• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Effect of Surface Pit Treatment on Fretting Fatigue Crack Initiation

    2021-12-14 03:50:14QingmingDengXiaochunYinandMagdAbdelWahab
    Computers Materials&Continua 2021年1期

    Qingming Deng,Xiaochun Yin and Magd Abdel Wahab

    1Department of Mechanics and Engineering Science,Nanjing University of Science and Technology,Nanjing,210094,China

    2Soete Laboratory,Department of Electrical Energy,Metals,Mechanical Constructions and Systems,Faculty of Engineering and Architecture,Ghent University,Zwijnaarde,9052,Belgium

    3Division of Computational Mechanics,Ton Duc Thang University,Ho Chi Minh City,Vietnam

    4Faculty of Civil Engineering,Ton Duc Thang University,Ho Chi Minh City,Vietnam

    Abstract:This paper analyses the effect of surface treatment on fretting fatigue specimen by numerical simulations using Finite Element Analysis.The processed specimen refers to artificially adding a cylindrical pit to its contact surface.Then,the contact radius between the pad and the specimen is controlled by adjusting the radius of the pit.The stress distribution and slip amplitude of the contact surface under different contact geometries are compared.The critical plane approach is used to predict the crack initiation life and to evaluate the effect of processed specimen on its fretting fatigue performance.Both crack initiation life and angle can be predicted by the critical plane approach.Ruiz parameter is used to consider the effect of contact slip.It is shown that the crack initial position is dependent on the tensile stress.For same type of model,three kinds of critical plane parameters and Ruiz method provide very similar position of crack initiation.Moreover,the improved sample is much safer than the flat-specimen.

    Keywords:Finite element analysis;surface pit;stress distribution;fretting fatigue;critical plane approach

    1 Introduction

    When there are a compression force and a periodic lateral slip between contact bodies,the components are prone to fretting fatigue.Moreover,fretting fatigue is always accompanied by fretting wear.Compared to uniaxial fatigue,fretting fatigue has more complex stress concentration and shorter life[1].For homogeneous materials,the fretting fatigue performance mainly depends on the surface stress and strain distributions[2].Previous researchers have divided fretting fatigue damage into two main stages:crack initiation and crack propagation[3–6].In addition to load,material,temperature and microstructure,the shape of the contact surface also has a significant impact on fretting fatigue crack initiation.Previous researchers have compared the stress profiles of the two most common fretting fatigue contact types:flat-on-flat and cylinder-on-flat[7].The experimental crack initiation life prediction studies for these two contact geometries were also reported in[8].The difference between the sphere and the cylinder contact was presented in[9].In addition to experimental methods,machine learning[10]and phase field methods[11]were also used to study fracture problems.And in order to predict the crack initiation life,scholars have established many empirical theoretical formulas.The critical plane approach is a widely used and validated method[3,12].In fact,under cyclic loading,the stresses are continuously changing,and during the deformation process,the energy is also continuously transforming.When these parameters reach a critical value,cracks are generated.The critical plane approach is divided into three main categories based on stress,strain,and energy[3].For the critical plane approach based on stress,the plane subjected to the maximum stress amplitude is defined as the critical plane.The strain and energy based critical plane methods have a similar definition,which will be discussed in a later section.In addition to experimental research,recent numerical methods are increasingly used by researchers because they can help to understand the distribution of stress and strain at the contact surface,which is difficult to be measured by experiments[13,14].

    In this study,we propose improvements to the standard experimental geometry(flat-specimen)by adding artificial cylindrical pits to the specimen[6].In addition,a finite element model is established to study the contact stress and strain distributions under different contact configurations.The FE model is combined with three types of critical plane methods,and the crack initiation life is predicted.The results show that the specimen after the treatment greatly increases the fretting fatigue crack initiation life,and it seems that the ratio of the contact stress peak to the contact radius is reciprocal.It is worth noting that the new designed specimen increases the surface slip amplitude,while it increases the fatigue life,which may cause more pronounced fretting wear.When the artificial pit diameter changes continuously,the magnitude of the stress amplitude and the slip amplitude may make the specimen having the best performance.

    2 Theoretical Background

    Fretting fatigue is a complex multi-axis fatigue problem.The critical plane method is widely used as a recognized fatigue crack initiation theory for fretting fatigue problems.In such a method,the crack will initiate along some special plane having the maximum critical plane parameter or shear strain amplitude.In this paper,three kinds of critical plane parameters are used,namely stress based Findley FP[15],strain based Fatemi-Socie FS[16],and energy based Smith–Watson–Topper SWT[17]parameters.The critical plane parameter of Findley is defined as:

    3 Numerical Model

    As shown in Fig.1,a schematic of the classical fretting fatigue specimen is illustrated.The specimen is flat,which is the general case.This paper aims to study the effect of surface pit treatment on fretting fatigue crack initiation behavior.Three models are used for comparative studies depending on the degree of surface pit treatment.Due to the symmetry of the structure in Fig.1 and in order to save calculation time in the numerical simulation,usually only half of the structure is considered.The geometry and loading conditions of the finite element model of the flat specimen,named as type 1,is shown in Fig.2.The movement of cylinder pad is fixed horizontally and free vertically.The vertical degrees of freedoms of the specimen centerline are fixed,and the horizontal ones are free.

