• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Image Recognition of Citrus Diseases Based on Deep Learning

    2021-12-14 03:49:32ZongshuaiLiuXuyuXiangJiaohuaQinYunTanQinZhangandNealXiong
    Computers Materials&Continua 2021年1期

    Zongshuai Liu,Xuyu Xiang,2,*,Jiaohua Qin,Yun Tan,Qin Zhang and Neal N.Xiong

    1Central South University of Forestry and Technology,Changsha,410004,China

    2School of Information Technology and Management,Hunan University of Finance and Economics,Changsha,410205,China

    3Department of Mathematics and Computer Science,Northeastern State University,Tahlequah,OK,74464,USA

    Abstract:In recent years,with the development of machine learning and deep learning,it is possible to identify and even control crop diseases by using electronic devices instead of manual observation.In this paper,an image recognition method of citrus diseases based on deep learning is proposed.We built a citrus image dataset including six common citrus diseases.The deep learning network is used to train and learn these images,which can effectively identify and classify crop diseases.In the experiment,we use MobileNetV2 model as the primary network and compare it with other network models in the aspect of speed,model size,accuracy.Results show that our method reduces the prediction time consumption and model size while keeping a good classification accuracy.Finally,we discuss the significance of using MobileNetV2 to identify and classify agricultural diseases in mobile terminal,and put forward relevant suggestions.

    Keywords:Deep learning;image classification;citrus diseases;agriculture science and technology

    1 Introduction

    There are many types of agricultural disasters with great impact and frequent disasters,which not only cause losses to crop production,but also threaten food safety[1].Crop disease is one of the main types of“disasters”with variety and wide range of in uence,etc.Disease problems inevitably affect crops throughout their growing cycle.Moreover,ecological environment has synergistic effect,and the spread of diseases through insects may even change into a certain scale and serious infection problem under the in uence of the synergism,resulting in widespread crop loss.Therefore,the automatic and accurate identification of crop diseases is the key to crop prevention.

    At present,some scholars have researched disease image recognition based on deep learning[2].Replacing agricultural disease monitoring technicians with artificial intelligence[3]can greatly improve the efficiency of disease prevention and control,solve the problem of insufficient forecasting personnel in China’s agricultural grassroots,and further realize the intellectualization of agricultural production.Therefore,promoting the intellectualization of disease prediction and prevention of agricultural output[4]can solve the problems of delay,low efficiency,and poor objectivity of artificial monitoring and prediction identification,and reduce the workload of personnel.The rapid and accurate diagnosis of crop diseases plays an essential role in ensuring crop yield and food safety,farmers can use mobile devices to detect crop diseases and treat them in time by photographing diseased crops[5].Citrus disease is one of the most important commercial crops all over the word,it brings great economic losses to farmers.There are some diseases that are the most threatening,such as Anthracnose[6],Huanglongbing(HLB)Canker[7],Scabis[8],Black spot[9]and Sand paper rust.This paper takes selects several common citrus diseases as experimental objects.

    HLB is the most in uential and harmful citrus disease in the world.It is commonly known as the citrus cancer bringing great trouble to farmers.The long-distance transmission of HLB is scion grafting and disease seedlings.HLB can make citrus fruit bitter,early fall.In later stages,the whole citrus will wither and die.

    Anthracnose is the most common citrus disease with a wide range and long duration.It is mainly harmful to leaves,branches,owers,fruits and stalks.Severe cases of Anthracnose often lead to defoliation,shoot dieback,the fall of owers and fruits in abundance,and fruit decay.

    Canker is the significant challenge in citrus cultivation,which is harmful to citrus leaves,shoot tips and fruits.It can also cause small trees to lose their leaves and their shoots to die.Severe canker will lead to fall of fruits,and mild canker will cause fruit rot,reduction of storage resistance and perishability,which significantly reduce the value of fruit commodities and increase the cost of disease and insect control.

    Black spot is a common disease in most citrus cultivation areas.It is harmful to fruits,and its symptoms are mostly found in nearly mature fruits.Black spot mainly infects fruitlets without obvious symptoms in the immature fruit stage.Black spot begins to appear from the fruit swelling stage to the mature stage,easily leading to fruit decay.

    Sand paper rust is a fungal disease caused by Diaporthe citri.It mainly damages spires,tender tips and immature fruits of citrus and produces black and brown colloid small dots on the surface.

    Scabis is one of the main fungal diseases of citrus,which is usually caused by Elsinoe fawcettii.It damages not only the young fruit of a new shoot,but also the calyx and the petal.

