• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Privacy-Preserving Recommendation Based on Kernel Method in Cloud Computing

    2021-12-14 03:50:36TaoLiQiQianYongjunRenYongzhenRenandJinyueXia
    Computers Materials&Continua 2021年1期

    Tao Li,Qi Qian,Yongjun Ren,Yongzhen Ren and Jinyue Xia

    1College of Artificial Intelligence,Nanjing University of Information Science and Technology,Nanjing,210044,China

    2College of Electronic and Information Engineering,Nanjing University of Information Science and Technology,Nanjing,210044,China

    3College of Computer and Software,Nanjing University of Information Science and Technology,Nanjing,210044,China

    4College of Electronic and Information Engineering,Nanjing University of Information Science and Technology,Nanjing,210044,China

    5International Business Machines Corporation(IBM),NY,USA

    Abstract:The application field of the Internet of Things(IoT)involves all aspects,and its application in the fields of industry,agriculture,environment,transportation,logistics,security and other infrastructure has effectively promoted the intelligent development of these aspects.Although the IoT has gradually grown in recent years,there are still many problems that need to be overcome in terms of technology,management,cost,policy,and security.We need to constantly weigh the benefits of trusting IoT products and the risk of leaking private data.To avoid the leakage and loss of various user data,this paper developed a hybrid algorithm of kernel function and random perturbation method based on the algorithm of non-negative matrix factorization,which realizes personalized recommendation and solves the problem of user privacy data protection in the process of personalized recommendation.Compared to non-negative matrix factorization privacy-preserving algorithm,the new algorithm does not need to know the detailed information of the data,only need to know the connection between each data;and the new algorithm can process the data points with negative characteristics.Experiments show that the new algorithm can produce recommendation results with certain accuracy under the premise of preserving users’personal privacy.

    Keywords:IoT;kernel method;privacy-preserving;personalized recommendation;random perturbation

    1 Introduction

    As an emerging product,the Internet of Things has a more complex architecture,no unified standards,and more prominent security issues.While providing various convenient services,it is inevitable that more and more detailed personal information needs to be provided in order to obtain better services.On the other hand,more and more personal information is made public,which makes human beings have no privacy.In particular,government agencies and public service agencies are increasingly publishing data containing personal information.Whether it is privacy in data distribution or location privacy in location services,the protection of users’ personal information is particularly important[1,2].To solve this problem,people use privacy protection technology to protect users’ information.But inevitably,more and more detailed personal information needs to be provided in order to get better and convenient services.Collaborative filtering can help with effective personalized recommendations[3,4].A personalized recommendation system is used to collect user ratings for projects and to search for users with similar interests to help users decide which product to buy[5–7].So far,there has been a lot of progress in personalization and privacy-preserving,and the relevant progress is as follows.

    Personalized recommendation is the technical support that the Internet relies on today.In 2014,Min et al.[8]proposed a model-based collaborative filtering method recommendation algorithm and it can avoid the impact of time factors.Gupta et al.[9]proposed a collaborative filtering prediction for demographics.In 2015,Zheng et al.[10]proposed an optimization algorithm that is the neighbor’s choice and predicted audience rating.In the same year,Xing et al.[11]applied the case-based reason to the mechanism filtering of the forgetting collaborative solution to the cold start problem,inferred the score of the user’s unsuccessful project,and then recommended the TOP-N collaborative filtering project.In 2016,Qin et al.[12]proposed a collaborative filtering recommendation algorithm for weighted project categories.In 2017,Li et al.[13]proposed a list of user item type ratings based on user-rated and collaborative filtering algorithms.Zayet et al.[14]proposed a new similarity measure weighting technique.In 2018,Yu et al.[15]developed an improved algorithm relied on historical order data for restaurants.Fan et al.[16]proposed a reliability-based similarity calculation metric.The two similarity predictions are combined to predict the user’s rating more accurately and improve the reliability of the similarity calculation.In 2019,Zhang et al.[17]proposed a novel algorithm named as Fuzzy Rough Set Theory Based Collaborative Filtering Algorithm,which is used to provide efficient advisory tools for the younger generation.In this year,Kumarl et al.[18]applied the Apriori algorithm to the field of ecommerce.Through the sales data in the transaction database to mine various interesting links between the products purchased by the customers,it can help merchants to formulate marketing strategies,reasonably arranges shelf-guided sales,and attracts more customers.In the same year,Zhang[19]proposed a novel service recommendation approach,which is designed for interactive scenario of service composition,and it mines the user implicit interests and the service correlations for service recommendation.

    In terms of privacy-preserving,in 2014,Wang et al.[20]proposed a privacy-preserving method that can be solved data mining.In 2015,Mochizuki et al.[21]proposed a method for updating similarity in privacy protection collaborative filtering.Zhu et al.[22]proposed a simple and effective framework for privacypreserving through application data interference technology.In 2016,Xia et al.[23]proposed a privacypreserving method that can encrypt images to avoid leaking sensitive information.Improved recommendation systems based on random interference technology is proposed to privacy-preserving and makes effective recommendations[24].In 2017,Yang et al.[25]protect user privacy by directly disrupting the original data set.Badsha et al.[26]proposed a privacy-based user-based CF technology based on homomorphic encryption,which can determine the similarity between users and then generate recommendations without revealing any private information.In 2018,Badsha et al.[27]developed a privacy protection protocol based on past history.

