• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modelling Insurance Losses with a New Family of Heavy-Tailed Distributions

    2021-12-14 03:49:54MuhammadArifDostMuhammadKhanSaimaKhanKhosaMuhammadAamirAdnanAslamZubairAhmadandWeiGao
    Computers Materials&Continua 2021年1期

    Muhammad Arif,Dost Muhammad Khan,Saima Khan Khosa,Muhammad Aamir,Adnan Aslam,Zubair Ahmad and Wei Gao

    1Department of Statistics,Abdul Wali Khan University,Mardan,23200,Pakistan

    2Department of Statistics,Bahauddin Zakariya University,Multan,60800,Pakistan

    3Department of Natural Sciences and Humanities,University of Engineering and Technology,Lahore,54000,Pakistan

    4Department of Statistics,Yazd University,Yazd,89175-741,Iran

    5School of Information Science and Technology,Yunnan Normal University,Kunming,650500,China

    Abstract:The actuaries always look for heavy-tailed distributions to model data relevant to business and actuarial risk issues.In this article,we introduce a new class of heavy-tailed distributions useful for modeling data in financial sciences.A specific sub-model form of our suggested family,named as a new extended heavy-tailed Weibull distribution is examined in detail.Some basic characterizations,including quantile function and raw moments have been derived.The estimates of the unknown parameters of the new model are obtained via the maximum likelihood estimation method.To judge the performance of the maximum likelihood estimators,a simulation analysis is performed in detail.Furthermore,some important actuarial measures such as value at risk and tail value at risk are also computed.A simulation study based on these actuarial measures is conducted to exhibit empirically that the proposed model is heavy-tailed.The usefulness of the proposed family is illustrated by means of an application to a heavy-tailed insurance loss data set.The practical application shows that the proposed model is more flexible and efficient than the other six competing models including(i)the two-parameter models Weibull,Lomax and Burr-XII distributions(ii)the three-parameter distributions Marshall-Olkin Weibull and exponentiated Weibull distributions,and(iii)a well-known four-parameter Kumaraswamy Weibull distribution.

    Keywords:Weibull distribution;actuarial measures;heavy-tailed distributions;estimations;insurance losses

    1 Introduction

    Modelling insurance risk data using a heavy tailed distribution has obtained more importance and interest for actuaries.Mostly the Insurance risk data sets are positively skewed,more peaked than mesokurtic,unimodal and owns thick right tail;for detail,we refer to[1–3].To obtain the estimates of business risk for insurance risk data sets,the heavy tailed distributions are very effective and suitable and gives more good fit to the data than the other models,see[4–6].Heavy-tailed distributions have plays a major role and have great importance in the actuarial sciences offering the best description of the claim size distributions;see[7,8].

    Realising the significance of these types of data modelling,researchers have shown a great interest in proposing new statistical models appropriate for modelling such data.A few of such models used for modelling insurance risk data and risk returns are Weibull,Pareto,Lognormal and gamma distributions,see for detail[9].However,there are very few probability models in the literature which has the capability to model data with the aforesaid features,therefore,it is necessary to propose new models to fit the insurance risk data,financial returns;for more detail we refer the interested readers to[10–17].

    Studying the above literature,we are inspired to develop more dynamic probability models that are flexible in data fittings.Henceforth,in this article,our main objective is to suggest a new family of heavy-tailed(for short,NEFHT)models for modelling heavy tailed data.Several characterizations of the NEFHT distributions will be discussed here.Our research focuses on the special sub case of the NEFHT distributions,named as,a new heavy-tailed Weibull(NEHTW)distribution.Moreover,the most widely used maximum likelihood method of estimation is taken into conderation for estimation of the unknown model parameters.Furthermore,value at risk(VaR)and tail value at risk(TVaR)also computed.At last,we are concentrating our contemplations on the conclusions obtained from the NEHTW distribution fitted to insurance data.

    The cumulative distribution function(cdf)of the NEFHT distributed random variable sayX,is follows:

    Henceforth,representingX~NEFHT (x;σ,ξ)a random variable having density function given in Eq.(2).

    The main objective of the present work is to develop and examine the proposed family in order to get new models appropriate for modelling financial data sets.Its key advantage is that it offers more flexibility to the resulting models by inserting just one extra parameter instead of including two or three parameters as appeared in other methods.Based on the NEFHT family of distributions,we introduce a three-parameter NEHTW model and give a comprehensive description of some of its mathematical properties so that it will attract the wider applications in insurance sciences and other related areas of research.

