• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Intelligent Tunicate Swarm-Optimization-Algorithm-Based Lightweight Security Mechanism in Internet of Health Things

    2021-12-14 03:49:58GiaNhuNguyenNinHoLeVietGyanendraPrasadJoshiandBhanuShrestha
    Computers Materials&Continua 2021年1期

    Gia Nhu Nguyen,Nin Ho Le Viet,Gyanendra Prasad Joshi and Bhanu Shrestha

    1Faculty of Information Technology,Duy Tan University,Da Nang,550000,Vietnam

    2Graduate School,Duy Tan University,Da Nang,550000,Vietnam

    3Department of Computer Science and Engineering,Sejong University,Seoul,05006,South Korea

    4Department of Electronic Engineering,Kwangwoon University,Seoul,01897,South Korea

    Abstract:Fog computing in the Internet of Health Things(IoHT)is promising owing to the increasing need for energy-and latency-optimized health sector provisioning.Additionally,clinical data(particularly,medical image data)are a delicate,highly protected resource that should be utilized in an effective and responsible manner to fulfil consumer needs.Herein,we propose an energy-efficient fog-based IoHT with a tunicate swarm-optimization-(TSO)-based lightweight Simon cipher to enhance the energy efficiency at the fog layer and the security of data stored at the cloud server.The proposed Simon cipher uses the TSO algorithm to select the optimal keys that will minimize the deterioration of quality between the original and reconstructed(decrypted)images.In this study,the decrypted image quality is preserved by the peak signal-to-noise ratio(PSNR)such that consumers can generate precise medical reports from IoHT devices at the application level.Moreover,a lightweight encryption step is implemented in the fog to improve energy efficiency and reduce additional computations at the cloud server.Experimental results indicate that the TSO-Simon model achieved a high PSNR of 61.37 dB and a pixel change rate of 95.31.

    Keywords:Internet of Health Things;healthcare;Simon cipher;tunicate swarm optimization

    1 Introduction

    The Internet of Things(IoT)provides different apparatuses and assets to build an incorporated healthcare framework for better treatment,cost-effective medical services,and positive treatment results[1].The healthcare field,which is slow in embracing new advances,is expected to develop rapidly and will involve more than 50 million associated devices.Additionally,extraordinary application areas in health-related services have demonstrated different prospects of IoT application;according to the present pattern,smart healthcare services in the application space(e.g.,smart pills,smart dispensing gadgets and syringes,smart observing gadgets,smart radio-frequency identification(RFID)cabinets,and electronic health records)are the latest development[2].The Internet of Health Things(IoHT)pertains to the exchange of data and processing of information to screen a patient’s health status[3].Numerous healthrelated institutions are now utilizing the IoHT for various purposes from monitoring infants to tracking inventory and resources.Two classes of operation cases exist:one for clinical administration and the other for support activities.In clinical settings,the IoHT enhances patient-centric exercises through remote patient monitoring.This pertains to clinical preliminaries,where the IoHT actively tracks important signs and other indicators essential to the examination,e.g.,glucose levels and weight patterns.The IoHT facilitates support tasks by enabling the improved usage of portable clinical resources,which will reduce overall operational expenses[4].Executing processes on the cloud may result in latencies that are inappropriate for certain application spaces,causing significant difficulties in providing real-time and conventional cloud computing(CC)[5].CC provides a complete package,which benefits the clients;however,it has certain disadvantages.One of the advantages of the IoT is its rapid processing and computing of big data,which are generated and managed effectively in different applications.Smart healthcare frameworks are required,particularly to manage the rapidly changing pace of human life.Introducing fog computing and the IoT in machines relevant to clinical industry applications enables the productivity of tasks to be improved in such healthcare frameworks[6].

    Fog computing enables on-time service delivery with consistency while addressing the problems related to CC,e.g.,cost overheads,delays,and jitters while transferring data to the cloud.In addition,it involves a distributed design that enhances the computational capacity and networking assets in CC.It provides speedy access to assets,e.g.,computing and storage for healthcare applications[7].Furthermore,two fundamental concerns arise when transferring information to the cloud:(1)security and(2)access control.Therefore,information protection and access control should be guaranteed for approved clients of cloud-supported IoT.The conventional method for safeguarding private information is encryption;however,encryption schemes do not provide access control[8].Moreover,it is difficult to structure a proficient security upgrading system that protects against unapproved access to the client’s personal health information while simultaneously releasing an adequate amount of data to the cloud-based healthcare-related recommender administration to extract helpful suggestions[9].Meanwhile,a secure IoT framework for in-home healthcare applications,including elderly patient information(e.g.,big data,typically up to 23 GB/person/week generated from patient homes),should be established to guarantee information privacy and reliability,regardless of whether the information transfer speeds are affected by the security overhead of the communication protocols[10].

