• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Anomaly Classi cation Using Genetic Algorithm-Based Random Forest Model for Network Attack Detection

    2021-12-14 03:50:34AdelAssiri
    Computers Materials&Continua 2021年1期

    Adel Assiri

    Management Information Systems Department,College of Business,King Khalid University,Abha,61421,Saudi Arabia

    Abstract:Anomaly classification based on network traffic features is an important task to monitor and detect network intrusion attacks.Network-based intrusion detection systems(NIDSs)using machine learning(ML)methods are effective tools for protecting network infrastructures and services from unpredictable and unseen attacks.Among several ML methods,random forest(RF)is a robust method that can be used in ML-based network intrusion detection solutions.However,the minimum number of instances for each split and the number of trees in the forest are two key parameters of RF that can affect classification accuracy.Therefore,optimal parameter selection is a real problem in RF-based anomaly classification of intrusion detection systems.In this paper,we propose to use the genetic algorithm(GA)for selecting the appropriate values of these two parameters,optimizing the RF classifier and improving the classification accuracy of normal and abnormal network traffics.To validate the proposed GA-based RF model,a number of experiments is conducted on two public datasets and evaluated using a set of performance evaluation measures.In these experiments,the accuracy result is compared with the accuracies of baseline ML classifiers in the recent works.Experimental results reveal that the proposed model can avert the uncertainty in selection the values of RF’s parameters,improving the accuracy of anomaly classification in NIDSs without incurring excessive time.

    Keywords:Network-based intrusion detection system(NIDS);random forest classifier;genetic algorithm;KDD99;UNSW-NB15

    1 Introduction

    Network-based intrusion detection system(NIDS)is a network security tool that works together with popular data encryption algorithms and firewalls to protect network resources and services[1].The work to develop an effective NIDS to detect malicious activities and network intrusion attacks is still the motivation for developers and researchers.In the literature of intrusion detection system(IDS),a number of methods and models have been proposed to prevent the networks from malicious threats and attacks.For instance,Song et al.[2],Gong et al.[3],and Murugesan et al.[4]offered several techniques to trace back the IP address.Nguyen et al.[5],Crotti et al.[6],and Callado et al.[7]introduced a number of methods to classify IP traffics of the networks.Dharmapurikar et al.[8],Zhou et al.[9],Chen et al.[10],Hu et al.[11],Das et al.[12],and Mabu et al.[13]developed many techniques for intrusion detection in the networks and explained the performance,the advantages,and disadvantages of these developed techniques.Hadlington[14]presented a study summaries the human causes that leads to some cyber security violation issues.Alternatively,the machine learning(ML)methods can be a suitable and adaptive approach for detecting abnormal network traffics due to the continuous changes of attacks patterns.

    Recently,ML methods have been used for solving many problems in different applications[15,16].The ML-based data analysis is utilized as a tool for automatic classification[17–19],decision making[20],and prediction[21,22].For network attacks detections,threats,and malicious executables,supervised and unsupervised learning technique has been achieved a promising result[23–26].ML learning approach is capable to give the networks devices the ability to learn attacks patterns from past data traffics and detect the unknown and new attacks[27–29].

    In previous works,numerous studies have been proposed using ML methods for network intrusion detection.The work introduced by Solanki et al.[30]has computed the accuracy of decision tree(C4.5)and support vector machine(SVM)methods to detect intrusion attacks.The two methods were tested on a public dataset contains four attacks.The authors reported that the accuracy of SVM was less than the accuracy of C4.5 method.The authors in[31]offered a work based on a number of ML classifiers to detect the common attacks in the networks and determining the best.They determined the suitable classifier for each of attack and reported that the most classifiers have achieved a high accuracy result to detect the denial of service attacks.

    Gao et al.[32]developed a technique to analyze the normal and abnormal data traffics using hidden Markov model.The authors did a set of experiments and achieved 63.2% accuracy result.Gomez et al.[33]proposed a study for network-based IDS based on fuzzy logic.The authors in[9]introduced an approach for classifying periodic patterns of network traffics and detecting normal or abnormal behaviors using Fourier transform method.