    The rest of this article is structured in the different sections illustrated as:In Section 2,we have incorporated the NEHTW model and several plots displayed for its density.Section 3 contains mathematical properties including quantile function and moments.Section 4 focuses on the estimation and simulation studies of the recently recommended family.Actuarial measures VaR and TVaR of the NEHTW model are derived and based on these measures,a simulation study is conducted in Section 5.Section 6 offers insurance data modeling,While the Section 7 presented the final conclusion of the paper.

    2 A Special Sub-Case

    This portion of the article presents a particualr sub case of NEHT family by using the cdf of Weibull distribution with scale and shape parameters γ and α,respectively.The expressions for the cdf and pdf of the Weibull model is given byFx;(ξ)=1-e-γxα,x>0,ξ >0,andf x;(ξ)=αγxα-1e-γxα,respectively.Where ξ= α,(γ).The NEHTW model’s cdf is provided by the following expression.

    with density function

    The pdf plots of the NEHTW model for selected parameter values are presented in Fig.1.

    Figure 1:The NEHTW model pdf for specified values of the parameters

    3 The Mathematical Properties

    This section presents some important characterizations of the NEFHT family.

    3.1 The Quantile Function

    Quantile function is extensively utilized for collecting samples from a specific model.The quantile function of X,represented byQ(u),whereX~NEFHT,is exhibited by the expression given by Eq.(5)as

    whereu∈(0,1).The quantile function is used to measure the effect of the shape parameters on the skewness and kurtosis.Henceforth,via using Eq.(5),we obtained the expressions for skewness and kurtosis.The formulas for skewness and kurtosis are presented by the following expressions.

    and the Moor’s kurtosis is

    Usually,these measures are slightly influenced by the extreme observations.For γ=1 and different values of α and σ graphs for the skewness,mean,variance and kurtosis of the proposed model are sketched in Figs.2 and 3.

    Figure 2:Graphs for the mean and variance of the NEHTW model

    Figure 3:Plots for the skewness and kurtosis of the NEHTW model

    3.2 The Moments

    4 Estimation of Paramters and Monte Carlo Simulation

    The following sub-section provides a well-known approach for estimation of unknown model parameters,named as maximum likelihood method estimation.Moreover,for assessing the nature of the maximum likelihood estimators(MLEs),a comprehensive analysis is performed.

    4.1 Parameter Estimation

    4.2 The Monte Carlo Simulation Study

    In this portion,a comprehensive Monte Carlo simulation analysis is considered for assessing the performance of the ML estimates.The simulation study is conducted using the NEHTW distribution.The generation of random numbers is successfully performed using the inverse cdf procedure from the NEHTW model through R software.The major steps taken while performing simulation study are given below:

    ●We produced different samples of sizesn= 25,50,…,1000 from the proposed model.

    ●MLEs of the parameters are derived.

    ●MSEs and biases are calculated as

    The numerical results of the simulation study are displayed in Figs.4–7.

    5 The Actuarial Measures

    One of the major role of financial science organizations is to determine the market loss.This portion contains the computation of some essential risk measures named as,VaR and TVaR for suggested model,which plays a key role in portfolio optimisation under the unpredictable situations.

    5.1 The Value at Risk

    The VaR is most widely considered by the professionals with in the field of insurance and finance to determine risk factor.The measure VaR is mostly specified with 90,95 and 99% of the confidence level,representing the risk probability equal or greater than X percent of the time.The VaR measure ofXis theqthquantile of its cdf.IfXhas the density function provided in Eq.(2),then

    Figure 4:Estimated parameters and the MSEs of NEHTW distribution for α=0.9,σ=0.6 and γ=0.5

    Figure 5:Graphical display of the absolute biases and MSE of the NEHTW distribution for α=0.9,σ=0.6 and γ=0.5

    5.2 The Tail Value at Risk

    The TVaR is an essential technique used for the computation of the estimated value of the risk provided that an event turned out beyond a determined significance level has occurred.LetXbe NEFHT distributioned random variable,then,the TVaR for the variable X can be determined as

    Figure 6:Plots of the estimated parameters and the MSEs of NEHTW distribution for α=1.4,σ=0.9 and γ=1

    Figure 7:Graphical presentation of the absolute bias and bias for NEHTW distribution using α=1.4,σ=0.9 and γ=1

    Using Eq.(2)in Eq.(16),we have

    5.3 The Numeric Risk Measures

    We presented a computational analysis of these risk measures using two parameter Weibull and proposed models for various combination of parameters values with in this section.This process is carried out as:

    ●From the Weibull and NEHTW models,random samples of sizes n =100 and 150 are obtained.