    Based on above-mentioned development of personalized recommendation and privacy protection,the personalized recommendation privacy protection technology in the current IoT mobile service is still in an early stage,and most of the results have not been discussed in an effective recommendation system for privacy protection[28,29].To make up for the shortcomings of the recommendation method in the existing IoT mobile service,this paper proposes a new core-based effective personalization algorithm.It effectively combines random perturbation techniques so that perturbed user data not only protects user privacy,but also enables effective personalized recommendation.

    The main idea of this paper is as follows.The related work section mainly introduces preliminary knowledge related to the new algorithm,including the basic idea kernel method.The third section gives the main steps of the new kernel method.The fourth section shows the results of experiment and analysis of relevant results.Finally,the fifth section summarizes this paper and briefly explains the follow-up research work arrangement.

    2 Related Works

    2.1 Non-Negative Matrix Factorization(NMF)

    NMF is to find a non-negative base-matrix and a coefficient-matrix,and it meet equation ofRWH.It makes all components after decomposition non-negative,and at the same time achieves a non-linear dimension reduction[30–32].It has good explanation of the local characteristics of things and it can be used to discover image features in the database,to facilitate rapid and automatic identification of applications;to discover the semantic relevance of documents for automatic indexing and extraction of information;to identify genes in DNA array analysis,and so on[33–36].

    The raw matrixRnmis decomposed into the product of two matricesWntandHtm:

    where the choice oftvalue usually satisfied(n+m)t<nm,the raw matrixRis compressed toWH.Each column in theRmatrix represents an observation,and each row represents a feature.By replacing the raw matrix with the coefficient matrixH,it is possible to obtain a dimensionality reduction matrix of the data features,thereby reducing the storage space[37–39].

    2.2 Kernel Non-Negative Matrix Factorization(KNMF)

    The literature[40–43]pointed out that kernel method mapping data by a kernel function.New space,then use non-negative matrix factorization for features extraction and analysis in new spaces.On the other hand,kernel method does not require knowledge of the details of the data,only the connection between each data,and finally,the kernel method can handle those data points with negative characteristics[44,45].

    Kernel method firstly performs data mapping:

    Then do the normal NMF in the new space:

    Because it does not know the specific mapping function,the paper need to use the kernel method to get:

    It is easy to see that the left side of the above equation is the definition of the kernel.The paper does not need to know the detailed mapping definitions,just need to know their inner product.The choice of kernel can make Gaussian kernel,polynomial kernel and so on.By replacing the above formula with a nuclear function,it can get:

    where,K=(?(R))T?(R),Y=(?(R))TW?

    Kernel function is to map data from low-dimensional to a new space,to facilitate the conversion of data that cannot be linearly segmented into data that can be linearly segmented,usually can be described as:

    It can be seen that the equation and the ordinary non-negative matrix factorization have the same representation,so the same method can be used for solving.

    Given a new matrixRnew,it can get a new coefficient matrix:

    where,Y-1=(W?)-1((?(R))T)-1,Knew=(?(R))T?(Rnew).

    3 Privacy Protection Personalized Recommendation Algorithm

    The new algorithm is mainly composed of two parts:The data privacy protection process and the data personalization recommendation process.The data protection process is mainly based on random interference technology to hide data;the personalized recommendation process of data is mainly based on the similarity between data to obtain personalized recommendation results.

    3.1 User Data Privacy-Preserving Process

    The flow diagram of privacy-preserving process of user data is shown in Fig.1.Privacy-preserving hides raw data through random perturbation techniques.The specific steps are as follows:

    Figure 1:Privacy protection process

    First,random perturbation techniques are used in the privacy-preserving of mining.An intuitive method is to add a number ofd,so thata+dappears in the database instead of the raw dataa,wheredis a random number obeying a certain distribution.Although we can do not specific operations on a single dataa,if we care about the entire database rather than a single data,then we can still perform the corresponding operations.The method is to randomly perturb the raw data,so that the database in the server saves the changed data instead of the raw data,thereby achieving the purpose of hiding information and privacy-preserving.

    Given a recommendation system withnitems,musers,for reasons of privacy-preserving,the side of server do not know the raw rating of each user and items the user rated.To do this,it uses a uniform distribution to generate random data.In a uniform distribution,all users produce a random value in the interval[μ-α,μ+α].In a normal distribution,all users produce a normal distribution random value and it combine the mean of μ with the standard deviation of α.The user hides the rating data before sending its rating data to the server.The specific data hiding steps are as follows.

    The server determines the specific distribution(uniform distribution or normal distribution)of the disturbance data and the corresponding parameters(α,μ,σ)and informs each user of this information.

    Each user fills the unsorted items with the mean of their existing ratings.

    For each useruuse a certain distribution to generatenrandom numbers,i=1,2,…,n.Then the user data adds a random number to get a vector of hidden information:

    Finally,the server uses the Eq.(8)to form a rating matrixR′of hidden information.

    3.2 User Data Recommendation Process

    The flow diagram of the recommendation process of user data is shown in the Fig.2.The feature matrix is obtained by matrix decomposition of the hidden data obtained above,and then the user-related data is calculated by using the new user data and the feature matrix,and the neighbors are found by the similarity,and finally weighted to obtain the recommended data.Specific steps are as follows.