    The thickness of the pad and specimen aret=4 mm and the radius of cylinder pad isRpad=50 mm.Next,artificially processed specimen,i.e.adding pits to the surface of the contact area,is also studied.The size of the pit is selected based on the contact radius between the pad and the specimen under normal compression contact load.In this study,the material of cylinder pad and specimen is aluminum 2024-T3,whose elastic modulus and Poisson's ratio are 72.1 GPa and 0.33,respectively.

    Figure 1:The schematic of fretting fatigue problem

    Figure 2:Geometry and loading conditions of the fretting fatigue numerical model(flat-specimen)

    As shown in Fig.2,only the normal forceF= 540 N acts at the top of the pad,which is a Hertzian contact problem[22].When the pit radius isRpit,the contact radiusRand contact stress distribution on the contact surfacep(x)are given by Eqs.(8)and(9),respectively[22].

    whereE1=E2=72:1 Gpa is the elastic modulus of the cylinder pad and the specimen,andv1=v2=0:33 is the Poisson’s ratio.

    Therefore,as shown in Fig.3,the contact radius of the two components will change with different pit radius according to the Hertzian contact theory.It is worth noting that for the case where the cylinder is in contact with the pit,the pit radiusRpitshould be taken as a negative value in Eq.(8).In Fig.3,the relationship between the true pit radius and the contact radius is shown for the sake of clarity.If the pit radius tends to infinity the Hertzian contact radius is 0.474 mm.This is the type 1 model,shown as red point in Fig.3.When the pit radius is slightly larger than 50 mm,the theoretical contact radius changes drastically,and the maximum value can reach 5 mm.The main idea of surface processing is to increase the contact area and reduce the surface stress and strain amplitudes.Thus,adding a pit to the specimen with a radius of 50 mm(same as the pad)is considered first.However,this produces a complete slip,and the calculation could not converge.Therefore,50.5 mm(blue point)is selected as the pit radius to facilitate convergence(in the remaining part of this article,it is named type 3).Its Hertzian contact radius is 4.645 mm.In order to consider the intermediate state,the 52 mm is used as pit radius for type 2 model,whose theoretical contact radius is 2.36 mm(green point).

    Figure 3:The theoretical contact radius change with the pit radius

    Based on the Hertz contact theory;i.e.,Eq.(9),the normal stress on the contact surface is shown in Fig.4.The maximum normal stress of each model are -186.965 MPa,-36.66 MPa and -18.6 MPa,respectively.The contact radius of type 3 is almost 10 times higher than that of type 1,and the maximum normal stress is one-tenth of the maximum value of type 1.

    The artificially processed specimen and FE model of type 2 are shown in Fig.5b as an example.The FE model in Fig.5 is built in Abaqus using plane strain 2D four nodes element(CPE4R).Considering the computational efficiency and accuracy,the finite element model uses different partitions for discretization.On the contact surface,the size of the element is 0.002 mm,which allows the mesh to converge and obtain sufficiently accurate results[2].The discretization method of type 1 model is similar to that of type 2 as shown in Fig.5a.However,for type 3 model,too large contact area will cause too many elements that affect the calculation convergence.According to our previous convergence study,the mesh size of the contact area mainly affects the stress accuracy at the contact edge[2].So for the type 3 model,this study mainly refines the elements near the contact edge,and the size is equal to 0.002 mm as shown in Fig.5c.The contact interaction behavior is defined as a general contact algorithm.The friction formulation of tangential behavior uses Lagrange multiplier and the coefficient of friction equals to 0.65.And the normal behavior is defined as hard contact formulation.

    Figure 4:The theoretical normal stress of the contact surface for types 1,2 and 3

    Figure 5:(a)The elements near the contact surface for type 1 model.(b)Finite element model of type 2.(c)The elements near the contact surface for type 3 model

    After the simulation,Python codes were used to do the post-processing in order to determine the stress and strain history for each node on the contact surface.Matlab codes were used to calculate the critical plane parameters.The codes would go through every node on the contact surface of the specimen.For every node,every angle plane would be checked,in order to find out the critical plane.In addition,an angle increment of 1°was used for each iteration.

    4 Experimental Validation

    In our group at Ghent University,Hojjati-Talemi et al.[6]performed the experimental research on fretting contact between pad and flat specimen.Fig.1 shows the schematic of experimental set up.The specimen is under periodic stretch stress σaxialon the righthand side.The top and bottom sides of the specimen are subjected to compression load from two cylinderical pads.The contact coefficient of friction between pads and specimen is 0.65 and a normal forceF= 540 N acts on the pad.The tangential forceQexerted on the side face of pad is also a periodic load.The ratios of σaxialandQare 0.1 and-1,respectively.The material of cylinder pad and specimen is aluminum 2024-T3,which is the same as the one used for the FE model in Section 3.This kind of material is widely used in the aviation industry because of its good fatigue characteristics.The specific chemical composition of the material is listed in Tab.1.