    ●The parameters are estimated via the MLE approach.

    ●The process is replicated 1000 times to acquire the numerical figures for VaR and TVaR for comparing the competitive models.

    The TVaR and TVaR measures are reported in Tabs.1 and 2.In the support of Tabs.1 and 2,the graphs of the VaR and TVaR utilizing the proposed and Weibull models are sketched Figs.8 and 9,respectively.

    Table 1:The simulated results for the VaR and the TVaR for n=100

    The comprehensive simulation study is conducted for suggested and Weibull model.A model is considered to be a heavy tailed,if the risk assessment values are higher.The results given in Tab.1 and 2 exhibits,that the computed risk figures of the suggested model are higher than the standard Weibull distribution.The graphical display of the simulation results is portrayed in Figs.8 and 9,expressing the suggested model as more heavy tailed than the Weibull distribution.

    Table 2:The simulated results of the VaR and the TVaR for n= 150

    Figure 8:The graphical display of the results given in Tab.1

    6 Applications

    The heavy tailed models are prominently used for measuring the risk values of the data.We have considered an insurance loss data,in order to assess the performance of the proposed model.Moreover,the study provides simplified calculations of the actuarial measurements while using the existing data set for the Weibull and NEHTW models.

    Figure 9:The graphical display of the results provided in Tab.2

    6.1 Application to the Vehicle Insurance Loss Data

    The link given in this subsection,provides the insurance loss data available at http://www.businessandeconomics.mq.edu.au/our_departments/Applied_Finance_and_Actuarial_Studies/research/books/GLMsforInsuranceData/data_sets.To determine the better fit of our suggested model,we have compared our proposed model with other recognized famous distributions.The competing distributions contains the Weibull,Exponentiated Weibull(EW),Kumaraswamy Weibull(Ku-W),Marshall-Olkin Weibull(MOW),Lomax and Burr–XII(BX-II)models.

    The maximum likelihood estimates of the model parameters are presented in Tab.3.Whereas the model adequacy is evaluated by the well-known measures such as Hannan-Quinn information criterion(HQIC),Akaike information criterion(AIC),Bayesian information criterion(BIC)and Consistent Akaike Information Criterion(CAIC).The results of these measures are presented in Tab.4.

    Table 3:The ML estimates of the NEHTW and other compared distributions

    The researchers always interested in a smaller values resulted by the aforesaid measures.Tab.4 offers the final results of these measures,which illustrates that our suggested NEHTW model delivers a superior fit than the other competent models.Furthermore,using the insurance loss data,the fitted plots of the cdf,pdf,Kaplan Meier and probability-probability(PP)plots of the NEHTW models are presented in Figs.10 and 11 respectively.

    Table 4:Computational analysis of the NEHTW and six competing models

    Figure 10:The estimated pdf together with the cdf of the NEHTW distribution

    Figure 11:Sketch of the Kaplan Meier and PP plots for the NEHTW model

    6.2 Calculation of Actuarial Measures Using Insurance Data

    Here we have considered an insurance data set already used in Section 6.1,in order to compute the numerical values of VaR and TVaR and to compare the Weibull and NEHTW distribtuions.The obtained results of the VaR and TVaR,while considering different intervals of significance levels are illustrated in Tab.5.

    Table 5:The actuarial measures using vehicle insurance loss data

    From the above discussion,it is clearly shown that while modelling data,as the risk value of a model increases,the model becomes heavier tailed.From the calculated values given in Tab.5,it is the evident that the NEHTW model possess more longer tail than the existing Weibull model,which gives the testimony of the NEHTW as a strong candidate model for modelling insurance data sets.

