_mod 2820011486287763| i=walk_slow

    Figure 3:Class distribution in 3-axis accelerometer logging wrist x value

    Figure 4:Class distribution in 3-axis accelerometer logging wrist y value

    Figure 5:Class distribution in 3-axis accelerometer logging wrist z value

    Figure 6:Class distribution in 3-axis accelerometer logging thigh x value

    Figure 7:Class distribution in 3-axis accelerometer logging thigh y value

    Figure 8:Class distribution in 3-axis accelerometer logging thigh z value

    Figure 9:Class distribution in a dataset of a participant

    Figure 10:Class distribution with respect to 3-axis accelerometer logging wrist x value

    Figure 11:Class distribution concerning 3-axis accelerometer logging wrist y value

    Figure 12:Class distribution concerning 3-axis accelerometer logging wrist z value

    Figure 13:Class distribution concerning 3-axis accelerometer logging thigh x value

    Figure 14:Class distribution concerning 3-axis accelerometer logging thigh y value

    Figure 15:Class distribution concerning 3-Axis Accelerometer Logging thigh z value

    6 Conclusion

    This paper focuses on activity monitoring and recognition in the self-management of low back pain using artificial neural networks.This system helps in providing guidelines about the activities to be performed.It also helps to monitor these activities.The input is sent to the model through the wrist and thigh sensors.Activity is monitored from the parameter values achieved using a feedforward Artificial Neural Network.Different sigmoid nodes have been generated for accurately classifying the activity modalities.Partial classification rules have also been generated for productive activity classification.More than 250 rules have been generated,few of which have been included in this paper.Monitoring evaluation shows different evaluation parameters and the system performance,including Kappa statistic,mean absolute error,and root mean squared error.Class-wise accuracy is also monitored,and results show improved efficiency of the system.

    7 Future Work

    Future research needs to investigate procedures for perceiving a more significant arrangement of dynamic exercises utilizing continuous learning and semi-managed approaches.More number of sensors need to be used to measure movement activities accurately.A fine balance needs to be struck between the quantity and quality of sensors,and their impacts on the human body in detail,given the sensitivity of employing human subjects directly in such examinations.

    8 Class Distribution and Analysis of 3-Axis Accelerometer Logging

    The analysis of the dataset has been represented in this section through Figs.3–15 to get efficient results and class distribution in the wrist and thigh accelerometer sensors.

    Acknowledgement:The authors would like to express their heartfelt thanks to the editors and anonymous referees for their most valuable comments and constructive suggestions,which led to significant improvements in the earlier version of the manuscript.

    Funding Statement:The authors extend their appreciation to the Deanship of Scientific research at Majmaah University for funding this work under project No.RGP-2019-26.