    An audit technique based on the frequency happened in the data traffics of the networks has proposed by Ye et al.[34].However,the data used for testing in this study was simple,pure and did not reflect the real states of network traffics.Additionally,a Chi-square test is used by Goonatilake et al.[35]for detecting abnormal network traffics in IDS.The study in[36]has compared and analyzed the performance of five architectures of artificial neural networks for IDS.The study shows that the quasi-Newton and conjugate gradient descent attained improved accuracy results.The works in[37,38]have developed some models for detecting network intrusion attacks using ML methods with swarm intelligence algorithm.

    Some comparative studies on ML methods have been proposed for network defense[39]and botnet attack detection[40,41].However,the performance of ML methods for anomaly classification in NIDSs still needs more improvements in terms of time cost and accuracy.Recently,Khan et al.[42]introduced a comparative study on ML methods for NIDS.They have mentioned that the accuracy results of random forest(RF)is better than the other ML methods.

    In this study,a genetic-based RF model is proposed and compared with the baseline ML methods for network intrusion detection in the state-of-the-arts.The experiment is conducted on two available public datasets,namely,KDD99[43]and UNSW-NB15[44].The main contribution of the study is to apply the genetic algorithm(GA)to select the appropriate values of RF classifier for improving its accuracy result for network intrusion detection.Moreover,another contribution of the work is to present a comparative study on ML methods for anomaly classification in NIDS using a set of evaluation measures.

    The rest of the paper is structured as follows:Section 2 describes the research methods and the main steps of the proposed IDS model.The experiments and discussion on the used datasets are given in Section 3.Finally,Section 4 summarizes the conclusion of the work.

    2 Research Methods

    2.1 GA

    GAwas presented initially by Holland[45].It is a form of inductive learning strategy to provide another method to conventional optimization methods based on adaptive search techniques.GA can find the nearoptimal solution for problems that need complex optimization.It is a stochastic method depends on some natural phenomena based on natural selection and genetic inheritance.GA is the most common class of EA[46].GA works on a population of individuals or chromosomes that represent the candidate solutions for a given problem.Each individual compete with others to reproduce based on Darwin’s principle(survival of the fittest)in each generation of evolution.

    All the individuals are evaluated by a fitness function that expresses the importance of the individual as a solution.Then select the best parent individuals and apply the crossover and mutation operator to produce the new individuals(offspring)for the next generation.Crossover operator combines the features of two selected parents to create two offspring.Mutation operator changes one or more components of the selected individual in order to prevent any stagnation that may occur during the search process.After a number of generations in evolution when the stopping criterion is met,the individuals that survived in the population are considered the optimal solutions[29].Algorithm 1 summarizes the main steps of GA.

    Algorithm 1:Genetic algorithm(GA)

    2.2 RF Classifier

    The RF classifier is a powerful ML tool that can be used for solving classification and regression problems.RF is one of the ensemble learning methods that can build a number of decision trees[47].For building trained RF model,two steps of randomness are used:

    ●Individually and randomly,each decision tree is constructed using different samples of the training dataset.

    ●During the construction of each tree,a part ofmsamples is randomly selected from the training dataset.The split point of thesemsamples is used as best split.In a case of new samplec,the RF can classify or predictcby aggregated decision trees.For RF that hasndecision trees,the output is the probability of the class labelyfor the samplecgiven a feature vectorx.The equation of RF ensemble learning can be computed as follows:

    In other words,the RF can average the probability of decision trees obtained using different random samples of the original dataset[47].Fig.1 visualizes the construction process of RF according to ensemble learning concept.

    Figure 1:Construction process of random forest(RF)according to ensemble learning concept

    The RF classifier has been used in a wide range of applications,such as image classification[48],network intrusion detection[49],and neuroimaging[50].Algorithm 2 defines the RF steps.

    Algorithm 2:Random forest(RF)pseudo-code

    In this research,we explore the application of GA-based RF for detecting intrusion attack throughout the features of network data traffic.

    2.3 GA-Based RF Model for IDS

    The idea behind the GA-based RF model is to optimize the RF classifier by selecting the appropriate parameters’ values and improve the detection rate of NIDS by using the optimized RF.The GA can generate random values for the specific parameters of RF and build a new decision boundary that has a highest value of GA fitness function.In detail,the datasets for training and testing the GA-based RF model are prepared from the network data traffics.The decision boundary of GA-based RF model is trained using training set and GA.After that,the trained GA-based RF model with the appropriate parameters’ values is tested to detect normal and abnormal class label of samples in the testing set.Fig.2 illustrates the main steps to build GA-based RF model for IDS.