    Herein,we propose an energy-efficient and minimal-delay fog based on the IoHTwith a tunicate-swarmoptimization-(TSO)-based lightweight Simon cipher to enhance the cloud data security.In this section,we introduced some of the fog-based IoHT advantages and applications as well as the disadvantages of the cloud layer.

    The remainder of this paper is organized as follows.Section 2 presents a review of relevant studies.Section 3 provides a detailed explanation of the proposed IoHT data security model.Section 4 presents the results of an experiment performed to prove the efficiency of the proposed method.Section 5 concludes the paper.

    2 Literature Review

    Mukherjee et al.[11]proposed a framework wherein the weighted majority game hypothesis was utilized to select fog gadgets in indoor and outdoor areas.The health information gathered using a body area network was stored and managed inside cloud servers.Clients could access their health information using their cell phones while simultaneously obtaining healthcare counsel.To decrease the energy utilization and delay over remote cloud servers,fog computing was used.

    Mutlag et al.[12]presented a survey regarding innovations in fog computing in the healthcare IoT framework.Fog computing with no interruptions decreases latency compared with CC and is beneficial to healthcare-related IoT frameworks owing to its real-time prerequisites.

    Santos et al.[13]conducted a review that introduced the advances of the most recent investigations based on clinical considerations and an assisted environment.They focused on articles pertaining to online observation,diagnosis,and support for the identification of cardiovascular ailments.They introduced a reference model based on the assessment of assets obtained from selected examinations.Further,their proposed method can assist future enthusiasts in discovering and specifying the necessary elements to establish a model for online heart monitoring purposes.Stergiou et al.[14]proposed a method for incorporating CC into the IoT as a fundamental state for big data.In addition,they attempted to build a structure that relies on the security of the system to enhance data security.Moreover,they proposed a solution by introducing a security “wall” between the cloud server and the Internet to eliminate confidentiality and security issues.

    Manikandan et al.[15]proposed an IoT-based scheduling technique,called the hash polynomial twofactor decision tree(HP-TDT),to increase scheduling efficiency and reduce response time by categorizing patients as being normal or in a critical state within a short time.The HP-TDT planning strategy included three phases:the registration,data sorting,and scheduling stages.The registration step was performed using the open address hashing model to reduce the key generation response time.Subsequently,the data assortment stage was performed using the polynomial data collection algorithm.

    3 Proposed Model

    The IoHT has become a challenging application of the IoT and CC,where the exchange and processing of health information are performed to observe the health status of patients.The health-related information collected is stored and managed inside cloud servers.Users can obtain their health data using their cell phones and can obtain healthcare advice simultaneously.Medical information is a sensitive,highly protected asset that should be prepared in an effective and trustworthy manner.Moreover,sensitive personal information is subject to privacy leakage owing to unapproved access,accidental loss,or resale of IoHT devices.The structure of the proposed energy-efficient fog-based cloud IoHT security model is illustrated in Fig.1.

    In this study,we developed a high-security data storage approach using a Simon cipher-based encryption method to secure medical image data with less complexity in cloud servers.Moreover,to improve the efficiency of the encryption method,we included the optimal key selection method based on the TSO algorithm to improve the visual quality of the decrypted images.Healthcare systems using fog computing are emerging because of the increasing need for energy- and latency-optimized health service provisioning.Hence,to enhance reliability and reduce energy consumption over remote cloud servers,a data security scheme was implemented in a fog layer that was closer to the cloud layer.The proposed IoHT data security model encrypts data by obtaining the optimal key for which the quality of the decrypted image is similar to that of the original secret image.This is because medical image data are extremely sensitive and a slight change in them can result in incorrect medical report generation.Therefore,the quality of medical images must be prioritized when securing the images.Hence,the proposed data security model was designed to obtain the optimal key with the peak signal-to-noise ratio(PSNR)(i.e.,the indicator used to determine the image quality)value of the decrypted image.

    Figure 1:Structure of the proposed model

    3.1 Design of IoHT Framework

    The structural plan of an IoHT system should ensure an undisrupted data stream for precise and ideal dynamic decision making.The IoHT system in this study was designed to have five layers,i.e.,the perception,mist,fog,cloud,and application layers.Each layer was designed using predefined functionalities applicable to the IoHT system’s information transmission and processing pipeline[16–20].

    ●Perception layer:The perception layer is responsible for identifying physical objects and assembling appropriate healthcare information from gadgets including real-time and non-real-time information.

    ●Mist layer:The mist computing layer optimizes time-consuming data processing(i.e.,through data preprocessing strategies)and contributes to ideal resource utilization.

    ●Fog layer:The fog layer can be used to process data “on the y” to recognize anomalies,provide warning alarms in real time,and initiate important activities automatically.This demands a framework with high responsiveness and negligible latency,thereby limiting the load on the cloud.

    ●Cloud layer:The entire healthcare information from the fog layer is sent to the cloud layer for longterm storage and finer examination.

    ●Application layer:The uppermost application layer provides user interfaces between IoHT consumers and the system itself to directly access the produced healthcare status.