    Con icts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    av电影中文网址| 免费黄色在线免费观看| 在线观看人妻少妇| 欧美日韩综合久久久久久| 午夜av观看不卡| av又黄又爽大尺度在线免费看| 亚洲色图综合在线观看| 麻豆精品久久久久久蜜桃| 日本欧美视频一区| 99国产综合亚洲精品| 国产熟女午夜一区二区三区| 天美传媒精品一区二区| 九色亚洲精品在线播放| avwww免费| 免费观看人在逋| 又大又黄又爽视频免费| 最近中文字幕高清免费大全6| 2021少妇久久久久久久久久久| 伊人久久大香线蕉亚洲五| 男女床上黄色一级片免费看| 亚洲人成电影观看| 久久热在线av| 国产精品久久久久久精品古装| 少妇被粗大的猛进出69影院| 男女免费视频国产| 狂野欧美激情性xxxx| 嫩草影院入口| 高清在线视频一区二区三区| 大陆偷拍与自拍| 在线观看免费午夜福利视频| 一二三四中文在线观看免费高清| 韩国av在线不卡| 精品视频人人做人人爽| 欧美精品人与动牲交sv欧美| 亚洲国产中文字幕在线视频| 最近的中文字幕免费完整| 国产xxxxx性猛交| 国产精品av久久久久免费| 免费在线观看黄色视频的| 9色porny在线观看| 999精品在线视频| 亚洲人成网站在线观看播放| 日韩一本色道免费dvd| 熟女少妇亚洲综合色aaa.| 99久国产av精品国产电影| 丁香六月天网| 黄频高清免费视频| 久久久精品94久久精品| 麻豆精品久久久久久蜜桃| 热99久久久久精品小说推荐| 这个男人来自地球电影免费观看 | 成人午夜精彩视频在线观看| 免费高清在线观看视频在线观看| 欧美日韩视频高清一区二区三区二| 日韩一区二区三区影片| 亚洲精品美女久久久久99蜜臀 | 精品午夜福利在线看| 高清欧美精品videossex| 波多野结衣av一区二区av| 欧美日韩亚洲综合一区二区三区_| 亚洲国产av新网站| 不卡av一区二区三区| 少妇精品久久久久久久| av网站免费在线观看视频| 欧美日韩亚洲国产一区二区在线观看 | 欧美日韩视频精品一区| 久久国产亚洲av麻豆专区| 女的被弄到高潮叫床怎么办| 人体艺术视频欧美日本| 熟女少妇亚洲综合色aaa.| 下体分泌物呈黄色| 高清视频免费观看一区二区| 哪个播放器可以免费观看大片| 精品少妇久久久久久888优播| 亚洲av综合色区一区| 欧美黄色片欧美黄色片| 操出白浆在线播放| 国产成人免费无遮挡视频| 三上悠亚av全集在线观看| 国产在线视频一区二区| 性少妇av在线| 亚洲国产精品成人久久小说| 日韩欧美一区视频在线观看| 日本av免费视频播放| 久久99热这里只频精品6学生| 超碰97精品在线观看| 啦啦啦 在线观看视频| 又大又黄又爽视频免费| 中文乱码字字幕精品一区二区三区| 日韩 欧美 亚洲 中文字幕| 国产女主播在线喷水免费视频网站| 一边亲一边摸免费视频| 性色av一级| 在线精品无人区一区二区三| 日日撸夜夜添| 久久久久国产精品人妻一区二区| 日韩,欧美,国产一区二区三区| av免费观看日本| 久久国产亚洲av麻豆专区| 亚洲av在线观看美女高潮| 亚洲av电影在线进入| 成人国产av品久久久| 99国产综合亚洲精品| 狂野欧美激情性xxxx| av女优亚洲男人天堂| 人妻 亚洲 视频| 亚洲激情五月婷婷啪啪| 国产免费视频播放在线视频| av线在线观看网站| 美女脱内裤让男人舔精品视频| 少妇的丰满在线观看| 成年人午夜在线观看视频| 80岁老熟妇乱子伦牲交| 久久精品亚洲av国产电影网| 男男h啪啪无遮挡| 