    7 Conclusion

    In this article,we have provided the most flexible and prominent family,named as,new extended family of heavy tailed distributions.A specific three parameter form of the NEFHT class of distributions,named as,NEHTW distribution is studied,which has the capability to model heavy tailed data sets.Various basic statistical characterization have been studied.The estimates of the unknown model parameters are estimated via the most widely used ML method.A detailed evaluation of the of the simulation study is done to investigate the efficiency of the estimators.Moreover,the significance of the NEHTW model is illustrated via a practical application of the insurance loss data set.The practical application demonstrates that the NEHTW model is a prominent alternate model for modelling insurance losses.We expect that the new techniques will motivate the researchers for applications in actuarial sciences and many more different fields of research.

    Funding Statement:The author(s)received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    国产午夜精品久久久久久一区二区三区| 麻豆成人午夜福利视频| 九色成人免费人妻av| 精品国产三级普通话版| 一区二区三区精品91| 亚洲精品久久久久久婷婷小说| 十八禁网站网址无遮挡 | 亚洲精品日韩av片在线观看| 成人亚洲精品一区在线观看 | 欧美xxxx性猛交bbbb| 成人鲁丝片一二三区免费| 男人狂女人下面高潮的视频| 亚洲图色成人| 青春草视频在线免费观看| 免费av观看视频| 欧美+日韩+精品| 国产男女超爽视频在线观看| 日韩一区二区视频免费看| 直男gayav资源| 丝瓜视频免费看黄片| 美女视频免费永久观看网站| 成人鲁丝片一二三区免费| 亚洲av不卡在线观看| 如何舔出高潮| 国产欧美日韩一区二区三区在线 | 久久精品夜色国产| 国产精品女同一区二区软件| 少妇人妻一区二区三区视频| 久久久久国产网址| 99久久人妻综合| 日本av手机在线免费观看| 久久99精品国语久久久| 免费av观看视频| 国产 精品1| 又粗又硬又长又爽又黄的视频| 插逼视频在线观看| 晚上一个人看的免费电影| 久久综合国产亚洲精品| 欧美亚洲 丝袜 人妻 在线| 91狼人影院| 日本一本二区三区精品| 国产成人aa在线观看| 亚洲色图综合在线观看| 国产精品精品国产色婷婷| 男女国产视频网站| av又黄又爽大尺度在线免费看| 国产精品国产三级国产av玫瑰| 国产男人的电影天堂91| 欧美国产精品一级二级三级 | 色综合色国产| 高清午夜精品一区二区三区| 国内精品美女久久久久久| 男女啪啪激烈高潮av片| 