    Table 1:Chemical composition of the Al2024-T3[6]

    The test was carried out by a servo-hydraulic load frame in order to apply the periodic stretch load on the specimen with a loading frequency of 10 Hz.All the load conditions of the fatigue experiments and failure life results are listed in Tab.2.

    Table 2:Fretting fatigue experimental loading conditions and lives[6]

    In order to verify the rationality of the critical plane method for predicting crack initiation life,theNfailureof all tests is used to validate the numerical model and the prediction methods.However,to study the effects of the surface pit treatment on fretting fatigue,the load of test 1 is used along with all kind of critical plane methods for all proposed models.

    Firstly,the above method,described in Section 3,is used to predict the crack initiation life of type 1 model under 9 kinds of tests.Then,combined with the crack propagation part[23],the total fretting fatigue life prediction for all tests can be compared with the total failure life from experiments as shown in Fig.6.

    Figure 6:Comparison between prediction and experimental failure life

    From the results,it is shown that the FS parameter gives the best prediction.Although the prediction of all cases has a certain degree of conservation,all the results are within the factor of±2 N.Therefore,it can be concluded that the critical plane method can be used to predict crack initiation life under multiaxial stress field.Furthermore,it is reasonable to use the critical plane method to estimate the crack initiation lifetime for the other two types of models.

    5 Results and Discussion

    Because the stress distribution has a great influence on the fretting fatigue life of the structure,after applying the cyclic load to the model,the stress distribution in the specimen can be calculated over the entire period.Moreover,by extracting the results,the fatigue characteristics of the specimen can be evaluated by three different critical plane parameters.In addition to the contact surface,the stress field below the surface is also calculated and presented,which allows a more comprehensive comparison of the two models considered in this paper.In order to compare the effects of three different contact surface cases on the fretting fatigue initiation,the loading condition of experimental test 1 as listed in Tab.2 is used for the three types of model.

    5.1 Stress Distribution in the Three Models

    The biggest difference between each model is the contact radius.From the resulting stress distribution shown in Fig.7,the difference in stress concentration is very obvious.The high stress concentration of type 1 model is near the edge and takes place over a very small contact area.Therefore,it leads to a higher peak value of stress,not only shear stress but also normal and tensile stresses.However,for the other two models,the stress distribution takes place in a relatively large contact area.The absolute peak value of the shear stress is also much smaller than type 1.

    Figure 7:von-Mises stress distribution in the whole model when peak loading(a)type 1,(b)type 2 and(c)type 3

    Although Fig.7 shows a macro comparison of three models,it is more important to consider about the stress on the contact surface.Because it is known from previous experiments and numerical studies that crack usually appears first at the contact edge for type 1 model.This is similar for type 2 and 3 models because the stress at the contact surface is higher than below the surface.

    A comparison of contact surface stress distribution between each model is shown in Fig.8.From the results shown in Fig.8a,we can see that the tensile stress varies greatly along the contact surface.It reaches a maximum of 290.089 MPa atx= 0.45986 mm for type 1.This point is very close to the theoretical contact radius(0.462 mm)of the type 1 model.This can also explain to some extent why cracks always initiate at contact edges.

    Figure 8:Contact surface stress distribution comparison between each model:(a)tensile stress and(b)shear stress

    For the type 2 model,the maximum tensile stress is 157.992 MPa and is located atx=-2.0402 mm,and the theoretically contact radius is 2.36 mm.This difference is high when it is compared with the type 1.This means that the initial position of the crack may change greatly when the surface of the sample is treated by a pit.Moreover,for type 3 model,the maximum tensile stress(133.098 MPa)on the contact surface appears atx=3.162 mm,which is smaller than the theoretical contact radius(4.645 mm).The peak value is just a little higher than the applied stress(100 MPa)on the right-hand side of the specimen.This shows that there is no particularly significant stress concentration in type 3 model.It also means that for type 3,the crack initiation position will be closer to the contact center.Moreover,the peak value is less than half of type 1.The slope of tensile stress on the surface is also smaller than type 1.This indicates that type 3 model will have better fretting fatigue performance.From the result shown in Fig.8b,the maximum shear stress of type 1 model is -98.596 MPa atx= 0.25 mm.This point is close to the boundary between the stick zone and the slip zone calculated by the analytical solution[2].In addition,the shear stress changes very sharply around this point.For type 3 model,both positive and negative shear stresses appear at the contact surface,but because the contact area is relatively large,the resulting lateral friction is equal to that of type 1.This will inevitably lead to an absolute peak shear stress that will be much smaller than type 1.The value and position of peak point are -16.651 MPa andx= -0.78795 mm,respectively.This is likely to produce lower critical plane parameters.

    In general,specimens treated with pits(type 2 and type 3)have larger contact areas and smaller contact stress peaks.The stress distribution is completely different for the three models.

    5.2 Critical Plane Parameter

    The stress distribution is important in fretting fatigue analysis,but it just considers the peak load value.However,the critical plane criteria can take the stress and strain history of the specimen into account[3].

    As shown in Fig.9,the three critical plane parameters are completely different at the surface of the three types of models.For the convenience of comparison,all three parameters are presented in dimensionless form by dividing them by their maximum values.The maximum values of each critical plane parameter are listed in Tab.3,including position,critical plane angle and the estimated initial life.