    Figure 2:The main steps to build genetic algorithm(GA)-based random forest(RF)model for intrusion detection system(IDS)

    3 Experiments and Discussion

    The study experiments are conducted on a laptop has a CPU processor Intel Core i7-4510U with 2.0 GHz,8 GB RAM,and a 64 bit Windows 10 operating system.Python programming language is used to implement the experiments.Two public datasets,namely,KDD99 and UNSW-NB15 are employed to evaluate and compare the proposed model.

    3.1 Datasets Description

    As mentioned above,the datasets used in the experiments are KDD99[43]and UNSW-NB15[44]datasets.The KDD99 dataset is divided into two sets:A training set contains 145,586 samples and testing set includes 73,269 samples.The UNSW-NB15 dataset is also separated into two sets:a training set consists of 175,341 samples and a testing set has 82,332 samples.These datasets are processed and normalized to be suitable for training and testing the models.Figs.3 and 4 display the distribution of samples in the training and testing sets according to normal and abnormal network traffics.

    To evaluate the proposed GA-based RF and other baseline classifiers,the training samples of two sets are used first to train these classifiers and build trained models;then,these trained models are tested on the two testing sets.

    3.2 Performance Evaluation Measures

    The results of experiments are assessed based on three measures.These measures are accuracy,sensitivity,and precision,computed as follows:

    Figure 3:The number of normal or abnormal samples in the KDD99 training set

    Figure 4:The number of normal and abnormal samples in the UNSW-NB15 training set

    FP and FN are the number of false positives and negatives.TP and TN are the number of true positives and negatives.

    3.3 Results and Comparisons

    In this section,the results of the experiments are presented and compared with the results of recent related work.After building the GA-based RF model using the KDD99 training set,the best values of the minimum number of instances for each split and the number of trees in the RF are selected to be 17 and 2,respectively.For the UNSW-NB15 training set,the value of the minimum number of instances for each split is 4 and the value of the number of trees in the forest is also 2.The other parameters of RF are fixed to have the default values.Tabs.1 and 2 demonstrate the results of confusion matrices for testing the model on the KDD99 and UNSW-NB15 testing sets.

    Table 1:Results of confusion matrix for normal and abnormal classification of the KDD99 testing set

    Table 2:Results of confusion matrix for normal and abnormal classification of the UNSW-NB15 testing set

    From the results of confusion matrices,the performance evaluation measures are computed and shown in Tabs.3 and 4.As seen in the Tab.3,the GA-based RF achieves 97.2%of the accuracy and 97.0%for the weighted average of precision and recall on the KDD99 testing set.In addition,it obtains 86.7% of the accuracy and 87.0% for the weighted average of precision and recall on the UNSW-NB15 testing,which is noisy and more complex.

    Table 3:The performance evaluation results for anomaly classification of the KDD99 testing set

    To compare the accuracy results of optimized RF classifier to classify anomalies with the traditional RF and other baseline classifiers in the recent work[42],Tabs.5 and 6 show the accuracy results on the same testing sets of KDD99 and UNSW-NB15.

    Table 4:The performance evaluation results for anomaly classification of the UNSW-NB15 testing set

    Table 5:The accuracy results of the GA-based RF model compared with the baseline classifiers in recent work[42]using KDD99 testing set

    Table 6:The accuracy results of the GA-based RF model compared with the baseline classifiers in recent work[42]using UNSW-NB15 testing set

    Note.SVM,support vector machine;RF,random forest;GA,genetic algorithm.

    As shown in the Tabs.5 and 6,the accuracy results highlighted in the boldface font clarify that the GAbased RF improves the accuracy of the RF due to selecting the best values of its parameters and outperforms the other ML baseline classifiers.

    4 Conclusion and Future Work

    In this paper,a GA-based RF model is proposed to classify normal and abnormal networks traffics for IDS.The GA is used for selecting the appropriate values for two parameters of RF.These parameters are the minimum number of instances for each split and the number of trees in the forest,optimizing the RF classifier and improving the accuracy of anomaly classification and intrusion detection.A set of experiments were conducted on two public dataset and evaluated using a set of performance evaluation measures.The experimental results revealed that the selection of suitable values of RF classifier has improved the accuracy of network anomaly classification compared to the RF with default values.Moreover,the proposed GA-based RF model outperforms the ML models with high detection rates of 97.20% for KDD99 test set and 86.70% for UNSW-NB15 test set.In the future work,the proposed model will be used with feature selection methods to detect the types of attacks in the abnormal network traffic and enhance the network-based IDS.