哪个播放器可以免费观看大片| 精品一区二区免费观看| 国产精品国产三级国产av玫瑰| 精品久久国产蜜桃| 国产精品精品国产色婷婷| 国产精品久久久久久av不卡| 18禁裸乳无遮挡免费网站照片| 2021少妇久久久久久久久久久| 狂野欧美白嫩少妇大欣赏| 欧美3d第一页| 久久精品国产a三级三级三级| 亚洲人成网站高清观看| 小蜜桃在线观看免费完整版高清| 人人妻人人爽人人添夜夜欢视频 | 麻豆国产97在线/欧美| 视频中文字幕在线观看| 日韩欧美精品免费久久| 人妻少妇偷人精品九色| 国产69精品久久久久777片| 99久久人妻综合| 一级毛片aaaaaa免费看小| 日韩在线高清观看一区二区三区| 国产欧美亚洲国产| 免费观看av网站的网址| 久久99精品国语久久久| 国产精品秋霞免费鲁丝片| 爱豆传媒免费全集在线观看| 一级a做视频免费观看| 观看美女的网站| 亚洲国产最新在线播放| 女人十人毛片免费观看3o分钟| 国产免费视频播放在线视频| 亚洲国产色片| 亚洲精品国产av蜜桃| 免费人成在线观看视频色| 久久鲁丝午夜福利片| 国产精品一区二区性色av| 少妇被粗大猛烈的视频| 男女边吃奶边做爰视频| 嫩草影院入口| 免费在线观看成人毛片| 又爽又黄a免费视频| 日韩成人伦理影院| 一级毛片黄色毛片免费观看视频| 丝袜美腿在线中文| 久久久久网色| 熟妇人妻不卡中文字幕| 少妇的逼水好多| 插逼视频在线观看| 成人黄色视频免费在线看| xxx大片免费视频| 国产高清有码在线观看视频| 丝袜脚勾引网站| 国产久久久一区二区三区| 国产精品国产av在线观看| 国产男女超爽视频在线观看| 免费看a级黄色片| 国产精品人妻久久久影院| 国产av国产精品国产| 韩国av在线不卡| 亚洲美女搞黄在线观看| 波多野结衣巨乳人妻| 99精国产麻豆久久婷婷| 亚洲天堂av无毛| 夫妻午夜视频| 美女cb高潮喷水在线观看| 欧美 日韩 精品 国产| 国产伦精品一区二区三区四那| 久久久久久久久久人人人人人人| 黄片无遮挡物在线观看| 亚洲美女视频黄频| 夫妻午夜视频| 好男人视频免费观看在线| 亚洲精品成人av观看孕妇| videos熟女内射| 亚洲性久久影院| 国产午夜福利久久久久久| 欧美精品国产亚洲| 国产免费一区二区三区四区乱码| 午夜福利视频精品| 国产成人免费无遮挡视频| 下体分泌物呈黄色| 日日啪夜夜爽| 人妻制服诱惑在线中文字幕| 亚洲精品久久久久久婷婷小说| 亚洲国产欧美在线一区| 欧美成人一区二区免费高清观看| 一级av片app| 人人妻人人看人人澡| 国产精品一区二区性色av| 久久久久久久久大av| 亚洲,一卡二卡三卡| 三级国产精品片| a级一级毛片免费在线观看| 日本免费在线观看一区| 亚洲欧洲国产日韩| 日韩成人av中文字幕在线观看| 少妇人妻精品综合一区二区| 国产探花在线观看一区二区| 成人亚洲欧美一区二区av| av免费观看日本| 中国国产av一级| 最近2019中文字幕mv第一页| 成人综合一区亚洲| 国产熟女欧美一区二区| 草草在线视频免费看| 久久97久久精品| 婷婷色av中文字幕| 国产精品人妻久久久久久| 男的添女的下面高潮视频| 免费电影在线观看免费观看| 久久6这里有精品| 亚洲成人一二三区av| 欧美成人精品欧美一级黄| 一级毛片aaaaaa免费看小| 大话2 男鬼变身卡| 国产成年人精品一区二区| 亚洲精品国产av成人精品| 亚洲精品一区蜜桃| 国产成人精品福利久久| 寂寞人妻少妇视频99o| 国内揄拍国产精品人妻在线| 午夜亚洲福利在线播放| 国产精品一二三区在线看| 欧美高清成人免费视频www| 日韩人妻高清精品专区| 国产男女内射视频| 亚洲国产精品成人久久小说| 成人综合一区亚洲| 麻豆久久精品国产亚洲av| 亚洲自偷自拍三级| 一本一本综合久久| 午夜精品一区二区三区免费看| 日本免费在线观看一区| 成人国产av品久久久| 久久韩国三级中文字幕| 国产v大片淫在线免费观看| 99re6热这里在线精品视频| 中文欧美无线码| 在线观看国产h片| 