    In the proposed IoHT data security model,medical image data are collected from the perception layer and secured at the fog layer to reduce the amount of computation required to secure the data at the cloud.For securing data,lightweight Simon block ciphers are used to enhance the energy efficiency of the fog layer.Next,the data are stored on cloud servers and sent to the application layer for user interfaces.Thus,cloud memory and time can be conserved.

    3.2 Fog-Based IoHT Data Security Using Simon Ciphers

    In this section,the proposed optimal and energy-efficient fog-based IoHT data security model using Simon ciphers is discussed.Simon ciphers are lightweight block ciphers that are primarily intended for resource-control strategies.However,because of the service necessities of large-scale IoHT systems,the requirement for proficient software implementation usage cannot be precluded.Therefore,we introduced TSO-based Simon ciphers in the proposed energy-efficient fog-based IoHT model to enhance the security level in the cloud platform.In the proposed TSO-based Simon ciphers,an optimal key is selected for the encryption of medical images.The proposed security model encrypts the clinical image data at the fog layer and stores the encrypted data along with its key in the cloud server.This enhances the data security and reduces the amount of computation required in the cloud server to safeguard the data from intruders[21–29].

    3.2.1 Simon Ciphers

    In the proposed Simon cipher,the keys are optimized using the TSO algorithm,i.e.,they are selected for improving the decrypted image quality.

    3.2.2 Key Optimization by TSO Algorithm

    The TSO algorithm was developed by imitating the jet propulsion and swarm intelligence behaviors of tunicates in obtaining food sources,i.e.,their optimum behaviors[30].Hence,a tunicate must fulfil three criteria:avoid con icts between search agents,move toward the position of the best search agent,and remain near the best search agent to model the jet propulsion behavior mathematically while the swarm behavior updates the positions of other search agents based on the best optimal solution.

    By implementing TSO,we optimized the keys used for encrypting private medical images.Typically,optimization methods are implemented using an objective function(also known as the fitness function);toward that fitness value,the optimization problem is converged to produce the optimal solution.In this study,the objective function is the minimization function of the PSNR value calculated between the decrypted image and the original plain images.During every iteration,the PSNR value is verified,and the best keys that can maintain the decrypted image quality are selected.Therefore,the proposed Simon cipher can encrypt images without deteriorating the decrypted image quality as well as minimize the computation time required for the encryption.The steps involved in the proposed TSO algorithm are presented in the following section.

    Step 1:Initialization

    During initialization,the population(Nmk,wherem=1,2,…,candk=1,2,…,a)of tunicates(i.e.,set of key values)is determined randomly.

    Step 2:Fitness Evaluation

    Once the initial set of key values is generated,the fitness of the input solutions is assessed,and then the best one is selected during the fitness evaluation step.The fitness function can be defined as

    whereI(x,y)andIDec(x,y)represent the plain and decrypted images,respectively;(x,y)represents the row and column of the image.IfPSNRThreshold,the current solutions are saved,and the algorithm further attempts to improve or maintain the maximal fitness value.

    Step 3:Avoiding con icts between search agents

    The new search agent position(i.e.,newer keys)is calculated using a vectorto avoid con icts between search agents(i.e.,other tunicates)based on the following equation:

    4 Results and Discussion

    The results provided in this section were acquired from the proposed IoHT data security model implemented on a PC with the following parameters:CPU Intel?Pentium 1.9 GHz,64-bit operating system,Microsoft?Windows 10,and 4 GB of RAM;furthermore,MathWorks MATLAB R2014b was used.All experiments were performed for a set of medical image data,of which a few examples are shown in Fig.2.

    Moreover,the encrypted and decrypted image results obtained for the proposed Simon-based IoHT data security model in the fog layer are provided in Tab.1.

    Figure 2:Medical images used in this study

    Table 1:Experimental results of the proposed model

    4.1 Performance Analysis

    To evaluate the performance of the proposed IoHT image data security model,certain indicators such as the number of pixel changing rate(NPCR)and PSNR were considered to determine the encrypted image quality.The NPCR is designed to test the number of changing pixels and the number of average changed intensities between encrypted images.During encryption,the NPCR pertains primarily to the absolute number of pixels that change in value,which can be written as

    Moreover,the PSNR representing the maximum possible power of the signal and the power of corrupted noise affecting the fidelity can be written as

    where I (x,y)and IDec(x,y)represent the plain and decrypted images,respectively,with (x,y)pixel locations.

    4.2 Results Analysis

    The results of encryption using the proposed TSO-based Simon(TSO_Simon),opposition-based particle swarm optimization with Simon(OPSO_Simon),and traditional Simon for a set of diabetic retinopathy(DR)images are shown in Tab.1.A comparison of the results was performed based on the PSNR and NPCR.