    Acknowledgement:The author would like to express his gratitude to King Khalid University,Saudi Arabia for providing administrative and technical support.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The author declares that he have no conflicts of interest to report regarding the present study.

    日韩制服骚丝袜av| 午夜精品久久久久久毛片777| 91精品国产国语对白视频| 国产一区二区三区在线臀色熟女 | 五月开心婷婷网| 国产99久久九九免费精品| 国产一卡二卡三卡精品| av网站在线播放免费| 午夜影院在线不卡| 国产精品秋霞免费鲁丝片| 午夜精品国产一区二区电影| 两性夫妻黄色片| 999久久久精品免费观看国产| 青草久久国产| 另类精品久久| 一边摸一边做爽爽视频免费| 制服诱惑二区| 国产高清视频在线播放一区 | 国产免费视频播放在线视频| 嫩草影视91久久| 国产精品av久久久久免费| 人妻人人澡人人爽人人| 国内毛片毛片毛片毛片毛片| av电影中文网址| 亚洲av电影在线进入| 久久国产亚洲av麻豆专区| 久久国产精品大桥未久av| 一区二区三区乱码不卡18| 免费观看av网站的网址| 欧美精品啪啪一区二区三区 | 两性夫妻黄色片| 91字幕亚洲| 国产97色在线日韩免费| 免费少妇av软件| www.精华液| 1024香蕉在线观看| 我的亚洲天堂| 韩国高清视频一区二区三区| 亚洲五月婷婷丁香| 久久久久久久大尺度免费视频| 热99re8久久精品国产| av在线app专区| 色综合欧美亚洲国产小说| 热99久久久久精品小说推荐| 久久久久久久久免费视频了| 在线天堂中文资源库| 国产成人精品久久二区二区免费| 国产精品久久久久久人妻精品电影 | 日本猛色少妇xxxxx猛交久久| 久久久精品国产亚洲av高清涩受| 一本—道久久a久久精品蜜桃钙片| 免费人妻精品一区二区三区视频| 女人久久www免费人成看片| 在线观看免费视频网站a站| 国产亚洲精品一区二区www | 久久热在线av| 精品久久久久久久毛片微露脸 | 午夜视频精品福利| 老司机福利观看| 久久久久精品人妻al黑| 天天躁日日躁夜夜躁夜夜| 欧美精品一区二区大全| 超色免费av| 亚洲国产av影院在线观看| 热99re8久久精品国产| 久久久久国内视频| 国产成人精品在线电影| 久久综合国产亚洲精品| 欧美国产精品一级二级三级| 精品少妇久久久久久888优播| 亚洲免费av在线视频| 菩萨蛮人人尽说江南好唐韦庄| a级片在线免费高清观看视频| 精品国产国语对白av| 最新的欧美精品一区二区| 精品人妻1区二区| 丰满人妻熟妇乱又伦精品不卡| 国产精品.久久久| 欧美日韩av久久| 精品一区二区三区四区五区乱码| av视频免费观看在线观看| 夜夜骑夜夜射夜夜干| 999久久久精品免费观看国产| 最新在线观看一区二区三区| 国产一卡二卡三卡精品| 精品久久久久久电影网| 精品国产超薄肉色丝袜足j| 女警被强在线播放| 亚洲视频免费观看视频| 天天躁日日躁夜夜躁夜夜| 国产精品成人在线| 国产一区有黄有色的免费视频| 50天的宝宝边吃奶边哭怎么回事| 肉色欧美久久久久久久蜜桃| 国产高清视频在线播放一区 | 丰满饥渴人妻一区二区三| 亚洲成国产人片在线观看| 欧美激情 高清一区二区三区| 91九色精品人成在线观看| 老熟妇乱子伦视频在线观看 | 91av网站免费观看| 