新久久久久国产一级毛片| 肉色欧美久久久久久久蜜桃| 国产日韩一区二区三区精品不卡| 老熟女久久久| 电影成人av| 久久久久精品国产欧美久久久 | 9色porny在线观看| 国产野战对白在线观看| 午夜日本视频在线| 国精品久久久久久国模美| av线在线观看网站| 麻豆av在线久日| 精品一区二区三区av网在线观看 | 伊人亚洲综合成人网| 中文字幕最新亚洲高清| av线在线观看网站| 亚洲精品视频女| 综合色丁香网| 欧美精品高潮呻吟av久久| 天天操日日干夜夜撸| 久久久久精品国产欧美久久久 | 日本av手机在线免费观看| 男人舔女人的私密视频| 中文天堂在线官网| 久久国产亚洲av麻豆专区| 一个人免费看片子| 亚洲欧美精品自产自拍| 欧美日韩视频高清一区二区三区二| 免费黄网站久久成人精品| 国产伦人伦偷精品视频| 青青草视频在线视频观看| 伊人久久大香线蕉亚洲五| 免费观看av网站的网址| 久久久久久久精品精品| 国产免费又黄又爽又色| 最新的欧美精品一区二区| 日本爱情动作片www.在线观看| 精品亚洲乱码少妇综合久久| 亚洲av中文av极速乱| 精品少妇久久久久久888优播| 极品少妇高潮喷水抽搐| 免费人妻精品一区二区三区视频| 一区二区三区乱码不卡18| 久久狼人影院| 欧美日韩一级在线毛片| a 毛片基地| 欧美黑人欧美精品刺激| 日韩中文字幕视频在线看片| 热re99久久精品国产66热6| 看十八女毛片水多多多| 亚洲欧洲精品一区二区精品久久久 | 久久亚洲国产成人精品v| 91aial.com中文字幕在线观看| av国产精品久久久久影院| 最近中文字幕高清免费大全6| 91精品国产国语对白视频| 少妇精品久久久久久久| 婷婷色综合大香蕉| 狂野欧美激情性bbbbbb| 亚洲人成77777在线视频| 午夜久久久在线观看| 蜜桃国产av成人99| 交换朋友夫妻互换小说| netflix在线观看网站| 一区福利在线观看| 哪个播放器可以免费观看大片| 中文字幕高清在线视频| 国产精品香港三级国产av潘金莲 | 电影成人av| 国产高清国产精品国产三级| 国产乱来视频区| 人妻一区二区av| 欧美人与性动交α欧美精品济南到| 久久久久久久精品精品| 亚洲av成人不卡在线观看播放网 | 热re99久久国产66热| 欧美日韩亚洲高清精品| 黑丝袜美女国产一区| 一本色道久久久久久精品综合| 精品国产国语对白av| 亚洲av在线观看美女高潮| 免费高清在线观看日韩| 成人国产麻豆网| 精品一区二区三区av网在线观看 | 色婷婷久久久亚洲欧美| 欧美亚洲日本最大视频资源| 国产激情久久老熟女| 美女福利国产在线| 国产日韩欧美视频二区| 午夜福利一区二区在线看| 亚洲国产欧美一区二区综合| 亚洲一级一片aⅴ在线观看| 天美传媒精品一区二区| 亚洲欧美中文字幕日韩二区| 天天躁狠狠躁夜夜躁狠狠躁| 黄色视频不卡| 亚洲美女黄色视频免费看| 国产视频首页在线观看| 男人爽女人下面视频在线观看| 国产一区有黄有色的免费视频| 捣出白浆h1v1| 欧美精品一区二区免费开放| √禁漫天堂资源中文www| 精品国产国语对白av| 高清在线视频一区二区三区| 成年人免费黄色播放视频| 国产精品无大码| 成人漫画全彩无遮挡| 性色av一级| 女人久久www免费人成看片| 看非洲黑人一级黄片| av卡一久久| 亚洲精品一区蜜桃| 国产在线免费精品| 在线观看免费午夜福利视频| av卡一久久| 乱人伦中国视频| 女性生殖器流出的白浆| 婷婷色麻豆天堂久久| 高清av免费在线| 午夜福利影视在线免费观看| 一个人免费看片子| 国产高清不卡午夜福利| 一区二区av电影网| 精品少妇内射三级| 极品少妇高潮喷水抽搐| 色网站视频免费| 极品人妻少妇av视频| 在线观看免费高清a一片| 亚洲国产成人一精品久久久| 捣出白浆h1v1| 少妇人妻久久综合中文| 中文字幕高清在线视频| 国产日韩欧美亚洲二区| 欧美日韩一级在线毛片| 啦啦啦啦在线视频资源| 国产黄色免费在线视频| 久久久久精品性色| 亚洲av电影在线进入| 丰满迷人的少妇在线观看| 国产日韩欧美在线精品| 日日撸夜夜添| www.