    Figure 2:User data recommendation process

    3.3 Non-Negative Matrix Factorization-Based Personalized Recommendation of Privacy-Preserving

    The steps of NMF for privacy-preserving are as follows:

    1.The rating matrixR′with hidden information is factorized intoWandH.

    2.Given a new userRnew,the user predicted rating for itemi.First use the Eq.(1):

    3.Then use the new feature matrixHnewto compare with the NMF of theH,and using similarity to make recommendation,here you can use the Euclidean distance:Two N-dimensional vectorsx1,x2:

    4.Finally,by setting the number of neighbors,some similar users are found and compared to the raw data,it can weighted to obtain the rating of the itemiby the useru.

    3.4 Kernel Method-Based Personalized Recommendation of Privacy-Preserving

    Kernel method has improved the basic idea of NMF.The privacy-preserving step is similar to the NMF,and finally a rating matrix of hidden information is obtained.The kernel method of the hidden matrix is decomposed as follows.

    1.A matrix for mapping the data to new spaces through nonlinear mapping.This paper selected the Gaussian kernel function for mapping,and then the NMF is performed to obtain the matricesYandH.

    2.Given a new user and its rating information for the itemsRnew,the user’s predicted rating for itemiis calculated during the recommendation process.First use the Eq.(7):

    3.Then,using the new feature matrixHnew,compare it with theH,and using the similarity to make recommendation.Here,the Euclidean distance can be used:it is consistent with the Eq.(10).

    4.Finally,by setting the number of neighbors,some similar users are found and compared to the raw data,it can weighted to obtain the rating of the itemiby the useru.

    3.5 Time Complexity Analysis

    This algorithm consists of two parts:offline data preparation and online data processing.The first part is offline data preparation.It mainly does the nonnegative matrix decomposition of the hidden matrix.Because this part is offline,it is prepared for the second part in advance,which does not affect the online recommendation generation,so the time complexity of this part will not be considered.The second part includes the calculation ofHnew,the calculation of Euclidean distance,neighbors search and recommendation generation.The time complexity ofHnewcalculation isO(tm),the time complexity of Euclidean distance isO(tn),the time complexity of neighbors search isO(nlogn),and the time complexity of recommendation generation isO(kn).So,the time complexity of the second part isO(tm)+O(tn)+O(nlogn)+O(kn).Sincekandtare constants,mandnhave the same order of magnitude,the time complexity of the second part isO(nlogn).In conclusion,the time complexity of the algorithm isO(nlogn).

    4 Experiments

    4.1 Data

    MovieLens is the oldest recommendation system.The MovieLens dataset contains rating data for multiple movies from multiple users,as well as movie data information and user attribute information.This data set is often used as a test data set for recommendation systems,machine learning algorithms.The content in the file contains the rating of each user for each movie.The data in our experiments consists of 1,000,000 ratings for 6,040 users with 3,952 movies,and all users must rate at least 20 movies.

    4.2 Metric

    The mean absolute deviation is a statistic that describes the degree of data dispersion.The mean absolute error(MAE)is:

    where,piindicates the prediction rating of the recommendation system for theiitem,qiindicates real ratings of theiitems,andNindicates the number of items.

    It can be known from the Eq.(12)that the accuracy of the prediction is represented by calculating the MAE value between the predicted rating and the real ratings.

    4.3 Results

    This paper demonstrates the effectiveness of the proposed algorithm by comparing the kernel method privacy-preserving algorithm with the non-negative matrix factorization privacy-preserving algorithm.At first,find the mean of the user’s rated movie to fill the corresponding unrated movie.Then,each user creates a new privacy-preserving data rating matrix by creatingNrandom values using a Gaussian distribution to hide the raw data.

    This experiment mainly verifies the performance of the recommendation system by predicting the rating of the known movie and comparing the real rating of the movie with the predicted rating.Basically,it can be understood that the rating value of the predicted movie is set to null,and the prediction rating is performed by using the hidden matrix and the kernel method-based privacy-preserving algorithm proposed in this paper.Since the matrix decomposition results close to the hidden matrix each time,but the results of each decompose are different,this paper performs 20 matrix decomposition to narrow the difference of prediction results,and finally takes the mean value of the prediction results as the movie rating prediction value,it can narrows the difference of the results.

    First,this paper examines the influence of the value oftabout the matrix decomposition on the prediction accuracy,and thetvalue of 5 to 15.Experiments are performed on 6040 users and 3952 projects using non-negative matrix factorization and kernel method respectively to examine the effect of t-value on prediction accuracy.The result is shown in Fig.3.

    Figure 3:The relationship between the t and the prediction accuracy

    In Fig.3,with the increasing of the value oftafter decomposition,the value of MAE shows a steady trend,indicating that the number ofthas no significant influence on the prediction accuracy,and is basically in a flat state.The reason should be that when the user or project data is sufficiently rich,the sample mean and variance of the perturbed data will converge to their expected μ.Therefore,the value of users or projects are relatively rich,the system prediction accuracy has no significant impact.In general,due to the using of hidden information for prediction,the accuracy of non-negative matrix factorization and kernel method is slightly lower than that of the direct use of the original score data.The error between the interference and the preinterference is small,and certain recommendation accuracy can be achieved.