    Tab.2 provides a detailed comparative analysis of the proposed model in terms of the PSNR and NPCR.The values listed in the table indicate that the proposed TSO_Simon model performed the best among the three methods.For DR Image_1,the TSO_Simon model achieved a maximum PSNR of 61.58 dB,whereas the OPSO_Simon and Simon models obtained minimum PSNR values of 54.52 and 45.92 dB,respectively.Similarly,for DR Image_2,the TSO_Simon model yielded a high PSNR of 63.21 dB,whereas the OPSO_Simon and Simon models yielded lower PSNR values of 56.15 and 47.81 dB,respectively.Likewise,on DR Image_3,the TSO_Simon model achieved a maximum PSNR of 60.74 dB,whereas the OPSO_Simon and Simon models obtained minimum PSNR values of 51.86 and 52.72 dB,respectively.Moreover,for DR Image_4,the TSO_Simon model achieved a high PSNR of 59.95 dB,whereas the OPSO_Simon and Simon models obtained lower PSNR values of 53.32 and 51.24 dB,respectively.

    Table 2:Comparative analysis

    Additionally,the proposed TSO_Simon model was assessed based on the NPCR.On DR Image_1,the TSO_Simon model achieved a maximum NPCR of 97.25,whereas the OPSO_Simon and Simon models obtained minimum NPCR values of 82.43 and 80.89,respectively.Similarly,on DR Image_2,the TSO_Simon model achieved a high NPCR of 95.95,whereas the OPSO_Simon and Simon models obtained lower NPCR values of 85.45 and 86.85,respectively.Likewise,on DR Image_3,the TSO_Simon model achieved a high NPCR of 97.62,whereas the OPSO_Simon and Simon models obtained lower NPCR values of 93.56 and 88.85,respectively.Moreover,on DR Image_4,the TSO_Simon model achieved a high NPCR of 90.42,whereas the OPSO_Simon and Simon models obtained lower NPCR values of 80.12 and 79.72,respectively.

    Tab.2 shows that the maximum PSNR of 63.21 was achieved for DR Image_2 using the proposed method,whereas it is lower for other existing methods.Likewise,the PSNR values of the other DR images were compared with those of existing methods.The obtained values show that the proposed TSObased Simon method improved the image quality significantly compared to the other methods.In addition,the NPCRs of the proposed and existing methods were compared for the DR images.DR Image_1 and DR Image_3 yielded NPCR values greater than 97 using the proposed method,whereas the values were lower for existing methods.This demonstrates the better security attained while encrypting the medical image samples.It is clear from Tab.2 that the proposed TSO_Simon outperformed the other existing methods.

    Finally,graphical representations of the results obtained using the proposed and other Simon-based encryption techniques are shown in Figs.3 and 4 to clearly depict the changes in values among the methods compared.

    Figure 3:PSNR comparison among different Simon-based encryption techniques

    Figure 4:NPCR comparison among different Simon-based encryption techniques

    5 Conclusion

    In this study,we developed an energy-efficient fog-based IoHT data security model to secure medical image data in a cloud server.The various layers of the IoHT structure were discussed herein.The TSObased Simon encryption method was implemented in the fog layer to improve the energy efficiency,and encrypted private medical data were stored in the cloud.The performance of the proposed IoHT data security model was analyzed based on its PSNR and NPCR and compared with those of other Simon-based encryption methods.The results showed that the highest PSNR value of 63.21 was achieved using the proposed TSO_Simon method,whereas the value was low for the existing methods.In the future,the mist layer of the IoHT architecture will be implemented with optimal resource allocation using advanced optimization methods.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no con icts of interest to report regarding the present study.