久久久国产欧美日韩av| av在线播放精品| a级毛片在线看网站| 国产在线一区二区三区精| 久久午夜综合久久蜜桃| 大陆偷拍与自拍| 久久久精品区二区三区| 大片电影免费在线观看免费| 亚洲国产日韩一区二区| www日本在线高清视频| 一区在线观看完整版| 两个人免费观看高清视频| 亚洲精品国产av成人精品| 国产一区二区三区av在线| 久久国产精品男人的天堂亚洲| 我的亚洲天堂| 国产精品 国内视频| av天堂在线播放| 青青草视频在线视频观看| 欧美+亚洲+日韩+国产| 亚洲精品一二三| 视频区欧美日本亚洲| 国产成人精品久久二区二区91| 人人妻人人澡人人看| 国产黄色免费在线视频| 正在播放国产对白刺激| 悠悠久久av| 久久久欧美国产精品| 汤姆久久久久久久影院中文字幕| 久久99热这里只频精品6学生| 老汉色∧v一级毛片| 国产av一区二区精品久久| 黄频高清免费视频| 精品一区在线观看国产| 欧美 日韩 精品 国产| 在线天堂中文资源库| 精品国产乱码久久久久久小说| 国产成人a∨麻豆精品| 国产高清视频在线播放一区 | 国产高清视频在线播放一区 | 欧美性长视频在线观看| 国产主播在线观看一区二区| 欧美日韩视频精品一区| 亚洲av片天天在线观看| 久久精品熟女亚洲av麻豆精品| 久久久久久久久久久久大奶| 91老司机精品| av在线app专区| 成年美女黄网站色视频大全免费| 亚洲综合色网址| 五月天丁香电影| 日韩欧美一区视频在线观看| 欧美成狂野欧美在线观看| 亚洲精品久久午夜乱码| 丝袜喷水一区| 国产色视频综合| 亚洲 欧美一区二区三区| 好男人电影高清在线观看| 亚洲av电影在线进入| 国产成人免费观看mmmm| 久久国产精品影院| 久久精品人人爽人人爽视色| 亚洲avbb在线观看| 飞空精品影院首页| 少妇裸体淫交视频免费看高清 | 成年av动漫网址| 中文字幕另类日韩欧美亚洲嫩草| 欧美精品av麻豆av| 日韩欧美国产一区二区入口| 人成视频在线观看免费观看| 国产99久久九九免费精品| 嫩草影视91久久| 香蕉丝袜av| 2018国产大陆天天弄谢| 999久久久精品免费观看国产| 亚洲av日韩精品久久久久久密| 两人在一起打扑克的视频| 在线十欧美十亚洲十日本专区| 人妻 亚洲 视频| 一区二区三区精品91| 国产99久久九九免费精品| 亚洲av成人不卡在线观看播放网 | 国产视频一区二区在线看| 亚洲成av片中文字幕在线观看| 最黄视频免费看| 国产免费一区二区三区四区乱码| av视频免费观看在线观看| 成人手机av| 91精品国产国语对白视频| 国产野战对白在线观看| 国产精品 国内视频| 淫妇啪啪啪对白视频 | 国产色视频综合| 日韩免费高清中文字幕av| 丁香六月天网| 国产欧美日韩一区二区精品| 在线十欧美十亚洲十日本专区| 1024香蕉在线观看| 国产成人欧美在线观看 | 一本综合久久免费| a级片在线免费高清观看视频| 69精品国产乱码久久久| 欧美激情久久久久久爽电影 | 两性夫妻黄色片| 午夜福利视频精品| 欧美变态另类bdsm刘玥| 菩萨蛮人人尽说江南好唐韦庄| 美女国产高潮福利片在线看| 大香蕉久久网| 欧美国产精品一级二级三级| 男女午夜视频在线观看| 国产精品偷伦视频观看了| 真人做人爱边吃奶动态| 国产精品久久久人人做人人爽| 国产欧美日韩一区二区精品| 我要看黄色一级片免费的| 国产av一区二区精品久久| 欧美日韩福利视频一区二区| 国产精品99久久99久久久不卡| 99国产精品免费福利视频| 日韩一卡2卡3卡4卡2021年| 手机成人av网站| 精品少妇黑人巨大在线播放| 人妻久久中文字幕网| 国产精品国产三级国产专区5o| 国产亚洲欧美在线一区二区| 精品一区在线观看国产| 亚洲国产毛片av蜜桃av| 