    Figure 9:Dimensionless critical plane parameter distribution along the contact surface:(a)type 1,(b)type 2 and(c)type 3

    Table 3:Maximum critical plane parameters

    Although by comparing the three models,there is a large difference between each other,but for the same model,the peak positions of the three parameters are very close.It is aroundx=0.453 mm,x=-2.0363 mm andx=3.1426 mm for type 1,type 2 and type 3 models,respectively.As mentioned in the previous section,the position of peak tensile stress on the contact surface isx= 0.45986 mm,x= -2.04 mm andx= 3.1684 mm,respectively.It is clear that for all types of models,all damage parameters are dominated by tensile stress.In addition,because of the large difference in the stress and strain distribution in the three models,the maximum value of the critical plane parameter also has a large difference.The peak value of type 1 is more than two times larger than that of type 3.Therefore,the crack initiation lifetime also has a huge difference.

    Regarding the critical plane angle,SWT parameter is mainly used for crack propagation under tensile load,so that the starting direction will be perpendicular to the direction of maximum tensile stress.However,the prediction of the other two kinds of parameters is reasonable compared with the previous experimental study[4].When the specimen has been changed by adding pit on its surface,the predicted crack initiation life of type 2 and type 3 models will change a lot.These results mean that it will never fracture because the number of cycles to failure is more than 107cycles(the endurance limit)[24].

    5.3 Discussion

    Type 2 and type 3 models have contact radii,which are several times larger than that of type 1.From the results above,it is clear that type 2 and type 3 models will be safer in accordance with the stress distribution and critical plane methods.On the other hand,it should be noted that the slip range of three models also has a huge difference as shown in Fig.10.

    Figure 10:Slip range along the contact surface of both models:(a)type 1,(b)type 2 and(c)type 3

    Even although,the amount of wear debris is not too much obvious in the partial slip regime[25],the effect of slip range also needs to be checked,because there are ten times differences between type 1 and type 3.Here,Ruiz parameter that can take contact slip into account is adopted[21].As shown in Fig.11,the maximum absolute Ruiz parameter value indicates the starting position of the crack.It can be seen that the critical plane method and the Ruiz approach have obtained very consistent predictions.However although type 3 model has the smallest stress peak and the largest predicted crack initiation life,its absolute peak of Ruiz parameters is also the largest.Unfortunately,Ruiz’s approach cannot predict fatigue life,but larger damage parameter values still indicate shorter life.It is worth noting that type 2 model has much less contact stress than type 1,and its Ruiz parameter is also smaller than type 1.Following this idea,it will be possible to find a situation between those models to achieve the best performance of fretting fatigue and fretting wear.This will be the topic of our next study.

    Figure 11:Ruiz F2 parameter along the contact surface

    6 Conclusions

    Based on the above results and discussion,we can draw the following conclusions:

    1.Adding pits to the surface of the specimen can seriously affect the stress distribution of the specimen under fretting fatigue loading condition and significantly reduce the stress concentration.Moreover,this effect is not linear,and different stress distributions can be obtained with different pit radii.

    2.Although the three critical plane parameters have a large difference in the prediction of fretting fatigue life,the prediction of the crack initiation position is very consistent.The position of the peak point of CP parameter is very close to the location of peak tensile stress.For type 1 model(flat-specimen),the crack will initiate from the contact edge.However,for type 2 and type 3 model(pit- specimens),the crack position will shift inside contact area.

    3.The critical plane method is acceptable for type 1 model(flat-specimen)compared with the experimental results.Moreover,FS parameter has the best prediction.The gradient of the SWT parameter is the largest.Furthermore,Ruiz parameter has similar prediction of initiation location compared with the critical plane methods.

    Acknowledgement:The authors would like to acknowledge the financial support of the grants from the China Scholarship Council(201806840127),and the Research Foundation-Flanders(FWO),The Luxembourg National Research Fund(FNR)and Slovenian Research Agency(ARRS)in the framework of the FWO Lead Agency project:G018916N ‘Multi-analysis of fretting fatigue using physical and virtual experiments.’

    Funding Statement:This work was supported in part by the National Natural Science Foundation of China(Grant Nos.11372138 and 11572157),the Research Foundation-Flanders(FWO),The Luxembourg National Research Fund(FNR)and Slovenian Research Agency(ARRS)in the framework of the FWO Lead Agency project:G018916N‘Multi-analysis of fretting fatigue using physical and virtual experiments.’