    91在线精品国自产拍蜜月| 国产精品不卡视频一区二区| 赤兔流量卡办理| 青草久久国产| 色哟哟·www| 国产精品蜜桃在线观看| 国产不卡av网站在线观看| 少妇人妻 视频| 一级黄片播放器| 国产 精品1| 欧美日韩视频高清一区二区三区二| 久久久亚洲精品成人影院| 精品国产一区二区三区四区第35| 亚洲国产最新在线播放| 久久免费观看电影| 九色亚洲精品在线播放| 国产福利在线免费观看视频| 精品久久久精品久久久| 精品久久久精品久久久| 国产激情久久老熟女| 久久国产精品男人的天堂亚洲| 女人精品久久久久毛片| 午夜福利视频在线观看免费| av又黄又爽大尺度在线免费看| 国产不卡av网站在线观看| 亚洲欧美色中文字幕在线| 欧美精品亚洲一区二区| 制服人妻中文乱码| 亚洲精品,欧美精品| 色播在线永久视频| 精品人妻偷拍中文字幕| 久久毛片免费看一区二区三区| 亚洲色图综合在线观看| 久久久久国产网址| 男男h啪啪无遮挡| 免费高清在线观看日韩| 老汉色av国产亚洲站长工具| 美女主播在线视频| 男男h啪啪无遮挡| 亚洲av日韩在线播放| 亚洲欧美精品综合一区二区三区 | 欧美人与善性xxx| 一二三四中文在线观看免费高清| 色94色欧美一区二区| 老司机亚洲免费影院| 1024视频免费在线观看| 叶爱在线成人免费视频播放| 少妇 在线观看| 波多野结衣一区麻豆| 欧美成人午夜免费资源| 各种免费的搞黄视频| 午夜免费观看性视频| 9色porny在线观看| 日韩熟女老妇一区二区性免费视频| 亚洲欧美一区二区三区久久| 成人毛片60女人毛片免费| 一二三四在线观看免费中文在| 日本午夜av视频| 十八禁高潮呻吟视频| 午夜激情久久久久久久| 欧美激情 高清一区二区三区| 91精品伊人久久大香线蕉| av.在线天堂| 狂野欧美激情性bbbbbb| 午夜av观看不卡| 丁香六月天网| 亚洲精品国产色婷婷电影| 欧美日本中文国产一区发布| 国语对白做爰xxxⅹ性视频网站| 永久网站在线| 一二三四在线观看免费中文在| 中文字幕人妻熟女乱码| 国产免费又黄又爽又色| 亚洲国产精品一区三区| 久久精品人人爽人人爽视色| 色婷婷久久久亚洲欧美| 91国产中文字幕| 高清在线视频一区二区三区| av一本久久久久| 看免费成人av毛片| 在现免费观看毛片| 黄片无遮挡物在线观看| av在线app专区| 夫妻午夜视频| 亚洲中文av在线| 久久久久精品性色| 观看av在线不卡| 在线观看一区二区三区激情| 国产一区二区 视频在线| 色网站视频免费| 少妇人妻精品综合一区二区| 五月伊人婷婷丁香| 国产精品香港三级国产av潘金莲 | 久久精品夜色国产| 最新中文字幕久久久久| 秋霞伦理黄片| 国产成人免费无遮挡视频| 男女下面插进去视频免费观看| 国产老妇伦熟女老妇高清| 国产黄频视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 91久久精品国产一区二区三区| 99精国产麻豆久久婷婷| 欧美变态另类bdsm刘玥| 99久久综合免费| 2022亚洲国产成人精品| 国产亚洲精品第一综合不卡| 青春草视频在线免费观看| 久久久久久久久久久免费av| 久久免费观看电影| 制服诱惑二区| 国产熟女欧美一区二区| 亚洲成av片中文字幕在线观看 | 亚洲欧美一区二区三区黑人 | 亚洲情色 制服丝袜| 这个男人来自地球电影免费观看 | 侵犯人妻中文字幕一二三四区| 99久久中文字幕三级久久日本| 老汉色av国产亚洲站长工具| 三级国产精品片| 国产精品 欧美亚洲| 中文字幕另类日韩欧美亚洲嫩草| 纯流量卡能插随身wifi吗| 国产亚洲最大av| 久久热在线av| 日本猛色少妇xxxxx猛交久久| 色婷婷av一区二区三区视频| 日韩伦理黄色片| 国产精品 欧美亚洲| 国产精品人妻久久久影院| 国产国语露脸激情在线看| 99re6热这里在线精品视频| 亚洲精品成人av观看孕妇| 亚洲精品国产一区二区精华液| 人体艺术视频欧美日本| www.自偷自拍.com| 看免费av毛片| 黄片无遮挡物在线观看| 成人午夜精彩视频在线观看| 夜夜骑夜夜射夜夜干| 人成视频在线观看免费观看| 少妇人妻精品综合一区二区| 国产精品成人在线| 亚洲人成网站在线观看播放| www日本在线高清视频| av片东京热男人的天堂| 国产精品.