久久香蕉激情| 狂野欧美激情性bbbbbb| 国产av精品麻豆| 免费av中文字幕在线| 在线亚洲精品国产二区图片欧美| 最近最新免费中文字幕在线| 丰满少妇做爰视频| 国产在线视频一区二区| 法律面前人人平等表现在哪些方面 | 欧美精品亚洲一区二区| 国产免费现黄频在线看| 青春草亚洲视频在线观看| 韩国精品一区二区三区| 汤姆久久久久久久影院中文字幕| 欧美国产精品va在线观看不卡| 精品乱码久久久久久99久播| 婷婷丁香在线五月| 日韩欧美国产一区二区入口| 国产一区二区三区av在线| 一本综合久久免费| 女人久久www免费人成看片| 一级片'在线观看视频| 美女视频免费永久观看网站| 久久久久久久久久久久大奶| 国产亚洲精品一区二区www | 国产又色又爽无遮挡免| 十分钟在线观看高清视频www| 日韩一区二区三区影片| 在线看a的网站| 免费在线观看日本一区| 国产免费av片在线观看野外av| 国产精品秋霞免费鲁丝片| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲情色 制服丝袜| 少妇精品久久久久久久| 99热国产这里只有精品6| 美女国产高潮福利片在线看| 亚洲九九香蕉| 亚洲精品av麻豆狂野| 青春草视频在线免费观看| 操出白浆在线播放| 黄网站色视频无遮挡免费观看| 最近中文字幕2019免费版| 国产日韩一区二区三区精品不卡| 免费少妇av软件| 麻豆国产av国片精品| 国产精品久久久久久精品电影小说| 亚洲精品粉嫩美女一区| 欧美大码av| 久久久国产欧美日韩av| 日本一区二区免费在线视频| 国产亚洲一区二区精品| 老鸭窝网址在线观看| 亚洲成人手机| 国产在线视频一区二区| 国产片内射在线| 日本五十路高清| 国产成人影院久久av| 国产成+人综合+亚洲专区| 中文字幕人妻丝袜一区二区| 丰满人妻熟妇乱又伦精品不卡| av天堂在线播放| 一区二区三区精品91| www日本在线高清视频| 国产一区二区激情短视频 | 午夜福利免费观看在线| 国产av国产精品国产| 久久精品aⅴ一区二区三区四区| 国产成人av教育| 国产日韩欧美视频二区| 麻豆av在线久日| 一本久久精品| 久久久国产精品麻豆| 搡老乐熟女国产| 欧美av亚洲av综合av国产av| 精品久久久久久电影网| 中文字幕制服av| 丝袜人妻中文字幕| 超碰成人久久| 亚洲性夜色夜夜综合| 脱女人内裤的视频| 十八禁网站免费在线| 欧美中文综合在线视频| 天天影视国产精品| 波多野结衣一区麻豆| 成人国产av品久久久| 国产成人欧美在线观看 | 免费久久久久久久精品成人欧美视频| 久9热在线精品视频| 制服诱惑二区| 久久九九热精品免费| 亚洲欧美成人综合另类久久久| 免费在线观看黄色视频的| e午夜精品久久久久久久| 久久久国产一区二区| 欧美日韩av久久| 巨乳人妻的诱惑在线观看| 欧美在线一区亚洲| 中文字幕最新亚洲高清| 建设人人有责人人尽责人人享有的| 人妻一区二区av| 日韩一卡2卡3卡4卡2021年| 欧美性长视频在线观看| 亚洲七黄色美女视频| 男男h啪啪无遮挡| 老汉色av国产亚洲站长工具| av在线播放精品| 十八禁网站免费在线| 两个人看的免费小视频| 九色亚洲精品在线播放| 一级片免费观看大全| 亚洲午夜精品一区,二区,三区| 91av网站免费观看| 亚洲欧美清纯卡通| 肉色欧美久久久久久久蜜桃| 无限看片的www在线观看| 一个人免费在线观看的高清视频 | av视频免费观看在线观看| 2018国产大陆天天弄谢| 国产av一区二区精品久久| 熟女少妇亚洲综合色aaa.