51国产日韩欧美| 人妻 亚洲 视频| 男女啪啪激烈高潮av片| 久久久久久久午夜电影| 最近的中文字幕免费完整| 亚洲人成网站在线观看播放| 国产永久视频网站| 有码 亚洲区| 日韩 亚洲 欧美在线| 欧美变态另类bdsm刘玥| 男女边摸边吃奶| 欧美另类一区| 久久精品国产亚洲网站| 欧美老熟妇乱子伦牲交| 久久99蜜桃精品久久| 观看美女的网站| 晚上一个人看的免费电影| 久久久久国产网址| 国产一区二区三区av在线| 亚洲av免费在线观看| 少妇猛男粗大的猛烈进出视频 | 国产毛片在线视频| 免费观看在线日韩| 精品国产乱码久久久久久小说| 一级片'在线观看视频| 色视频在线一区二区三区| 日韩欧美精品免费久久| 丝袜喷水一区| 欧美xxⅹ黑人| 国产黄色免费在线视频| 中文精品一卡2卡3卡4更新| 久久久色成人| tube8黄色片| 赤兔流量卡办理| 免费大片黄手机在线观看| 国产精品成人在线| 亚洲av国产av综合av卡| 亚洲国产精品专区欧美| 天天躁日日操中文字幕| 嘟嘟电影网在线观看| 色网站视频免费| av免费观看日本| 精品久久久久久久久av| 精品人妻熟女av久视频| 可以在线观看毛片的网站| 亚洲第一区二区三区不卡| 欧美bdsm另类| av又黄又爽大尺度在线免费看| 久久久久九九精品影院| 久久精品熟女亚洲av麻豆精品| 亚洲一区二区三区欧美精品 | 日韩欧美一区视频在线观看 | 日韩视频在线欧美| 精品人妻偷拍中文字幕| 在线观看美女被高潮喷水网站| 亚洲欧美日韩另类电影网站 | 99热这里只有是精品在线观看| 日韩欧美一区视频在线观看 | 国产精品伦人一区二区| 在线a可以看的网站| 又大又黄又爽视频免费| 色播亚洲综合网| 涩涩av久久男人的天堂| 成人毛片a级毛片在线播放| 91久久精品国产一区二区三区| 下体分泌物呈黄色| 中文字幕免费在线视频6| 日本-黄色视频高清免费观看| 精品一区在线观看国产| 男人狂女人下面高潮的视频| 青春草视频在线免费观看| 亚洲成人av在线免费| 日韩大片免费观看网站| 午夜福利视频1000在线观看| 成人二区视频| 可以在线观看毛片的网站| 两个人的视频大全免费| 啦啦啦在线观看免费高清www| 亚洲精品日本国产第一区| 男女那种视频在线观看| av天堂中文字幕网| 日韩中字成人| 在线观看国产h片| 2021少妇久久久久久久久久久| 欧美日韩亚洲高清精品| 18+在线观看网站| 交换朋友夫妻互换小说| 草草在线视频免费看| 91久久精品国产一区二区三区| 亚洲,一卡二卡三卡| 午夜老司机福利剧场| 狂野欧美激情性bbbbbb| 国产在线一区二区三区精| 啦啦啦啦在线视频资源| 久久久久久久久久成人| 麻豆久久精品国产亚洲av| 国产精品三级大全| 午夜爱爱视频在线播放| 国产淫语在线视频| 免费av不卡在线播放| 国产精品秋霞免费鲁丝片| 男人和女人高潮做爰伦理| 亚洲丝袜综合中文字幕| 国产精品偷伦视频观看了| 91在线精品国自产拍蜜月| 久久精品国产亚洲av天美| 精品国产一区二区三区久久久樱花 | 成人二区视频| 天堂网av新在线| 国产有黄有色有爽视频| 一级毛片电影观看| 国产人妻一区二区三区在| 亚洲精华国产精华液的使用体验| 又大又黄又爽视频免费| 特大巨黑吊av在线直播| 日本色播在线视频| 婷婷色av中文字幕| 午夜福利在线在线| 久久久久国产精品人妻一区二区| 22中文网久久字幕| 麻豆成人午夜福利视频| 麻豆久久精品国产亚洲av| 成人无遮挡网站| 亚洲最大成人中文| 亚洲精品久久午夜乱码| 搞女人的毛片| 一级毛片久久久久久久久女| 色5月婷婷丁香| 久久久精品94久久精品| 人妻 亚洲 视频| 精品午夜福利在线看| 亚洲图色成人| 亚洲伊人久久精品综合| 日本三级黄在线观看| av免费观看日本| 三级国产精品片| 国产高潮美女av| 2021少妇久久久久久久久久久| 国产男女超爽视频在线观看| 欧美成人一区二区免费高清观看| 亚洲成人av在线免费| 亚洲国产精品成人综合色| 十八禁网站网址无遮挡 | 