    In Fig.3,when the value oftafter decomposition is 6 and 9,the prediction accuracy is high.The following is a comparison of the MAE cases with different neighborskwhen the value oftafter decomposition is 6 and 9,respectively.

    Whentafter decomposition is 6,the value of MAE of different neighbork.As shown in Fig.4.

    Figure 4:The relationship between prediction accuracy under different k numbers when t is 6 after decomposition

    Whentafter decomposition is 9,the value of MAE of different neighbork.As shown in Fig.5.

    Figure 5:The relationship between prediction accuracy under different k numbers when t is 9 after decomposition

    Because non-negative matrix factorization and kernel method predictions mainly use the similarity between new users and existing scoring users to make recommendations,the impact of the number of neighbors on prediction accuracy is investigated.Using the data set experiment of 6040 by 3952,the number of neighbors is changed separately,and the corresponding prediction result is obtained.The results of experiment are shown in Fig.6.

    In Fig.6,with the increasing of the value of neighborsk,the value of MAE shows a steady trend,indicating that the prediction accuracy is not sensitive tok.The reason should be that when the user or project data is sufficiently rich,that is,the data is relatively rich,and the sample mean and variance of the disturbance data will converge to their desired μ.Therefore,as the number ofkincreases,the prediction accuracy of the system tends to be stable.It can be proved that the kernel method is slightly higher than non-negative matrix factorization.Kernel method maps data to a new space,and the data range is reduced,and the corresponding error will also be smaller.Therefore,compared to non-negative matrix factorization,the predictive performance of the kernel method is relatively better.

    Figure 6:The relationship between the k and the prediction accuracy

    In Fig.6,when the value ofkis 9,10,the prediction accuracy is high.The following compares the prediction accuracy of the value oftafter different decompositions whenkis 9,10,respectively.

    Whenkis 9,the value of MAE oftis different after decomposition.As shown in Fig.7.

    Whenkis 10,the value of MAE oftis different after decomposition.As shown in Fig.8.

    Figure 7:Relationship between prediction accuracy and the number of different decompositions t when the number of neighbors k is 9

    Figure 8:Relationship between prediction accuracy and the number of different decompositions t when the number of neighbors k is 10

    In order to examine the influence of the dispersion degree of the disturbance data on the prediction accuracy,a 6040 by 3952 data set experiment was used to change the variance of the disturbance data and examine the results of the corresponding prediction.The results of experiment are shown in Fig.9.

    Figure 9:Relationship between variance and prediction accuracy

    Obviously,the degree of interference of raw data has a greater impact on the prediction.When the interference degree of the raw data is small,the accuracy of the prediction result of the recommended system is better.

    From above experiments,the results of the perturbation data using kernel method are slightly better than non-negative matrix factorization.Moreover,from the previous validity analysis,no matter what kind of disturbance distribution,the mean absolute error using the same algorithm should converge to the error of the undisturbed data in the large samples.

    This paper proposed a kernel method-based privacy-preserving collaborative filtering algorithm that is easy to implement and can guarantee effectiveness of recommendation.This algorithm mainly involves two parameters,one is the dimension valuetin matrix decomposition,the other is the number of neighborskof the current user.The experimental results on page 8–9 show that the algorithm is relatively insensitive totvalue,and small changes have little impact on the results;the experimental results on page 9–10 show that the algorithm is also insensitive tokvalue,and the small changes of its value can be ignored.To sum up,the settings of these two parameters can be adjusted according to the actual application scenarios.Compared to the NMF-based privacy-preserving algorithm,its corresponding prediction accuracy has been improved.And compared to the direct recommendation on non-hidden data,although the accuracy is reduced,the performance is acceptable as a compromise of privacy-preserving.The limitation of this algorithm is that when the number of users and items is large,the time required for NMF or KNMF matrix decomposition is relatively long.However,matrix decomposition can be carried out offline,it has little effect on online user neighbors search and recommendation generation.

    5 Conclusions

    This paper developed an algorithm of kernel nonnegative matrix factorization and random perturbation technology.The algorithm has a privacy-preserving function,which enables the Internet of Things service system to easily collect the necessary personalized recommendation data while protecting the privacy of users.The actual analysis demonstrates that the kernel method is not sensitive to k and intermediate dimension size t on the basis of preserving the user’s privacy.It can improve recommendation accuracy,achieve the effectiveness of recommendation,and meet the needs of the recommendation system.Of course,there are still some problems in the algorithm that need further research,such as the value of users or projects in kernel nonnegative matrix factorization.

    Funding Statement:This research was supported by the National Natural Science Foundation of China under Grant No.61772280;by the China Special Fund for Meteorological Research in the Public Interest under Grant GYHY201306070;and by the Jiangsu Province Innovation and Entrepreneurship Training Program for College Students under Grant No.201910300122Y.

    Conflicts of Interest:We declare that there is no conflict of interests regarding the publication of this article.