| 国产成人系列免费观看| 久久久久国产一级毛片高清牌| 国产高清视频在线播放一区 | 两人在一起打扑克的视频| 一本—道久久a久久精品蜜桃钙片| 国产成人免费无遮挡视频| 久久精品熟女亚洲av麻豆精品| 精品国产乱码久久久久久小说| 水蜜桃什么品种好| 久久女婷五月综合色啪小说| 久久ye,这里只有精品| 精品国产一区二区三区四区第35| 欧美日本中文国产一区发布| 99国产精品一区二区蜜桃av | 亚洲av成人一区二区三| 国产亚洲av高清不卡| 俄罗斯特黄特色一大片| 国产精品一区二区在线不卡| 精品人妻一区二区三区麻豆| 亚洲av国产av综合av卡| 亚洲色图综合在线观看| 日本五十路高清| 中文字幕人妻丝袜制服| 50天的宝宝边吃奶边哭怎么回事| 乱人伦中国视频| 1024视频免费在线观看| 人人澡人人妻人| 丝袜喷水一区| 成人黄色视频免费在线看| 中文字幕精品免费在线观看视频| 久久久欧美国产精品| 久久九九热精品免费| 亚洲午夜精品一区,二区,三区| 欧美激情 高清一区二区三区| 午夜老司机福利片| 777久久人妻少妇嫩草av网站| 十八禁网站网址无遮挡| av又黄又爽大尺度在线免费看| 国产精品一二三区在线看| 香蕉丝袜av| 中国国产av一级| 久久久国产欧美日韩av| 一级,二级,三级黄色视频| 亚洲情色 制服丝袜| 嫩草影视91久久| 亚洲一区二区三区欧美精品| 国产精品久久久久成人av| 91av网站免费观看| 欧美日韩精品网址| 国产精品偷伦视频观看了| 另类精品久久| 亚洲人成电影免费在线| 久久精品国产a三级三级三级| 亚洲国产av新网站| 免费少妇av软件| www.精华液| 国产av一区二区精品久久| 91大片在线观看| 精品乱码久久久久久99久播| 日日摸夜夜添夜夜添小说| 女人久久www免费人成看片| 9191精品国产免费久久| 免费女性裸体啪啪无遮挡网站| 欧美性长视频在线观看| 视频在线观看一区二区三区| 精品国产超薄肉色丝袜足j| 国产一区二区三区av在线| 中文字幕制服av| 99久久精品国产亚洲精品| 国产一区有黄有色的免费视频| 欧美另类亚洲清纯唯美| 亚洲第一青青草原| 日日爽夜夜爽网站| 黄色视频,在线免费观看| 无限看片的www在线观看| 永久免费av网站大全| 亚洲欧美日韩另类电影网站| 国产一区二区三区av在线| 男人舔女人的私密视频| 久久久久久亚洲精品国产蜜桃av| 亚洲国产看品久久| 国产精品 欧美亚洲| 免费在线观看完整版高清| 黄色怎么调成土黄色| 国产亚洲精品久久久久5区| 美女扒开内裤让男人捅视频| 少妇被粗大的猛进出69影院| 91老司机精品| 天天添夜夜摸| www日本在线高清视频| 亚洲精品自拍成人| 超碰97精品在线观看| 最黄视频免费看| 新久久久久国产一级毛片| 国产男人的电影天堂91| 国产又色又爽无遮挡免| 啦啦啦在线免费观看视频4| 黄色视频,在线免费观看| 在线 av 中文字幕| 青草久久国产| 日韩制服丝袜自拍偷拍| 中文字幕色久视频| 考比视频在线观看| 啦啦啦在线免费观看视频4| 99国产综合亚洲精品| 欧美国产精品va在线观看不卡| 男女边摸边吃奶| 亚洲精品在线美女| 日本撒尿小便嘘嘘汇集6| 亚洲精品中文字幕在线视频| 在线永久观看黄色视频| 99精国产麻豆久久婷婷| 丰满迷人的少妇在线观看| 午夜福利乱码中文字幕| 国产成人一区二区三区免费视频网站| 一区二区三区激情视频| 亚洲av欧美aⅴ国产| 午夜福利视频精品| 亚洲成av片中文字幕在线观看| 久久这里只有精品19| 欧美精品亚洲一区二区| 亚洲欧美精品自产自拍| 亚洲av片天天在线观看| 亚洲成人国产一区在线观看| 国产亚洲午夜精品一区二区久久| 免费在线观看影片大全网站| 亚洲精品日韩在线中文字幕| 美国免费a级毛片| 色94色欧美一区二区| 国产一区二区 视频在线| 另类亚洲欧美激情| 人妻久久中文字幕网| 