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    日本一二三区视频观看| 内射极品少妇av片p| 不卡一级毛片| 免费电影在线观看免费观看| 天天躁日日操中文字幕| 在线免费观看不下载黄p国产| 亚洲四区av| 啦啦啦啦在线视频资源| 日韩欧美国产在线观看| 99热这里只有是精品50| 久久精品国产亚洲av香蕉五月| 日本五十路高清| 成人特级黄色片久久久久久久| 身体一侧抽搐| 日本色播在线视频| 色吧在线观看| 最近视频中文字幕2019在线8| 中国美女看黄片| 国模一区二区三区四区视频| 久久国内精品自在自线图片| 男插女下体视频免费在线播放| 日本欧美国产在线视频| 麻豆国产av国片精品| 韩国av在线不卡| 国产v大片淫在线免费观看| 别揉我奶头 嗯啊视频| 成人美女网站在线观看视频| 午夜精品一区二区三区免费看| 看片在线看免费视频| 亚洲无线观看免费| av福利片在线观看| 欧美+亚洲+日韩+国产| 深夜a级毛片| 日韩三级伦理在线观看| 亚洲无线观看免费| 国产视频一区二区在线看| 国产伦精品一区二区三区四那| 亚洲av成人精品一区久久| a级一级毛片免费在线观看| 亚洲丝袜综合中文字幕| 精品福利观看| 国产 一区精品| 国产成年人精品一区二区| 久久久成人免费电影| 亚洲无线在线观看| 美女cb高潮喷水在线观看| 国产v大片淫在线免费观看| 久久久久久久久久久丰满| 成人一区二区视频在线观看| 在线观看免费视频日本深夜| 老熟妇仑乱视频hdxx| 国产精品久久久久久亚洲av鲁大| 亚洲国产欧洲综合997久久,| 免费看美女性在线毛片视频| 亚洲欧美日韩卡通动漫| 国产亚洲精品久久久com| 狂野欧美白嫩少妇大欣赏| 老女人水多毛片| 日日摸夜夜添夜夜添av毛片| 在线a可以看的网站| 国产伦在线观看视频一区| 国产白丝娇喘喷水9色精品| 欧美不卡视频在线免费观看| 嫩草影视91久久| 精品久久久久久久久亚洲| 变态另类丝袜制服| 嫩草影院入口| 成人二区视频| 日日摸夜夜添夜夜添小说| 亚洲经典国产精华液单| 人妻夜夜爽99麻豆av| 精品福利观看| 国产午夜精品论理片| 久久久久国产精品人妻aⅴ院| 国内少妇人妻偷人精品xxx网站| 91午夜精品亚洲一区二区三区| avwww免费| 观看美女的网站| 18禁裸乳无遮挡免费网站照片| 欧美成人一区二区免费高清观看| 男人的好看免费观看在线视频| 午夜精品国产一区二区电影 | 国产精品99久久久久久久久| 少妇熟女aⅴ在线视频| 欧美区成人在线视频| 国产女主播在线喷水免费视频网站 | 欧美+日韩+精品| 白带黄色成豆腐渣| 亚洲国产高清在线一区二区三| 日韩欧美 国产精品| 人人妻人人澡欧美一区二区| 美女免费视频网站| 亚洲国产欧洲综合997久久,| 日韩欧美免费精品| 精品99又大又爽又粗少妇毛片| h日本视频在线播放| 久久久久久久久大av| 男人的好看免费观看在线视频| 黄色欧美视频在线观看| 欧美一区二区精品小视频在线| 国产成人福利小说| 午夜激情福利司机影院| 成年版毛片免费区| 麻豆国产97在线/欧美| 亚洲欧美中文字幕日韩二区| 校园春色视频在线观看| 亚洲美女搞黄在线观看 | 国产精品久久久久久亚洲av鲁大| 亚洲精品日韩av片在线观看| 色噜噜av男人的天堂激情| 久久久久久伊人网av| 国产精品三级大全| 舔av片在线| av卡一久久| 国产黄色视频一区二区在线观看 | 国产精品久久久久久精品电影| 精品久久国产蜜桃| 国产成人a∨麻豆精品| 国产视频内射| 成人一区二区视频在线观看| 3wmmmm亚洲av在线观看| 久久久色成人| 成人高潮视频无遮挡免费网站| 国产 一区精品| 日韩欧美免费精品| 日本三级黄在线观看| 国产老妇女一区| 天堂动漫精品| 女的被弄到高潮叫床怎么办| 亚洲欧美精品自产自拍| 我要搜黄色片| 日本在线视频免费播放| 国产高清视频在线播放一区| 亚洲欧美日韩卡通动漫| av黄色大香蕉| 亚洲精品日韩在线中文字幕 | 又爽又黄无遮挡网站| 婷婷亚洲欧美| 精品久久国产蜜桃| 亚洲成a人片在线一区二区| 18+在线观看网站| 精华霜和精华液先用哪个| 亚洲高清免费不卡视频| 一级毛片我不卡| 联通29元200g的流量卡| 一区福利在线观看| 一本一本综合久久| 国产成人一区二区在线| 亚州av有码| 国产麻豆成人av免费视频| av在线亚洲专区| 日韩中字成人| 