国产一区亚洲一区在线观看| 99热这里只有是精品50| 亚洲自偷自拍三级| 午夜精品一区二区三区免费看| av免费在线看不卡| 国产综合懂色| 亚洲av免费在线观看| 极品少妇高潮喷水抽搐| av免费在线看不卡| 观看免费一级毛片| 国产精品人妻久久久影院| 老师上课跳d突然被开到最大视频| 少妇人妻 视频| 中文字幕制服av| 成人黄色视频免费在线看| 欧美丝袜亚洲另类| 久久99蜜桃精品久久| 人妻系列 视频| 亚洲精品亚洲一区二区| 人妻系列 视频| 婷婷色麻豆天堂久久| 51国产日韩欧美| 精品人妻偷拍中文字幕| 99热6这里只有精品| 亚洲激情五月婷婷啪啪| 日韩一区二区三区影片| 中文欧美无线码| 色视频www国产| 免费看a级黄色片| 国产精品国产三级国产专区5o| 亚洲av国产av综合av卡| 色视频www国产| 亚洲真实伦在线观看| 国产中年淑女户外野战色| 亚洲精品乱码久久久久久按摩| 午夜爱爱视频在线播放| 亚洲av中文av极速乱| 久久精品夜色国产| av在线观看视频网站免费| 麻豆精品久久久久久蜜桃| 免费高清在线观看视频在线观看| 色视频www国产| 自拍偷自拍亚洲精品老妇| 青春草国产在线视频| 久久99精品国语久久久| 嘟嘟电影网在线观看| av免费观看日本| 女的被弄到高潮叫床怎么办| 一区二区av电影网| 老女人水多毛片| 中国三级夫妇交换| 久久精品熟女亚洲av麻豆精品| 九色成人免费人妻av| 成人欧美大片| 青春草亚洲视频在线观看| 日日摸夜夜添夜夜添av毛片| 青青草视频在线视频观看| 国产伦在线观看视频一区| 免费大片18禁| 精品酒店卫生间| 国产精品久久久久久av不卡| 精品国产露脸久久av麻豆| 日韩欧美精品免费久久| 亚洲欧美一区二区三区黑人 | 欧美激情在线99| 女人久久www免费人成看片| 国产成人a∨麻豆精品| 波野结衣二区三区在线| 亚洲最大成人手机在线| 永久免费av网站大全| 亚洲国产精品成人久久小说| 亚洲av中文av极速乱| 日韩一区二区三区影片| 亚洲精品成人久久久久久| 中文字幕制服av| 亚洲av成人精品一二三区| 亚洲国产精品国产精品| 大码成人一级视频| 少妇的逼水好多| 听说在线观看完整版免费高清| 麻豆成人av视频| 精品少妇久久久久久888优播| 成人高潮视频无遮挡免费网站| 国产免费视频播放在线视频| 熟女电影av网| 下体分泌物呈黄色| av在线观看视频网站免费| 成人鲁丝片一二三区免费| 日韩中字成人| 亚洲天堂国产精品一区在线| 国产国拍精品亚洲av在线观看| 80岁老熟妇乱子伦牲交| 少妇裸体淫交视频免费看高清| 亚洲,欧美,日韩| 69av精品久久久久久| 在线a可以看的网站| 久久国内精品自在自线图片| 男女啪啪激烈高潮av片| 国产精品久久久久久精品古装| 精品国产乱码久久久久久小说| 精品亚洲乱码少妇综合久久| 国产欧美另类精品又又久久亚洲欧美| 久久久精品免费免费高清| 搡老乐熟女国产| 一个人看视频在线观看www免费| 亚洲国产精品成人综合色| 欧美日韩综合久久久久久| 国产精品熟女久久久久浪| 午夜福利网站1000一区二区三区| 少妇熟女欧美另类| 哪个播放器可以免费观看大片| 高清毛片免费看| 一本色道久久久久久精品综合| 男女那种视频在线观看| 91久久精品国产一区二区三区| 欧美激情国产日韩精品一区| 亚洲精品影视一区二区三区av| 亚洲成人av在线免费| 好男人在线观看高清免费视频| 欧美精品一区二区大全| 成人鲁丝片一二三区免费| 成人国产麻豆网| 伊人久久国产一区二区| 国产老妇女一区| 亚洲精品,欧美精品| 国产淫片久久久久久久久| 国产白丝娇喘喷水9色精品| 一级二级三级毛片免费看| 久热这里只有精品99| av又黄又爽大尺度在线免费看| 中文字幕免费在线视频6| 国产精品偷伦视频观看了| 国内精品宾馆在线| 欧美最新免费一区二区三区| 欧美日韩视频高清一区二区三区二| 日韩电影二区| 亚洲成色77777| 嫩草影院新地址| 白带黄色成豆腐渣| 国产精品嫩草影院av在线观看| 