    国产伦理片在线播放av一区| 亚洲第一青青草原| 人妻一区二区av| 国产成人啪精品午夜网站| 成年av动漫网址| 老司机亚洲免费影院| 婷婷丁香在线五月| 伊人亚洲综合成人网| 国产真人三级小视频在线观看| 黄色a级毛片大全视频| 精品一区二区三区四区五区乱码| 免费女性裸体啪啪无遮挡网站| kizo精华| 欧美成人午夜精品| 日韩免费高清中文字幕av| 亚洲av成人一区二区三| 少妇 在线观看| 男人舔女人的私密视频| 蜜桃在线观看..| 黄色视频,在线免费观看| 免费观看av网站的网址| 久9热在线精品视频| 女警被强在线播放| 伦理电影免费视频| 日韩免费高清中文字幕av| 国产精品一二三区在线看| 老熟妇仑乱视频hdxx| 天天影视国产精品| 亚洲av日韩精品久久久久久密| 亚洲国产精品一区二区三区在线| 精品一区二区三区四区五区乱码| 成人影院久久| 国产成人精品久久二区二区免费| 国产精品国产三级国产专区5o| 精品亚洲乱码少妇综合久久| 99re6热这里在线精品视频| 欧美日韩亚洲综合一区二区三区_| 啪啪无遮挡十八禁网站| 欧美黄色淫秽网站| 一级毛片精品| 久久久久网色| 久久精品国产a三级三级三级| 久久精品aⅴ一区二区三区四区| 国产伦理片在线播放av一区| 久久天躁狠狠躁夜夜2o2o| 日韩有码中文字幕| 国产精品一区二区免费欧美 | 国产亚洲一区二区精品| 精品亚洲成a人片在线观看| 91麻豆精品激情在线观看国产 | 欧美精品一区二区大全| 亚洲avbb在线观看| a 毛片基地| 国产一区有黄有色的免费视频| 最近中文字幕2019免费版| 老司机午夜十八禁免费视频| 黄色毛片三级朝国网站| 又紧又爽又黄一区二区| 亚洲精品久久成人aⅴ小说| 国产在线免费精品| 在线观看免费日韩欧美大片| 国产精品 欧美亚洲| 中文字幕高清在线视频| 国产一级毛片在线| 日韩欧美一区视频在线观看| 精品久久久久久久毛片微露脸 | 免费女性裸体啪啪无遮挡网站| 电影成人av| 亚洲伊人久久精品综合| 国产精品一区二区在线不卡| 高清欧美精品videossex| 另类精品久久| 国产一区有黄有色的免费视频| 亚洲男人天堂网一区| 国产成人精品在线电影| 最黄视频免费看| 日本猛色少妇xxxxx猛交久久| av在线播放精品| 搡老熟女国产l中国老女人| 下体分泌物呈黄色| 巨乳人妻的诱惑在线观看| 性高湖久久久久久久久免费观看| 男人操女人黄网站| 久久性视频一级片| 亚洲av日韩在线播放| 国产免费av片在线观看野外av| 午夜精品国产一区二区电影| 一级a爱视频在线免费观看| 在线观看免费高清a一片| 久久国产精品人妻蜜桃| 老司机午夜福利在线观看视频 | 久久99热这里只频精品6学生| 99热网站在线观看| 大香蕉久久成人网| 久久久久久久久久久久大奶| 久久这里只有精品19| 丰满迷人的少妇在线观看| 欧美 亚洲 国产 日韩一| 免费在线观看影片大全网站| 另类亚洲欧美激情| 免费女性裸体啪啪无遮挡网站| 嫁个100分男人电影在线观看| 亚洲av男天堂| 午夜免费鲁丝| 国产免费一区二区三区四区乱码| 精品一区在线观看国产| 国产欧美亚洲国产| 国产av一区二区精品久久| 成人国产一区最新在线观看| 亚洲中文字幕日韩| 欧美精品啪啪一区二区三区 | 麻豆国产av国片精品| 久久性视频一级片| 亚洲黑人精品在线| 亚洲九九香蕉| 成人免费观看视频高清| 视频区欧美日本亚洲| 久久久久国内视频| 国产男女内射视频| 国产精品久久久久成人av| 精品国产一区二区三区四区第35| 波多野结衣一区麻豆| 久久综合国产亚洲精品| 一级a爱视频在线免费观看| 久久久国产欧美日韩av| 叶爱在线成人免费视频播放| 成人国语在线视频| 亚洲av成人一区二区三| 丁香六月天网| 国产精品av久久久久免费| 亚洲欧美成人综合另类久久久| 欧美久久黑人一区二区| 国产精品1区2区在线观看. | 精品一区二区三区四区五区乱码| 日日夜夜操网爽| 老熟妇乱子伦视频在线观看 | 国产av一区二区精品久久| 91av网站免费观看| 热99re8久久精品国产| 一本—道久久a久久精品蜜桃钙片| xxxhd国产人妻xxx| 亚洲精品国产av蜜桃| 精品乱码久久久久久99久播| 99香蕉大伊视频| 在线观看免费午夜福利视频| 日韩有码中文字幕| 后天国语完整版免费观看| 欧美精品一区二区大全| 黄频高清免费视频| 精品免费久久久久久久清纯 | 久久久国产成人免费| 亚洲精华国产精华精| 80岁老熟妇乱子伦牲交| 老司机影院毛片| 亚洲色图 