自偷自拍.com| 最黄视频免费看| 欧美精品亚洲一区二区| 亚洲国产精品一区二区三区在线| 久久国产亚洲av麻豆专区| 久久久精品免费免费高清| 国产成人免费观看mmmm| 嫩草影视91久久| 国产精品偷伦视频观看了| 我要看黄色一级片免费的| 国产在线视频一区二区| 精品一区二区三区av网在线观看 | 最近中文字幕2019免费版| 久久久久久久久免费视频了| 欧美变态另类bdsm刘玥| 国产精品免费大片| 国产野战对白在线观看| 欧美97在线视频| 亚洲第一区二区三区不卡| 黄色毛片三级朝国网站| 久久精品国产亚洲av涩爱| 久久久国产一区二区| av线在线观看网站| 操出白浆在线播放| 悠悠久久av| 1024视频免费在线观看| 欧美精品亚洲一区二区| 天天操日日干夜夜撸| 亚洲国产最新在线播放| 国产精品.久久久| 中国国产av一级| 国产xxxxx性猛交| 亚洲成人手机| 日韩一区二区三区影片| 麻豆av在线久日| 99久国产av精品国产电影| 久久精品人人爽人人爽视色| 国产99久久九九免费精品| av视频免费观看在线观看| 久久这里只有精品19| 婷婷成人精品国产| 国产精品成人在线| 久久久久国产精品人妻一区二区| 国产免费福利视频在线观看| 亚洲欧美清纯卡通| 人体艺术视频欧美日本| 丰满少妇做爰视频| 十八禁网站网址无遮挡| 黄色怎么调成土黄色| 午夜福利一区二区在线看| 中文字幕色久视频| tube8黄色片| 国产国语露脸激情在线看| 丰满饥渴人妻一区二区三| 电影成人av| 热99国产精品久久久久久7| 久久国产精品大桥未久av| 久久97久久精品| 免费在线观看完整版高清| www.精华液| 免费少妇av软件| av片东京热男人的天堂| 亚洲国产精品国产精品| 精品国产一区二区久久| 999久久久国产精品视频| 如日韩欧美国产精品一区二区三区| 秋霞在线观看毛片| 十八禁人妻一区二区| 最近2019中文字幕mv第一页| 久久天躁狠狠躁夜夜2o2o | 亚洲精品一区蜜桃| 日韩制服骚丝袜av| 精品亚洲乱码少妇综合久久| 亚洲欧洲国产日韩| 自线自在国产av| 观看av在线不卡| 国产精品一二三区在线看| 亚洲精品日韩在线中文字幕| 秋霞在线观看毛片| av在线观看视频网站免费| 一二三四在线观看免费中文在| 久久精品国产亚洲av高清一级| 午夜91福利影院| 久久久久久久久久久免费av| 少妇猛男粗大的猛烈进出视频| 十八禁网站网址无遮挡| 国产99久久九九免费精品| 男女床上黄色一级片免费看| 久久久久久久精品精品| www.av在线官网国产| 亚洲精品久久午夜乱码| 久久鲁丝午夜福利片| 校园人妻丝袜中文字幕| 岛国毛片在线播放| 精品少妇内射三级| 黄色一级大片看看| 我的亚洲天堂| 亚洲国产精品999| 亚洲精品国产色婷婷电影| 日韩欧美一区视频在线观看| av一本久久久久| 美女午夜性视频免费| 大码成人一级视频| 精品视频人人做人人爽| 激情五月婷婷亚洲| 欧美黄色片欧美黄色片| 日本爱情动作片www.