久久久| 亚洲精品国产av蜜桃| 日韩成人av中文字幕在线观看| 亚洲人成电影观看| 亚洲精品久久成人aⅴ小说| 女性被躁到高潮视频| 日韩大片免费观看网站| 夫妻性生交免费视频一级片| 女人被躁到高潮嗷嗷叫费观| 黄色怎么调成土黄色| 亚洲人成电影观看| 尾随美女入室| 99热全是精品| 久久久久人妻精品一区果冻| 男女啪啪激烈高潮av片| 精品一品国产午夜福利视频| 国产 精品1| 男女高潮啪啪啪动态图| 国产精品国产三级专区第一集| 99香蕉大伊视频| 日本猛色少妇xxxxx猛交久久| 亚洲欧美一区二区三区久久| 韩国高清视频一区二区三区| 久久久久久久精品精品| 欧美精品一区二区免费开放| 91精品三级在线观看| 国产无遮挡羞羞视频在线观看| 国产精品女同一区二区软件| 久久精品亚洲av国产电影网| 亚洲久久久国产精品| 亚洲精品中文字幕在线视频| av国产精品久久久久影院| 久久久久久久久久久免费av| 免费黄色在线免费观看| 亚洲国产精品一区三区| 男人操女人黄网站| 国产精品.久久久| 国产深夜福利视频在线观看| 99久久综合免费| 各种免费的搞黄视频| 纵有疾风起免费观看全集完整版| 80岁老熟妇乱子伦牲交| 亚洲欧美日韩另类电影网站| 国产视频首页在线观看| 国产精品国产三级专区第一集| 欧美+日韩+精品| 久久久久久久国产电影| 99久久综合免费| 成年女人毛片免费观看观看9 | 国产男人的电影天堂91| 久久久亚洲精品成人影院| 黄片小视频在线播放| 美女视频免费永久观看网站| 日本av手机在线免费观看| av福利片在线| 你懂的网址亚洲精品在线观看| 巨乳人妻的诱惑在线观看| 亚洲精品第二区| 综合色丁香网| 成人国产麻豆网| 亚洲欧美精品自产自拍| 80岁老熟妇乱子伦牲交| 国产成人欧美| 亚洲国产最新在线播放| 免费久久久久久久精品成人欧美视频| 男女啪啪激烈高潮av片| 国产在线视频一区二区| 高清在线视频一区二区三区| 亚洲欧美中文字幕日韩二区| av天堂久久9| 成人国产麻豆网| 国产成人精品久久二区二区91 | 免费观看性生交大片5| videossex国产| 人妻系列 视频| 国产欧美日韩一区二区三区在线| 免费看不卡的av| 国产精品偷伦视频观看了| 可以免费在线观看a视频的电影网站 | 女的被弄到高潮叫床怎么办| 午夜福利乱码中文字幕| 18禁观看日本| 在线免费观看不下载黄p国产| 综合色丁香网| 啦啦啦在线观看免费高清www| 久久精品亚洲av国产电影网| 一级毛片黄色毛片免费观看视频| 免费看不卡的av| 极品少妇高潮喷水抽搐| 97精品久久久久久久久久精品| 国产精品久久久久久av不卡| 国产成人精品婷婷| 久久久久精品久久久久真实原创| 国产精品 欧美亚洲| 黄片播放在线免费| 一区二区三区乱码不卡18| a 毛片基地| 欧美亚洲日本最大视频资源| 高清在线视频一区二区三区| 99国产精品免费福利视频| 日韩电影二区| 韩国精品一区二区三区| 亚洲三区欧美一区| 夜夜骑夜夜射夜夜干| av国产精品久久久久影院| 大片电影免费在线观看免费| 又大又黄又爽视频免费| freevideosex欧美| 丝袜美腿诱惑在线| 18禁国产床啪视频网站| 亚洲欧美色中文字幕在线| 晚上一个人看的免费电影| 久久久久网色| 久久午夜福利片| 国产人伦9x9x在线观看 | 在线免费观看不下载黄p国产| 咕卡用的链子| 一级a爱视频在线免费观看| av卡一久久| 丰满迷人的少妇在线观看| 十分钟在线观看高清视频www| 国产精品偷伦视频观看了| 亚洲欧美精品自产自拍| 亚洲中文av在线| 性高湖久久久久久久久免费观看| 亚洲欧洲国产日韩| 国产精品偷伦视频观看了| 纵有疾风起免费观看全集完整版| 久久女婷五月综合色啪小说| a级片在线免费高清观看视频| 亚洲国产毛片av蜜桃av| 日韩制服丝袜自拍偷拍| 热re99久久精品国产66热6| 在线 av 中文字幕| 天天躁日日躁夜夜躁夜夜| 色视频在线一区二区三区| 一级毛片电影观看| 国产一区亚洲一区在线观看| 一区二区av电影网| 国产精品偷伦视频观看了| 天天躁夜夜躁狠狠久久av| 美女脱内裤让男人舔精品视频| 黄色配什么色好看| 高清视频免费观看一区二区| h视频一区二区三区| 欧美在线黄色| videos熟女内射| av线在线观看网站| 蜜桃国产av成人99| 一区二区三区激情视频| 久久久久精品性色| 日本欧美国产在线视频| 男男h啪啪无遮挡| av国产精品久久久久影院| 两个人看的免费小视频| 国产精品欧美亚洲77777| 精品午夜福利在线看| 性少妇av在线| 久久这里只有精品19| 69精品国产乱码久久久| 青草久久国产| 