午夜免费激情av| 免费人成在线观看视频色| 人人妻人人澡欧美一区二区| 国产亚洲av嫩草精品影院| 精品久久久久久久人妻蜜臀av| 少妇人妻一区二区三区视频| 男人的好看免费观看在线视频| 波多野结衣巨乳人妻| 亚洲精品日韩av片在线观看| 国产精品嫩草影院av在线观看| 人人妻人人看人人澡| 黄片wwwwww| 国产亚洲av嫩草精品影院| 国产亚洲精品综合一区在线观看| www日本黄色视频网| 亚洲va在线va天堂va国产| 亚洲av中文字字幕乱码综合| 国产高清激情床上av| 久久久色成人| 中文资源天堂在线| 日日啪夜夜撸| 久久久久久伊人网av| 校园人妻丝袜中文字幕| 亚洲婷婷狠狠爱综合网| 日本撒尿小便嘘嘘汇集6| 日韩成人伦理影院| 天堂动漫精品| 别揉我奶头 嗯啊视频| 国产精品一区二区性色av| 深爱激情五月婷婷| 亚洲欧美日韩高清在线视频| 成人国产麻豆网| 男人和女人高潮做爰伦理| 欧美日本视频| 精品午夜福利在线看| 夜夜夜夜夜久久久久| 变态另类成人亚洲欧美熟女| 国产一区二区三区在线臀色熟女| 国产高清三级在线| 日韩中字成人| 麻豆乱淫一区二区| 国产免费一级a男人的天堂| 超碰av人人做人人爽久久| 亚洲天堂国产精品一区在线| 国内少妇人妻偷人精品xxx网站| 最近中文字幕高清免费大全6| 国产在线精品亚洲第一网站| 国产男靠女视频免费网站| 亚洲av熟女| 亚洲美女搞黄在线观看 | 亚洲va在线va天堂va国产| 国产在线男女| 99热只有精品国产| 麻豆av噜噜一区二区三区| 99视频精品全部免费 在线| 丰满乱子伦码专区| 久久久精品大字幕| 男女下面进入的视频免费午夜| 国产淫片久久久久久久久| 国产探花极品一区二区| 久久久久久国产a免费观看| 晚上一个人看的免费电影| 国产一级毛片七仙女欲春2| 嫩草影院精品99| 色av中文字幕| 国产高潮美女av| 欧美日韩乱码在线| 亚洲在线观看片| 一级a爱片免费观看的视频| 久久午夜亚洲精品久久| 国产免费男女视频| 麻豆国产97在线/欧美| 免费黄网站久久成人精品| 久久热精品热| 久久午夜亚洲精品久久| 变态另类成人亚洲欧美熟女| 日本免费a在线| 久久久久久久亚洲中文字幕| 国内揄拍国产精品人妻在线| a级毛色黄片| 精品不卡国产一区二区三区| 少妇裸体淫交视频免费看高清| av在线老鸭窝| 久久精品国产亚洲av香蕉五月| 国产中年淑女户外野战色| 伦理电影大哥的女人| 国产一区二区激情短视频| 精品午夜福利视频在线观看一区| 午夜福利在线观看免费完整高清在 | 国产精品精品国产色婷婷| 国产久久久一区二区三区| 国产精品久久久久久亚洲av鲁大| 美女内射精品一级片tv| 观看免费一级毛片| 久久久成人免费电影| 麻豆av噜噜一区二区三区| 亚洲一区二区三区色噜噜| 国产高清有码在线观看视频| 国产午夜精品论理片| 亚洲av成人av| 级片在线观看| 国产一区二区在线观看日韩| 国产69精品久久久久777片| 麻豆久久精品国产亚洲av| 免费人成视频x8x8入口观看| 国产亚洲精品av在线| 欧美精品国产亚洲| 中文字幕人妻熟人妻熟丝袜美| 国产午夜精品久久久久久一区二区三区 | 久久精品国产99精品国产亚洲性色| 麻豆久久精品国产亚洲av| 毛片一级片免费看久久久久| 日韩国内少妇激情av| 99在线人妻在线中文字幕| 色尼玛亚洲综合影院| 日产精品乱码卡一卡2卡三| 日本欧美国产在线视频| 国产熟女欧美一区二区| 性插视频无遮挡在线免费观看| 国产精品人妻久久久久久| 99热只有精品国产| 国产大屁股一区二区在线视频| 国产精品无大码| 国产美女午夜福利| 欧美三级亚洲精品| 最后的刺客免费高清国语| 少妇熟女aⅴ在线视频| 狂野欧美激情性xxxx在线观看| 亚洲av成人精品一区久久| 久久这里只有精品中国| 如何舔出高潮| 97人妻精品一区二区三区麻豆| 国产精品美女特级片免费视频播放器| 日本黄大片高清| 六月丁香七月| 亚洲av二区三区四区| 免费观看人在逋| 赤兔流量卡办理| 国产男人的电影天堂91| 精品人妻一区二区三区麻豆 | 国产精品一区www在线观看| av天堂中文字幕网| av卡一久久| 日韩国内少妇激情av| 国产一区二区三区在线臀色熟女| 午夜免费男女啪啪视频观看 | 欧美绝顶高潮抽搐喷水| 欧美日韩乱码在线| 国产免费男女视频| 一个人免费在线观看电影| 精品99又大又爽又粗少妇毛片| 国产三级在线视频| 97超级碰碰碰精品色视频在线观看| 