男人天堂 中文字幕| av一本久久久久| 女性被躁到高潮视频| 精品人妻一区二区三区麻豆| 国产精品一区二区在线观看99| 亚洲人成电影免费在线| 窝窝影院91人妻| 国产视频一区二区在线看| 日韩精品免费视频一区二区三区| 亚洲精品日韩在线中文字幕| 丰满迷人的少妇在线观看| 欧美精品亚洲一区二区| 99精品欧美一区二区三区四区| 亚洲一区二区三区欧美精品| 多毛熟女@视频| 午夜91福利影院| 亚洲国产成人一精品久久久| 啦啦啦 在线观看视频| 波多野结衣一区麻豆| 青青草视频在线视频观看| 亚洲三区欧美一区| 99re6热这里在线精品视频| 成人手机av| 多毛熟女@视频| 欧美精品亚洲一区二区| 巨乳人妻的诱惑在线观看| 国产福利在线免费观看视频| 久久影院123| 亚洲成人免费电影在线观看| 久久久欧美国产精品| 一级,二级,三级黄色视频| 欧美另类一区| 黄网站色视频无遮挡免费观看| 考比视频在线观看| 一区二区三区精品91| 欧美久久黑人一区二区| 美女视频免费永久观看网站| 亚洲av日韩精品久久久久久密| 中文字幕人妻熟女乱码| 亚洲 欧美一区二区三区| 999精品在线视频| 亚洲国产日韩一区二区| 国产成人免费观看mmmm| 国产成+人综合+亚洲专区| 亚洲精品国产av蜜桃| 国产精品一区二区在线观看99| 国产精品秋霞免费鲁丝片| 啦啦啦中文免费视频观看日本| 欧美 亚洲 国产 日韩一| 极品少妇高潮喷水抽搐| 日本a在线网址| 老司机午夜福利在线观看视频 | 久久久精品94久久精品| 亚洲中文字幕日韩| 高清视频免费观看一区二区| 亚洲人成电影观看| 黄片播放在线免费| 女人高潮潮喷娇喘18禁视频| 久久精品人人爽人人爽视色| 99热网站在线观看| 黄色视频在线播放观看不卡| 两个人免费观看高清视频| 美女大奶头黄色视频| 欧美国产精品一级二级三级| 啦啦啦中文免费视频观看日本| 久久热在线av| 中文字幕人妻丝袜制服| 无遮挡黄片免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 在线观看人妻少妇| 日本欧美视频一区| 在线观看免费视频网站a站| 考比视频在线观看| 91麻豆精品激情在线观看国产 | 久久午夜综合久久蜜桃| 免费在线观看日本一区| 超碰成人久久| 精品福利观看| 欧美97在线视频| 亚洲激情五月婷婷啪啪| 久久精品国产综合久久久| 精品亚洲成国产av| 日韩人妻精品一区2区三区| 久久久精品国产亚洲av高清涩受| 美国免费a级毛片| 在线观看一区二区三区激情| 亚洲精品自拍成人| 国产老妇伦熟女老妇高清| 亚洲精品粉嫩美女一区| 淫妇啪啪啪对白视频 | 最新的欧美精品一区二区| 亚洲精品av麻豆狂野| 91字幕亚洲| 亚洲国产日韩一区二区| 如日韩欧美国产精品一区二区三区| tocl精华| 精品国产一区二区久久| 人人妻人人澡人人看| 国产成人免费观看mmmm| √禁漫天堂资源中文www| 国产av国产精品国产| 亚洲精品国产av成人精品| 丝袜脚勾引网站| 欧美大码av| 91老司机精品| 老司机深夜福利视频在线观看 | 男人添女人高潮全过程视频| 亚洲成av片中文字幕在线观看| 国产欧美日韩一区二区精品| 精品国产国语对白av| 在线观看人妻少妇| 91国产中文字幕| 美女扒开内裤让男人捅视频| 真人做人爱边吃奶动态| 欧美97在线视频| 视频在线观看一区二区三区| 亚洲 欧美一区二区三区| 伊人久久大香线蕉亚洲五| 国产成人精品久久二区二区91| 老司机福利观看| 激情视频va一区二区三区| 一二三四社区在线视频社区8| 日本av免费视频播放| 国产免费一区二区三区四区乱码| 1024香蕉在线观看| 国产国语露脸激情在线看| 亚洲精品国产av成人精品| 亚洲第一青青草原| 亚洲欧美成人综合另类久久久| 人妻人人澡人人爽人人| 国产主播在线观看一区二区| bbb黄色大片| 亚洲av电影在线观看一区二区三区| 久久人人97超碰香蕉20202| 99国产精品一区二区蜜桃av | 在线观看一区二区三区激情| 青草久久国产| 亚洲欧美一区二区三区久久| 精品人妻在线不人妻| 欧美精品一区二区免费开放| 亚洲国产欧美网| 女人高潮潮喷娇喘18禁视频| 日韩欧美免费精品| 久久人人爽av亚洲精品天堂| 乱人伦中国视频| 欧美xxⅹ黑人| 两个人看的免费小视频| 亚洲国产毛片av蜜桃av| 两性夫妻黄色片| 丰满少妇做爰视频| 日韩电影二区| 国产黄频视频在线观看| 亚洲专区字幕在线| 欧美黑人欧美精品刺激| 婷婷丁香在线五月| 