久久久午夜欧美精品| 青春草国产在线视频| 日韩精品有码人妻一区| 国产免费又黄又爽又色| 青青草视频在线视频观看| 免费av不卡在线播放| 精品一区二区三区视频在线| av播播在线观看一区| 直男gayav资源| 高清av免费在线| 欧美+日韩+精品| 欧美日韩国产mv在线观看视频 | 一级片'在线观看视频| 久久亚洲国产成人精品v| 国产成人a∨麻豆精品| 日本黄大片高清| 韩国高清视频一区二区三区| 美女国产视频在线观看| 国产色婷婷99| 国产综合精华液| 色网站视频免费| 国产成人aa在线观看| 亚洲精品成人久久久久久| 又黄又爽又刺激的免费视频.| 久久久久久久午夜电影| 五月开心婷婷网| 国产精品熟女久久久久浪| 2021天堂中文幕一二区在线观| 久久精品国产亚洲av天美| 国产黄a三级三级三级人| 欧美人与善性xxx| 最后的刺客免费高清国语| 亚洲精品乱码久久久久久按摩| 成人亚洲精品av一区二区| 在线观看三级黄色| 精品少妇黑人巨大在线播放| 禁无遮挡网站| 黄片无遮挡物在线观看| 国产色爽女视频免费观看| 青春草亚洲视频在线观看| av天堂中文字幕网| 亚洲精品成人av观看孕妇| 亚洲美女视频黄频| 精品久久久久久久人妻蜜臀av| 啦啦啦中文免费视频观看日本| 欧美xxⅹ黑人| 国产精品伦人一区二区| 大码成人一级视频| 一个人看视频在线观看www免费| 日本一二三区视频观看| 亚洲欧美精品专区久久| 男女那种视频在线观看| 少妇裸体淫交视频免费看高清| 国产精品久久久久久久电影| 麻豆精品久久久久久蜜桃| 久久久久久伊人网av| 国产又色又爽无遮挡免| 精品久久久久久久末码| 日韩av在线免费看完整版不卡| 女的被弄到高潮叫床怎么办| 国产成人精品婷婷| 成人高潮视频无遮挡免费网站| 亚洲av免费高清在线观看| 国产一区二区三区av在线| 国产亚洲av片在线观看秒播厂| 久久久国产一区二区| a级一级毛片免费在线观看| 久久ye,这里只有精品| 伦精品一区二区三区| 亚洲欧美日韩卡通动漫| 久久久久久久久久人人人人人人| 免费观看的影片在线观看| 边亲边吃奶的免费视频| 99热6这里只有精品| 久久99蜜桃精品久久| 国产v大片淫在线免费观看| 男女下面进入的视频免费午夜| 亚洲不卡免费看| 亚洲av男天堂| 日韩视频在线欧美| 丰满乱子伦码专区| 欧美日本视频| 精品少妇久久久久久888优播| 岛国毛片在线播放| 97热精品久久久久久| 亚洲欧美精品自产自拍| 亚洲欧美中文字幕日韩二区| 汤姆久久久久久久影院中文字幕| 亚洲精品456在线播放app| 日韩精品有码人妻一区| 国产亚洲av片在线观看秒播厂| 国产成人精品婷婷| 97超碰精品成人国产| 天美传媒精品一区二区| 女人久久www免费人成看片| 国模一区二区三区四区视频| 日本-黄色视频高清免费观看| 丝袜脚勾引网站| 自拍偷自拍亚洲精品老妇| 亚洲av不卡在线观看| 亚洲av男天堂| 久久精品熟女亚洲av麻豆精品| 噜噜噜噜噜久久久久久91| 十八禁网站网址无遮挡 | 亚洲精品久久久久久婷婷小说| 婷婷色av中文字幕| 国产伦精品一区二区三区视频9| av在线老鸭窝| 一级毛片电影观看| 国产探花极品一区二区| 卡戴珊不雅视频在线播放| 日本免费在线观看一区| 欧美xxxx性猛交bbbb| 日韩中字成人| 国产精品国产av在线观看| 亚洲综合精品二区| 深夜a级毛片| 成人欧美大片| 欧美日韩国产mv在线观看视频 | 超碰av人人做人人爽久久| 国产成人精品久久久久久| 欧美极品一区二区三区四区| 综合色av麻豆| 国产精品久久久久久久电影| 香蕉精品网在线| 欧美少妇被猛烈插入视频| 国产有黄有色有爽视频| 蜜桃亚洲精品一区二区三区| 国产精品三级大全| 精品国产一区二区三区久久久樱花 | 91久久精品国产一区二区三区| 国产高清不卡午夜福利| 免费看av在线观看网站| 精品久久久久久久久av| 99精国产麻豆久久婷婷| 美女视频免费永久观看网站| 男女边吃奶边做爰视频| 在线天堂最新版资源| 久久久久久久大尺度免费视频|