大香蕉久久成人网| 亚洲精品日韩在线中文字幕| 久久99一区二区三区| 久久精品国产亚洲av高清一级| 肉色欧美久久久久久久蜜桃| 国产成人精品在线电影| 日韩熟女老妇一区二区性免费视频| 欧美日本中文国产一区发布| 99国产精品免费福利视频| 91精品三级在线观看| 国产探花极品一区二区| 尾随美女入室| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 青春草视频在线免费观看| 国产色婷婷99| 国产xxxxx性猛交| 久久精品熟女亚洲av麻豆精品| 国产淫语在线视频| 美女午夜性视频免费| 一区福利在线观看| 免费少妇av软件| 日韩电影二区| 成人午夜精彩视频在线观看| av视频免费观看在线观看| 国产精品国产av在线观看| 欧美老熟妇乱子伦牲交| 欧美激情 高清一区二区三区| 午夜福利,免费看| 国产在线视频一区二区| 精品酒店卫生间| 久久国产精品大桥未久av| 丝袜美腿诱惑在线| 亚洲欧美一区二区三区黑人 | 啦啦啦中文免费视频观看日本| 亚洲 欧美一区二区三区| 美女福利国产在线| 一本久久精品| 国产老妇伦熟女老妇高清| 国产黄色视频一区二区在线观看| 侵犯人妻中文字幕一二三四区| 亚洲三区欧美一区| 黄色 视频免费看| 新久久久久国产一级毛片| 伊人亚洲综合成人网| 国产精品免费大片| 在线 av 中文字幕| 国产免费又黄又爽又色| 肉色欧美久久久久久久蜜桃| 亚洲av男天堂| 亚洲成人手机| 欧美日韩av久久| 亚洲国产欧美日韩在线播放| 新久久久久国产一级毛片| 久久婷婷青草| 在线精品无人区一区二区三| 99香蕉大伊视频| 最黄视频免费看| 精品一区二区三区四区五区乱码 | 18在线观看网站| 美女主播在线视频| 亚洲色图综合在线观看| 欧美精品av麻豆av| 少妇猛男粗大的猛烈进出视频| 老司机影院成人| 国产不卡av网站在线观看| 亚洲一区二区三区欧美精品| 日本猛色少妇xxxxx猛交久久| 亚洲欧美中文字幕日韩二区| 男人添女人高潮全过程视频| 高清黄色对白视频在线免费看| 777米奇影视久久| 9热在线视频观看99| 欧美成人精品欧美一级黄| 国产色婷婷99| 日韩,欧美,国产一区二区三区| 成年美女黄网站色视频大全免费| 久久99精品国语久久久| 精品一区二区免费观看| 男女国产视频网站| 91精品国产国语对白视频| 不卡av一区二区三区| 青春草国产在线视频| 女人高潮潮喷娇喘18禁视频| 亚洲视频免费观看视频| 免费高清在线观看日韩| 亚洲av中文av极速乱| 日韩一卡2卡3卡4卡2021年| www.熟女人妻精品国产| 国产成人免费无遮挡视频| 下体分泌物呈黄色| 999久久久国产精品视频| 秋霞伦理黄片| 久久精品人人爽人人爽视色| 久久免费观看电影| 搡女人真爽免费视频火全软件| √禁漫天堂资源中文www| 国产免费视频播放在线视频| 在线 av 中文字幕| 国产欧美日韩一区二区三区在线| 男人添女人高潮全过程视频| 九草在线视频观看| 久久免费观看电影| 性少妇av在线| 亚洲情色 制服丝袜| 99久国产av精品国产电影| 亚洲精品在线美女| 国产色婷婷99| 成人亚洲精品一区在线观看| 精品人妻偷拍中文字幕| 日本vs欧美在线观看视频| 亚洲av电影在线观看一区二区三区| 精品卡一卡二卡四卡免费| 麻豆乱淫一区二区| 亚洲第一av免费看| 性高湖久久久久久久久免费观看| 男女啪啪激烈高潮av片| 99久久中文字幕三级久久日本| 色视频在线一区二区三区| 久久久久网色| 亚洲国产精品国产精品| a级片在线免费高清观看视频| 久久人妻熟女aⅴ| 免费播放大片免费观看视频在线观看| 伦理电影免费视频| 超碰成人久久| 日韩制服丝袜自拍偷拍| 尾随美女入室| a级毛片在线看网站| 成年女人毛片免费观看观看9 | 亚洲国产毛片av蜜桃av| 伦理电影大哥的女人| 大香蕉久久成人网| 国产男女内射视频| 中文字幕精品免费在线观看视频| 久久久久久人人人人人| 少妇的逼水好多| 日韩制服骚丝袜av| 日韩欧美精品免费久久| 18禁动态无遮挡网站| 免费看不卡的av| 男的添女的下面高潮视频| 亚洲av.av天堂| 美女福利国产在线| 久热久热在线精品观看| 亚洲欧美成人精品一区二区| 亚洲国产看品久久| 黄色一级大片看看| 欧美亚洲 丝袜 人妻 在线| 2018国产大陆天天弄谢| 一本久久精品| 极品少妇高潮喷水抽搐| 成人亚洲精品一区在线观看| 五月伊人婷婷丁香| 久久综合国产亚洲精品| 