在线观看| 亚洲成av片中文字幕在线观看| 成人漫画全彩无遮挡| 亚洲第一青青草原| 日韩成人av中文字幕在线观看| 欧美黑人欧美精品刺激| 亚洲色图综合在线观看| 人人妻人人澡人人爽人人夜夜| 黄色毛片三级朝国网站| 亚洲中文av在线| 黄色怎么调成土黄色| 国产伦理片在线播放av一区| 久久午夜综合久久蜜桃| 99国产精品免费福利视频| 天堂8中文在线网| 国产不卡av网站在线观看| 国产视频首页在线观看| 亚洲成av片中文字幕在线观看| 综合色丁香网| 国产一区二区激情短视频 | 亚洲欧洲日产国产| 亚洲成人国产一区在线观看 | 国产精品一区二区精品视频观看| 这个男人来自地球电影免费观看 | bbb黄色大片| 国产欧美日韩一区二区三区在线| 日本wwww免费看| 国产深夜福利视频在线观看| 一本色道久久久久久精品综合| 亚洲欧美色中文字幕在线| 国产成人欧美在线观看 | 免费观看av网站的网址| 王馨瑶露胸无遮挡在线观看| 狠狠婷婷综合久久久久久88av| 中文字幕精品免费在线观看视频| 国产成人精品无人区| 久久久久精品性色| av在线观看视频网站免费| 免费看av在线观看网站| av福利片在线| 亚洲国产精品国产精品| 777米奇影视久久| 日韩 欧美 亚洲 中文字幕| 日本猛色少妇xxxxx猛交久久| 两个人免费观看高清视频| 久久ye,这里只有精品| 久久亚洲国产成人精品v| 黄片播放在线免费| 久久久久久久久久久免费av| 一本大道久久a久久精品| 高清黄色对白视频在线免费看| 国产 精品1| 汤姆久久久久久久影院中文字幕| 亚洲国产欧美日韩在线播放| 日本wwww免费看| 在线观看人妻少妇| 国产精品人妻久久久影院| 国产淫语在线视频| 青春草亚洲视频在线观看| 人妻一区二区av| av国产精品久久久久影院| 90打野战视频偷拍视频| 欧美国产精品va在线观看不卡| 国产精品久久久久久人妻精品电影 | 欧美变态另类bdsm刘玥| 人人妻人人添人人爽欧美一区卜| 伦理电影大哥的女人| 日韩欧美精品免费久久| 国产精品久久久久久人妻精品电影 | 国产精品.久久久| 丰满少妇做爰视频| 男的添女的下面高潮视频| 在线免费观看不下载黄p国产| 十八禁人妻一区二区| 老司机靠b影院| 亚洲国产av影院在线观看| 国产一区有黄有色的免费视频| 亚洲精品国产一区二区精华液| 亚洲人成网站在线观看播放| 免费观看性生交大片5| 波野结衣二区三区在线| 色婷婷久久久亚洲欧美| 欧美日韩成人在线一区二区| 午夜精品国产一区二区电影| 午夜福利免费观看在线| 观看美女的网站| 精品亚洲成a人片在线观看| 亚洲综合色网址| 80岁老熟妇乱子伦牲交| 日本av手机在线免费观看| 午夜福利免费观看在线| 国产老妇伦熟女老妇高清| 麻豆av在线久日| 国产成人欧美| 国产成人免费观看mmmm| 久久久精品免费免费高清| 人人澡人人妻人| 女性生殖器流出的白浆| 色婷婷久久久亚洲欧美| 一区二区三区精品91| 天天躁夜夜躁狠狠躁躁| 中文字幕色久视频| 熟女av电影| 国产1区2区3区精品| 精品国产露脸久久av麻豆| 久久久久网色| 欧美精品一区二区免费开放| 伊人久久国产一区二区| 日本猛色少妇xxxxx猛交久久| 久久亚洲国产成人精品v| 黑人猛操日本美女一级片| 国产日韩欧美在线精品| www.