欧美av亚洲av综合av国产av| 欧美黄色淫秽网站| 国产av一区二区精品久久| 脱女人内裤的视频| 欧美xxⅹ黑人| 亚洲熟女毛片儿| 国产麻豆69| 久久国产精品男人的天堂亚洲| svipshipincom国产片| 亚洲久久久国产精品| 精品卡一卡二卡四卡免费| 精品福利永久在线观看| 午夜视频精品福利| 人妻久久中文字幕网| 99精品欧美一区二区三区四区| 丰满少妇做爰视频| 日韩大码丰满熟妇| 丝瓜视频免费看黄片| 777米奇影视久久| 久久av网站| 亚洲中文日韩欧美视频| 永久免费av网站大全| 999精品在线视频| 成人国语在线视频| 亚洲精品一二三| 亚洲国产欧美网| 日韩人妻精品一区2区三区| 日韩一区二区三区影片| av片东京热男人的天堂| 在线永久观看黄色视频| 午夜日韩欧美国产| 电影成人av| 成年av动漫网址| www.精华液| 五月开心婷婷网| 色婷婷久久久亚洲欧美| 69精品国产乱码久久久| 精品一区二区三卡| 色视频在线一区二区三区| 99精国产麻豆久久婷婷| 亚洲中文字幕日韩| 少妇人妻久久综合中文| 欧美老熟妇乱子伦牲交| 午夜福利影视在线免费观看| 久久久久国内视频| av线在线观看网站| 国产高清国产精品国产三级| 一个人免费在线观看的高清视频 | 久久久精品免费免费高清| 久久 成人 亚洲| av网站免费在线观看视频| 久久久久久久国产电影| 亚洲欧洲日产国产| 90打野战视频偷拍视频| 久久人人爽人人片av| 免费不卡黄色视频| 午夜福利,免费看| 中文字幕精品免费在线观看视频| 国产一区二区三区av在线| 一区二区三区激情视频| 国产亚洲欧美在线一区二区| 精品国产一区二区三区久久久樱花| 精品高清国产在线一区| 国产亚洲欧美在线一区二区| 王馨瑶露胸无遮挡在线观看| 俄罗斯特黄特色一大片| 亚洲成人手机| 精品久久久久久久毛片微露脸 | 建设人人有责人人尽责人人享有的| 波多野结衣一区麻豆| 欧美日韩黄片免| 久久精品久久久久久噜噜老黄| 国产在线观看jvid| 免费av中文字幕在线| 91精品三级在线观看| 日本av手机在线免费观看| 性高湖久久久久久久久免费观看| 中国国产av一级| 日韩欧美一区二区三区在线观看 | 亚洲全国av大片| 国产精品秋霞免费鲁丝片| 亚洲精品国产区一区二| 欧美日韩一级在线毛片| 精品人妻一区二区三区麻豆| 亚洲国产中文字幕在线视频| 涩涩av久久男人的天堂| 热99re8久久精品国产| 黄色 视频免费看| 视频区图区小说| 无遮挡黄片免费观看| 国产男女内射视频| a级片在线免费高清观看视频| 久久热在线av| 19禁男女啪啪无遮挡网站| 亚洲av片天天在线观看| 亚洲七黄色美女视频| 97精品久久久久久久久久精品| 后天国语完整版免费观看| 久久精品国产a三级三级三级| 婷婷丁香在线五月| 欧美老熟妇乱子伦牲交| 一级毛片精品| 精品国产一区二区三区久久久樱花| 欧美激情久久久久久爽电影 | 国产精品.久久久| 亚洲欧美清纯卡通| 亚洲激情五月婷婷啪啪| 不卡一级毛片| 一本色道久久久久久精品综合| 国产不卡av网站在线观看| 丝袜美足系列| 欧美xxⅹ黑人| 亚洲三区欧美一区| 亚洲综合色网址| 亚洲av电影在线进入| 亚洲欧美日韩另类电影网站| 99久久精品国产亚洲精品| a级片在线免费高清观看视频| 搡老熟女国产l中国老女人| 亚洲一区二区三区欧美精品| 精品亚洲成国产av| 精品一区二区三区av网在线观看 | 19禁男女啪啪无遮挡网站| 亚洲午夜精品一区,二区,三区| 免费在线观看黄色视频的| 日韩欧美一区视频在线观看| 精品少妇内射三级| a级毛片在线看网站| 国产精品影院久久| 久久午夜综合久久蜜桃| 中文字幕人妻丝袜制服| 丝袜在线中文字幕| 国产激情久久老熟女|