久久久久久久大尺度免费视频| 精品久久久久久久毛片微露脸 | 精品第一国产精品| 日本91视频免费播放| 美女高潮到喷水免费观看| 一本色道久久久久久精品综合| 国产精品久久久久久精品电影小说| 一本一本久久a久久精品综合妖精| 免费在线观看黄色视频的| 中文字幕精品免费在线观看视频| kizo精华| 国产精品亚洲av一区麻豆| 亚洲欧美精品综合一区二区三区| 国产精品自产拍在线观看55亚洲 | 国产亚洲精品第一综合不卡| 国产福利在线免费观看视频| 一区二区三区四区激情视频| av在线老鸭窝| 久久性视频一级片| 人人澡人人妻人| 久久久久久久大尺度免费视频| 中文字幕人妻丝袜制服| 9色porny在线观看| 国产精品麻豆人妻色哟哟久久| 久久久久国内视频| 丰满少妇做爰视频| 美女高潮喷水抽搐中文字幕| 精品久久蜜臀av无| 黄色 视频免费看| 欧美精品一区二区大全| 夫妻午夜视频| 狠狠精品人妻久久久久久综合| 少妇裸体淫交视频免费看高清 | 亚洲男人天堂网一区| 日韩一卡2卡3卡4卡2021年| 色婷婷久久久亚洲欧美| www.av在线官网国产| 777米奇影视久久| 老司机靠b影院| 亚洲一码二码三码区别大吗| 精品少妇内射三级| 午夜免费成人在线视频| 中国美女看黄片| 国产成人免费无遮挡视频| 男人添女人高潮全过程视频| 久9热在线精品视频| 亚洲精品久久午夜乱码| 久久精品熟女亚洲av麻豆精品| bbb黄色大片| 曰老女人黄片| 五月开心婷婷网| 大片电影免费在线观看免费| 国产深夜福利视频在线观看| 嫁个100分男人电影在线观看| 亚洲专区字幕在线| 日本黄色日本黄色录像| 18禁裸乳无遮挡动漫免费视频| 91精品伊人久久大香线蕉| 国产欧美日韩一区二区三区在线| 日韩大码丰满熟妇| 99国产精品一区二区三区| 五月天丁香电影| 91av网站免费观看| 色老头精品视频在线观看| 男女下面插进去视频免费观看| 女人爽到高潮嗷嗷叫在线视频| av有码第一页| 精品国产乱子伦一区二区三区 | 国产成人av激情在线播放| 中文字幕人妻丝袜一区二区| 一区二区三区四区激情视频| videosex国产| netflix在线观看网站| 99国产综合亚洲精品| 久久精品国产综合久久久| 99国产综合亚洲精品| 亚洲欧美清纯卡通| 国产成人精品久久二区二区91| 一边摸一边抽搐一进一出视频| 伊人亚洲综合成人网| 777久久人妻少妇嫩草av网站| 永久免费av网站大全| 亚洲国产精品成人久久小说| 亚洲精品日韩在线中文字幕| 亚洲精品中文字幕在线视频| 女警被强在线播放| 国产日韩欧美亚洲二区| 久久久久久亚洲精品国产蜜桃av| 日韩视频在线欧美| 黑人猛操日本美女一级片| 国产精品国产av在线观看| 久久久精品94久久精品| 国产91精品成人一区二区三区 | 国产亚洲一区二区精品| 国产av又大| 激情视频va一区二区三区| tocl精华| 亚洲 国产 在线| 国产极品粉嫩免费观看在线| 精品人妻1区二区| 最新在线观看一区二区三区| 国产又爽黄色视频| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品久久午夜乱码| www.999成人在线观看| 国产精品一区二区免费欧美 | av电影中文网址| 成年美女黄网站色视频大全免费| 美女国产高潮福利片在线看| 亚洲精品久久久久久婷婷小说| 亚洲熟女毛片儿| 国产色视频综合| 中文字幕制服av| 精品熟女少妇八av免费久了| 精品亚洲成a人片在线观看| 日韩制服骚丝袜av| 妹子高潮喷水视频| 久久人妻熟女aⅴ| netflix在线观看网站| 欧美黑人欧美精品刺激| 国产成人系列免费观看| 国产日韩欧美在线精品| 天天躁狠狠躁夜夜躁狠狠躁| 女人被躁到高潮嗷嗷叫费观| 国产男人的电影天堂91| 亚洲va日本ⅴa欧美va伊人久久 | 少妇精品久久久久久久| 国产在线免费精品| 性少妇av在线| 亚洲中文日韩欧美视频| 国产一区有黄有色的免费视频| 日韩欧美免费精品| 成人国产av品久久久| 99国产精品一区二区蜜桃av | 美女中出高潮动态图| 成年人免费黄色播放视频| av福利片在线| 亚洲欧美一区二区三区久久| av视频免费观看在线观看| 女警被强在线播放| 老司机影院成人| 女人久久www免费人成看片| 亚洲黑人精品在线| 欧美精品一区二区免费开放| 精品国产国语对白av| 男女无遮挡免费网站观看| 老鸭窝网址在线观看| 丁香六月欧美| a级片在线免费高清观看视频| 三级毛片av免费| 久久精品亚洲熟妇少妇任你| 