99热全是精品| av视频免费观看在线观看| 交换朋友夫妻互换小说| 久久精品久久精品一区二区三区| 国产黄色视频一区二区在线观看| 精品一区二区三卡| 最近最新中文字幕大全免费视频 | 久久精品国产综合久久久| 熟妇人妻不卡中文字幕| 高清视频免费观看一区二区| 久久99精品国语久久久| 国产精品一区二区在线不卡| 亚洲欧美日韩另类电影网站| 午夜福利一区二区在线看| 亚洲av日韩在线播放| av又黄又爽大尺度在线免费看| 一本大道久久a久久精品| 在线观看人妻少妇| 精品国产乱码久久久久久男人| 美女国产视频在线观看| 亚洲国产最新在线播放| 新久久久久国产一级毛片| 国产av精品麻豆| 国产精品亚洲av一区麻豆 | 黑人猛操日本美女一级片| 最近2019中文字幕mv第一页| 少妇被粗大的猛进出69影院| 免费久久久久久久精品成人欧美视频| 一二三四在线观看免费中文在| 国产xxxxx性猛交| 精品福利永久在线观看| 久久久精品94久久精品| 国产精品99久久99久久久不卡 | 欧美日本中文国产一区发布| 国产精品免费大片| 亚洲精品一区蜜桃| 一区二区三区精品91| 国产精品久久久久成人av| 亚洲第一青青草原| 久久久久视频综合| 久久久久久人人人人人| 国产极品天堂在线| av在线播放精品| 日日啪夜夜爽| 亚洲国产精品一区二区三区在线| 夫妻午夜视频| 亚洲av综合色区一区| 久久久久久久久久久免费av| 桃花免费在线播放| 五月天丁香电影| 国产不卡av网站在线观看| 制服诱惑二区| 好男人视频免费观看在线| 国产精品久久久av美女十八| 老鸭窝网址在线观看| 人人妻人人添人人爽欧美一区卜| 伊人久久大香线蕉亚洲五| 欧美日韩一区二区视频在线观看视频在线| 大片电影免费在线观看免费| 韩国av在线不卡| 亚洲精品美女久久av网站| 精品午夜福利在线看| 精品一品国产午夜福利视频| 亚洲欧洲日产国产| 欧美变态另类bdsm刘玥| 亚洲情色 制服丝袜| 九草在线视频观看| 久久午夜福利片| 亚洲欧美精品自产自拍| 国产片特级美女逼逼视频| 这个男人来自地球电影免费观看 | 女人高潮潮喷娇喘18禁视频| 亚洲av男天堂| 免费少妇av软件| 国产男女内射视频| 考比视频在线观看| 制服人妻中文乱码| 精品少妇黑人巨大在线播放| 校园人妻丝袜中文字幕| 大香蕉久久网| 精品久久久精品久久久| 久久人妻熟女aⅴ| 亚洲国产精品成人久久小说| 国产成人精品无人区| 丰满少妇做爰视频| 寂寞人妻少妇视频99o| av女优亚洲男人天堂| 天天躁夜夜躁狠狠久久av| 中文乱码字字幕精品一区二区三区| 日韩,欧美,国产一区二区三区| 嫩草影院入口| 午夜免费男女啪啪视频观看| 中文字幕最新亚洲高清| 宅男免费午夜| 久久久久久久精品精品| 国产精品.久久久| 男男h啪啪无遮挡| 丝袜美腿诱惑在线| 亚洲精品日本国产第一区| 91午夜精品亚洲一区二区三区| 999精品在线视频| 精品一区二区免费观看| 在线观看人妻少妇| 啦啦啦在线观看免费高清www| 少妇的逼水好多| 国产综合精华液| 国产白丝娇喘喷水9色精品| 一本久久精品| 男女下面插进去视频免费观看| 日韩一区二区三区影片| 免费在线观看黄色视频的| 男女午夜视频在线观看| 2018国产大陆天天弄谢| 久久亚洲国产成人精品v| 精品少妇久久久久久888优播| 国产免费现黄频在线看| 亚洲综合精品二区| 亚洲一码二码三码区别大吗| 国产黄色视频一区二区在线观看| 欧美精品人与动牲交sv欧美| 精品少妇一区二区三区视频日本电影 | 2021少妇久久久久久久久久久| 午夜福利在线观看免费完整高清在| 国产老妇伦熟女老妇高清| av网站免费在线观看视频| 久久久久国产精品人妻一区二区| 免费高清在线观看视频在线观看| 青春草国产在线视频| 超色免费av| 秋霞在线观看毛片| 91aial.com中文字幕在线观看| 亚洲成人一二三区av| 免费观看a级毛片全部| 久久精品国产鲁丝片午夜精品| 一本色道久久久久久精品综合| 秋霞伦理黄片| 美女xxoo啪啪120秒动态图| 九草在线视频观看| 日韩免费高清中文字幕av| 寂寞人妻少妇视频99o| 国产精品免费视频内射| 最新的欧美精品一区二区| 成人二区视频| 色婷婷av一区二区三区视频| 男人添女人高潮全过程视频| 伦理电影免费视频| 岛国毛片在线播放| 一本久久精品| 亚洲av欧美aⅴ国产| 三级国产精品片| 日韩精品有码人妻一区| 波多野结衣av一区二区av| 高清av免费在线| 国产成人一区二区在线|