精华液| 男女床上黄色一级片免费看| 午夜91福利影院| 精品福利永久在线观看| 美女视频免费永久观看网站| 欧美日韩福利视频一区二区| 久久久久国产精品人妻一区二区| 亚洲一区二区三区欧美精品| 久久久久久久大尺度免费视频| 哪个播放器可以免费观看大片| 啦啦啦啦在线视频资源| 中文字幕人妻熟女乱码| 搡老岳熟女国产| 国产高清国产精品国产三级| 90打野战视频偷拍视频| 欧美日韩av久久| 亚洲色图 男人天堂 中文字幕| 黑人巨大精品欧美一区二区蜜桃| 日本猛色少妇xxxxx猛交久久| 亚洲成av片中文字幕在线观看| 9191精品国产免费久久| 一级片免费观看大全| 国产精品久久久久久久久免| 一本—道久久a久久精品蜜桃钙片| 一区福利在线观看| 久久精品久久精品一区二区三区| 亚洲第一区二区三区不卡| 日韩一区二区三区影片| 极品人妻少妇av视频| 日韩一区二区视频免费看| 校园人妻丝袜中文字幕| 精品免费久久久久久久清纯 | 一区二区日韩欧美中文字幕| 看免费av毛片| 国产伦人伦偷精品视频| 久久久精品区二区三区| 一级毛片 在线播放| 午夜福利一区二区在线看| 亚洲精品av麻豆狂野| 男女之事视频高清在线观看 | 丝瓜视频免费看黄片| 午夜激情久久久久久久| 99国产精品免费福利视频| 日韩免费高清中文字幕av| 亚洲精品日韩在线中文字幕| 乱人伦中国视频| 免费av中文字幕在线| av有码第一页| 水蜜桃什么品种好| 99热国产这里只有精品6| 日韩电影二区| 日日摸夜夜添夜夜爱| 最近最新中文字幕大全免费视频 | 99国产精品免费福利视频| 日韩免费高清中文字幕av| 欧美亚洲 丝袜 人妻 在线| 亚洲伊人色综图| www.精华液| 大香蕉久久网| 黄色视频在线播放观看不卡| 美女主播在线视频| 久久精品熟女亚洲av麻豆精品| 国产av国产精品国产| 男女免费视频国产| 晚上一个人看的免费电影| 色综合欧美亚洲国产小说| 日本黄色日本黄色录像| 男人爽女人下面视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产看品久久| 高清不卡的av网站| 中文天堂在线官网| 九九爱精品视频在线观看| 国产成人啪精品午夜网站| 五月开心婷婷网| 丝袜脚勾引网站| 操出白浆在线播放| 国产av一区二区精品久久| 国产成人a∨麻豆精品| 久久99一区二区三区| 亚洲成人一二三区av| 大码成人一级视频| 国产欧美亚洲国产| 欧美日韩av久久| 亚洲美女视频黄频| 蜜桃在线观看..| 欧美乱码精品一区二区三区| 欧美日韩成人在线一区二区| 一个人免费看片子| xxxhd国产人妻xxx| av网站免费在线观看视频| 三上悠亚av全集在线观看| 夫妻午夜视频| 亚洲成人av在线免费| 国产亚洲av高清不卡| 国产97色在线日韩免费| 在线精品无人区一区二区三| 五月天丁香电影| 精品国产乱码久久久久久小说| 久热这里只有精品99| 9191精品国产免费久久| 国产精品成人在线| 精品一区二区三卡| 国产成人a∨麻豆精品| 丝袜人妻中文字幕| 国产野战对白在线观看| 久久久久久久精品精品| 伊人亚洲综合成人网| 亚洲伊人色综图| 国产精品女同一区二区软件| 国产免费福利视频在线观看| 午夜精品国产一区二区电影| 伦理电影免费视频| 免费女性裸体啪啪无遮挡网站| 欧美成人精品欧美一级黄| 国产激情久久老熟女| 免费高清在线观看日韩| 一区二区三区激情视频| xxx大片免费视频| 大香蕉久久网| 99热全是精品| 精品久久蜜臀av无| 岛国毛片在线播放| 韩国av在线不卡| 国产精品人妻久久久影院| av有码第一页| 麻豆精品久久久久久蜜桃| 中文字幕色久视频| 女人久久www免费人成看片| 99热全是精品| av又黄又爽大尺度在线免费看| 国产探花极品一区二区| 人妻人人澡人人爽人人| 一级,二级,三级黄色视频| 亚洲av综合色区一区| 爱豆传媒免费全集在线观看| 美女高潮到喷水免费观看| 麻豆精品久久久久久蜜桃| 午夜激情久久久久久久| 老司机影院毛片|