久久天堂一区二区三区四区| 久久久精品国产亚洲av高清涩受| 欧美国产精品va在线观看不卡| 一区二区日韩欧美中文字幕| 精品一区二区三区四区五区乱码| 久久精品亚洲熟妇少妇任你| 国产又色又爽无遮挡免| 操出白浆在线播放| 欧美精品啪啪一区二区三区 | 美女脱内裤让男人舔精品视频| 久久久精品94久久精品| 午夜精品国产一区二区电影| 亚洲黑人精品在线| xxxhd国产人妻xxx| 午夜免费成人在线视频| 电影成人av| 亚洲成人手机| 久久亚洲精品不卡| 女警被强在线播放| 亚洲中文字幕日韩| 免费女性裸体啪啪无遮挡网站| 黑人欧美特级aaaaaa片| 天天躁狠狠躁夜夜躁狠狠躁| 91国产中文字幕| 日韩免费高清中文字幕av| 国产不卡av网站在线观看| 国产国语露脸激情在线看| 色婷婷久久久亚洲欧美| 在线精品无人区一区二区三| 欧美日韩一级在线毛片| 两性午夜刺激爽爽歪歪视频在线观看 | 18禁黄网站禁片午夜丰满| 国产亚洲精品一区二区www | 别揉我奶头~嗯~啊~动态视频 | 人妻一区二区av| 视频区图区小说| 老司机亚洲免费影院| 人妻 亚洲 视频| 欧美成狂野欧美在线观看| 精品少妇内射三级| 日韩 欧美 亚洲 中文字幕| 桃红色精品国产亚洲av| 99九九在线精品视频| 久热这里只有精品99| 欧美人与性动交α欧美精品济南到| 在线观看舔阴道视频| 精品人妻在线不人妻| 99精品久久久久人妻精品| 高清欧美精品videossex| 国产av一区二区精品久久| 免费在线观看黄色视频的| 夜夜骑夜夜射夜夜干| 精品一品国产午夜福利视频| 国产精品偷伦视频观看了| 精品卡一卡二卡四卡免费| 亚洲男人天堂网一区| 欧美黄色淫秽网站| 蜜桃国产av成人99| 久久人妻福利社区极品人妻图片| 熟女少妇亚洲综合色aaa.| 精品国产超薄肉色丝袜足j| 精品国产乱码久久久久久男人| 亚洲情色 制服丝袜| 美女中出高潮动态图| 操美女的视频在线观看| 不卡一级毛片| 老鸭窝网址在线观看| 亚洲欧美清纯卡通| 亚洲成av片中文字幕在线观看| 日韩中文字幕视频在线看片| 丰满饥渴人妻一区二区三| 男女之事视频高清在线观看| 国产成人免费无遮挡视频| 亚洲第一av免费看| 日本wwww免费看| 日韩中文字幕欧美一区二区| 美女脱内裤让男人舔精品视频| 国产精品一区二区免费欧美 | 亚洲国产欧美一区二区综合| 国精品久久久久久国模美| 国产亚洲精品第一综合不卡| 香蕉国产在线看| 久热爱精品视频在线9| 美女脱内裤让男人舔精品视频| 黄色a级毛片大全视频| 久久中文看片网| 亚洲欧美精品自产自拍| 一区二区三区四区激情视频| 日韩电影二区| 国产欧美日韩一区二区精品| 亚洲va日本ⅴa欧美va伊人久久 | 美女大奶头黄色视频| 国产在视频线精品| 大香蕉久久网| 成人国语在线视频| 亚洲精品国产av蜜桃| 制服诱惑二区| 久久久久国产精品人妻一区二区| 亚洲九九香蕉| 精品卡一卡二卡四卡免费| 欧美激情 高清一区二区三区| 亚洲综合色网址| 亚洲国产成人一精品久久久| 亚洲一区二区三区欧美精品| 热99国产精品久久久久久7| 日本黄色日本黄色录像| 丰满人妻熟妇乱又伦精品不卡| 91成人精品电影| 视频区图区小说| 在线观看www视频免费| 欧美亚洲 丝袜 人妻 在线| 午夜激情av网站| 日韩欧美免费精品| 国产成人a∨麻豆精品| 亚洲国产精品999| 欧美另类亚洲清纯唯美| 成人国产一区最新在线观看| 国产黄色免费在线视频| 久久精品亚洲熟妇少妇任你| 精品久久久久久久毛片微露脸 | 老司机亚洲免费影院| 国产成人精品在线电影| 中文字幕最新亚洲高清| 久久国产精品男人的天堂亚洲| 精品国产一区二区久久| 国产欧美日韩一区二区三区在线| 91国产中文字幕| 韩国高清视频一区二区三区| 最近最新免费中文字幕在线| 亚洲欧美日韩另类电影网站| 啪啪无遮挡十八禁网站| 老司机影院成人| 国产成人精品无人区| 色老头精品视频在线观看| 国产成人精品久久二区二区91| 久久精品国产综合久久久| 亚洲精品国产精品久久久不卡| 丰满迷人的少妇在线观看| 美女中出高潮动态图| 亚洲综合色网址| 精品一区二区三卡| 国产成人av教育| 丰满饥渴人妻一区二区三| 精品福利永久在线观看| 一二三四在线观看免费中文在| 亚洲国产欧美一区二区综合| 97人妻天天添夜夜摸| 亚洲av日韩在线播放| 我要看黄色一级片免费的| 美女脱内裤让男人舔精品视频| 丰满少妇做爰视频| 性色av乱码一区二区三区2| 一本综合久久免费| 大陆偷拍与自拍| 一本综合久久免费|