悠悠久久av| 午夜免费激情av| 三级经典国产精品| 日韩av在线大香蕉| 久久久久国产网址| 一个人免费在线观看电影| 18+在线观看网站| АⅤ资源中文在线天堂| 99精品在免费线老司机午夜| 日本精品一区二区三区蜜桃| 尤物成人国产欧美一区二区三区| 99热网站在线观看| 国产在视频线在精品| 国内揄拍国产精品人妻在线| 免费黄网站久久成人精品| 亚洲成人精品中文字幕电影| 能在线免费观看的黄片| 尾随美女入室| 草草在线视频免费看| 成人无遮挡网站| 精品久久久久久久久久免费视频| 三级国产精品欧美在线观看| 中国国产av一级| 欧美另类亚洲清纯唯美| 婷婷色综合大香蕉| 女的被弄到高潮叫床怎么办| 欧美日韩在线观看h| 在线看三级毛片| 欧美一区二区精品小视频在线| 日本欧美国产在线视频| 麻豆久久精品国产亚洲av| 久久午夜福利片| 亚洲丝袜综合中文字幕| 在线观看av片永久免费下载| 成人漫画全彩无遮挡| 精品午夜福利视频在线观看一区| 少妇熟女aⅴ在线视频| 在线观看一区二区三区| 一级毛片我不卡| 啦啦啦韩国在线观看视频| 自拍偷自拍亚洲精品老妇| 91久久精品国产一区二区成人| 国产高清三级在线| 久久久久久九九精品二区国产| 综合色丁香网| 久久久久久久亚洲中文字幕| 在线观看av片永久免费下载| 亚洲欧美日韩卡通动漫| 中文字幕久久专区| 午夜福利在线在线| 天天躁日日操中文字幕| 一级毛片aaaaaa免费看小| 少妇丰满av| 别揉我奶头~嗯~啊~动态视频| 国产探花极品一区二区| 观看美女的网站| 精品少妇黑人巨大在线播放 | 国产精品人妻久久久影院| 亚洲av成人精品一区久久| 日韩三级伦理在线观看| 99热精品在线国产| 国产精品爽爽va在线观看网站| 少妇的逼水好多| 成年女人永久免费观看视频| 18+在线观看网站| 中国国产av一级| av在线亚洲专区| 亚洲av一区综合| 欧美绝顶高潮抽搐喷水| 亚洲国产精品成人综合色| 亚洲国产精品合色在线| 精品久久久久久久末码| 欧美三级亚洲精品| 人妻少妇偷人精品九色| 男人舔奶头视频| 韩国av在线不卡| 最好的美女福利视频网| 极品教师在线视频| 国产精品av视频在线免费观看| 日本在线视频免费播放| 久久久久久久久久黄片| 啦啦啦韩国在线观看视频| 国产精品三级大全| av在线亚洲专区| 校园人妻丝袜中文字幕| h日本视频在线播放| 欧美成人一区二区免费高清观看| 亚洲欧美精品自产自拍| 欧美xxxx性猛交bbbb| 人人妻,人人澡人人爽秒播| 少妇熟女欧美另类| 成人三级黄色视频| 九九爱精品视频在线观看| 日韩欧美一区二区三区在线观看| 最近最新中文字幕大全电影3| 免费电影在线观看免费观看| 一级毛片aaaaaa免费看小| 成人特级av手机在线观看| 亚洲中文日韩欧美视频| 搡老妇女老女人老熟妇| 亚洲经典国产精华液单| 给我免费播放毛片高清在线观看| 大型黄色视频在线免费观看| 女人被狂操c到高潮| 国产一区二区在线观看日韩| 午夜久久久久精精品| 亚州av有码| 啦啦啦韩国在线观看视频| a级毛片免费高清观看在线播放| 久久久久久久久中文| 超碰av人人做人人爽久久| 久久久久国产网址| 国产成人影院久久av| 日本黄大片高清| 国产美女午夜福利| 少妇人妻一区二区三区视频| 国内久久婷婷六月综合欲色啪| 国产精品免费一区二区三区在线| 可以在线观看毛片的网站| 久久久精品欧美日韩精品| 欧美日韩国产亚洲二区| 欧美成人a在线观看| 亚洲成人av在线免费| 最近手机中文字幕大全| 天天躁夜夜躁狠狠久久av| 亚洲成a人片在线一区二区| 五月伊人婷婷丁香| 最近最新中文字幕大全电影3| 国产国拍精品亚洲av在线观看| 人人妻人人看人人澡| 日本免费a在线| 精品福利观看| 好男人在线观看高清免费视频| 日韩一本色道免费dvd| 色视频www国产| 国产一区二区在线观看日韩| 久久久a久久爽久久v久久| 麻豆国产97在线/欧美| 中文资源天堂在线| 国产精品久久久久久av不卡| 日本-黄色视频高清免费观看| 国产成人aa在线观看| 国产午夜精品久久久久久一区二区三区 | 国产伦在线观看视频一区| 丝袜美腿在线中文| 国产极品精品免费视频能看的| 午夜爱爱视频在线播放| 男人的好看免费观看在线视频| 一个人看视频在线观看www免费| av天堂在线播放| 国产69精品久久久久777片| 少妇被粗大猛烈的视频| 久久久久久久亚洲中文字幕| 综合色av麻豆| 99久久九九国产精品国产免费| 一边摸一边抽搐一进一小说| 午夜福利高清视频| 成人鲁丝片一二三区免费| 久久这里只有精品中国| 成人一区二区视频在线观看| 一个人免费在线观看电影| 国产高清不卡午夜福利| 国产美女午夜福利| 看非洲黑人一级黄片| 又爽又黄a免费视频| 亚洲熟妇熟女久久| 一个人看视频在线观看www免费| 欧美xxxx黑人xx丫x性爽| 身体一侧抽搐| 干丝袜人妻中文字幕| 九九久久精品国产亚洲av麻豆| 成人综合一区亚洲| 日本免费a在线| 少妇高潮的动态图| 亚洲aⅴ乱码一区二区在线播放| 欧美激情久久久久久爽电影| 日本-黄色视频高清免费观看| 亚洲精品一区av在线观看| 久久99热6这里只有精品| 国产真实伦视频高清在线观看| 欧美3d第一页| 午夜影院日韩av| 亚洲欧美精品自产自拍| 国产精品久久视频播放| 亚洲av二区三区四区| 亚洲精品影视一区二区三区av| 免费av不卡在线播放| 亚洲欧美日韩卡通动漫| 欧美激情国产日韩精品一区| 免费看美女性在线毛片视频| 欧美+日韩+精品| 日日干狠狠操夜夜爽| 亚洲国产日韩欧美精品在线观看| 有码 亚洲区| 日韩一区二区视频免费看| 波多野结衣高清作品| 亚洲人成网站高清观看| 亚洲av美国av| 成人美女网站在线观看视频| 深夜精品福利| 亚洲在线观看片| 国产欧美日韩精品亚洲av| 成人美女网站在线观看视频| 国产高清视频在线观看网站| 久久久精品大字幕| 亚洲av成人av| 亚洲丝袜综合中文字幕| 国产一区二区激情短视频| 国产在线男女| 激情 狠狠 欧美| 搡老熟女国产l中国老女人| 欧美一区二区亚洲| 中文资源天堂在线| 超碰av人人做人人爽久久| 欧美绝顶高潮抽搐喷水| 两个人视频免费观看高清| 日本黄色视频三级网站网址| 成年免费大片在线观看| 99热只有精品国产| 特级一级黄色大片| 久久久色成人| 人人妻人人澡欧美一区二区| 久久人妻av系列| 99九九线精品视频在线观看视频| 你懂的网址亚洲精品在线观看 | av视频在线观看入口| 两个人的视频大全免费| 精品日产1卡2卡| 国产男人的电影天堂91| 黄色配什么色好看| 熟女人妻精品中文字幕| 搡女人真爽免费视频火全软件 | 亚州av有码| 特级一级黄色大片| 欧美色视频一区免费| 国产一区二区在线观看日韩| 国产精品野战在线观看| 亚洲高清免费不卡视频| 神马国产精品三级电影在线观看| 久久精品国产鲁丝片午夜精品| 国产精品爽爽va在线观看网站| 成人亚洲欧美一区二区av| 欧美色欧美亚洲另类二区| 美女黄网站色视频| 两性午夜刺激爽爽歪歪视频在线观看| 欧美色视频一区免费| 少妇被粗大猛烈的视频| 天堂av国产一区二区熟女人妻| 日日摸夜夜添夜夜爱| 国产乱人视频| av黄色大香蕉| 在线观看美女被高潮喷水网站| 亚洲第一区二区三区不卡| 如何舔出高潮| 久久久久久久午夜电影| 国产视频一区二区在线看| 美女高潮的动态| 天堂动漫精品| 成年版毛片免费区| 韩国av在线不卡| 97超视频在线观看视频| 成人高潮视频无遮挡免费网站| 精品人妻熟女av久视频| 草草在线视频免费看| 亚洲成av人片在线播放无| 春色校园在线视频观看| 91av网一区二区| 日日摸夜夜添夜夜添小说| 国产精品久久视频播放| 午夜福利18| 欧美最黄视频在线播放免费| 夜夜爽天天搞| 日产精品乱码卡一卡2卡三| 国产精品一区二区免费欧美| av视频在线观看入口| 91午夜精品亚洲一区二区三区| 欧美国产日韩亚洲一区| a级毛片免费高清观看在线播放| 九九在线视频观看精品| 久久久国产成人精品二区| 欧美bdsm另类| 国产精品一区二区免费欧美| 91久久精品国产一区二区三区| 久久草成人影院| 三级国产精品欧美在线观看| 亚洲精品色激情综合| 中国美白少妇内射xxxbb| 深夜精品福利| 小蜜桃在线观看免费完整版高清| 99国产精品一区二区蜜桃av| 亚洲欧美精品自产自拍| 国产视频内射| 国产精品久久久久久精品电影| 亚洲欧美日韩高清在线视频| 欧美性猛交╳xxx乱大交人| 亚洲欧美日韩东京热| 亚洲精品国产av成人精品 | 国产乱人视频| 中文字幕免费在线视频6| 天堂动漫精品| 久久久久久久久久成人| 欧美成人a在线观看| 国产精品综合久久久久久久免费| 成人二区视频| 99热只有精品国产| 成人一区二区视频在线观看| 亚洲av一区综合| 国产精品亚洲一级av第二区| 一进一出抽搐动态| 亚洲成人中文字幕在线播放|