    2 Related Works

    Deep learning is a subclass of machine learning,it has significantly improved the recognition rate in many traditional recognition tasks[10].In recent years,deep learning is extensively used not only in image processing,image recognition and classification[11–16],but also in other fields such as agriculture.Compared with previous artificial neural network methods,deep learning can be more accurate in recognition and better solve image classification and visualization problems,hence it is now the most promising technology in the modern agricultural field[17].Deep learning is similar to shallow neural network structure,but it contains many neural networks with hidden layer structure.Typical deep learning networks include convolutional network(CNN),restricted boltzmann machine(RBM),deep confidence network,deep boltzmann machine(DBM)[18],DBN,RNN,GAN and CapsNet,etc.Compared with the shallow neural network,deep learning is stronger in learning ability,higher in recognition accuracy and lower in external environmental conditions requirements,which can be applied to the actual life and agricultural production[19],such as the detection of plant diseases[20].The current methods of crop disease investigation have been unable to meet the current agricultural production needs,deep learning can replace manual work and adopt electronic equipment to identify the disease even prevent and control the crop diseases.At present,some scholars have studied disease image recognition by using the technology of deep learning.

    In view of the identification of some of the above diseases,in the farming process,the disease identification mainly relies on primary technical person.Through field observation,they compare the observation records with recorded disease specimens or disease specimens to determine the type of diseases.However,the long-term use of this artificial investigation method costs a lot of human resources and material resources,and cannot effectively guarantee the accuracy and effectiveness,it is unable to meet the current needs for disease detection and prevention.Therefore,more and more researchers focus on deep learning for the crop disease identification.While performance has improved,more computing power is needed as efficiency increases.Deep learning is limited in mobile deployment with limited energy consumption,computing resources and storage space.

    The efficiency is mainly determined by two aspects,the storage and the prediction speed.Only when the efficiency of CNN is solved,can CNN get rid of the shackles of the laboratory and be more extensively in mobile devices.To improve the efficiency,the general method is to compress the trained model,to solve the memory and speed problem with fewer network parameters.Besides,the lightweight model design adopts another method,which design a more efficient network computing mode(mainly for the convolution mode)that can reduce the parameters without losing performance.

    MobileNet is a lightweight model proposed for mobile devices and other embedded devices that effectively alleviates the problems mentioned above.It mainly utilizes Depthwise separable convolution to simplify the network structure.

    3 Our Methods

    3.1 Network Structure Comparison

    MobileNetV1 and MobileNetV2 both use Depthwise(DW)convolution and Pointwise(PW)convolution to extract features.The combination of these two operations is also called depth-separable convolution.In theory,this method can exponentially reduce the time and space complexity of the convolution layer.According to the following formula,since the number of the convolution kernel is less than the number of output channels,the computational complexity of standard convolution is approximately K2times of the combination of DW and PW convolution.

    Figure 1:The difference between MobileNetV1 and MobileNetV2

    In Fig.1,there are some differences between MobileNetV1 and MobileNetV2.MobileNetV2 adds a new PW convolution before the DW convolution because the DW convolution cannot change the number of channels by itself due to its computational properties,it can only output the number of channels given by the previous layer.Thus,if the number of channels in the previous layer is very small,DW can only extract the features in the low-dimensional space very grievously,so the effect is not good enough.Now,to solve this problem,MobileNetV2 has been equipped with a PW before each DW,which is specifically used to raise the dimension,and defining the number of lift maintenance as t = 6.In this way,no matter whether the number of input channels Cin is more or less after the first PW raises the dimension,DW is always working hard in a relatively higher dimension(t·Cin).MobileNetV2 removes the activation function of the second PW.We call this linear bottleneck[21],because although activating function can increase the nonlinearity of high dimensional space with effect,it will destroy the features of low dimensional space,so it is not as good as the linear effect.According to the above theory,the main function of the second PW is dimension reduction,so ReLU6 should not be used after dimension reduction.

    In Fig.2,MobileNet V1 doesn’t have the residual connection and contains ReLU in the last part,while MobileNet V2 has the residual connection and removes ReLU in the last part.

    Figure 2:The network structure of MobileNetV1 and MobileNetV2.(a)MobileNetV2(b)MobileNetV1

    In Tab.1[21],tis the multiplication coefficient of the input channel,c is the number of output channels,nis the repetitions of modules,andsis the stride of the first repetition of the module(all subsequent repetitions are stride 1).

    Table 1:Overall structure diagram of MobileNetV2

    The network architecture of MobileNetV2 has a lot in common with many of the CNN we’ve seen before.For example,it firstly uses the ordinary convolution for basic feature extraction,and then uses the novel residual module for level-one processing,feature map size is getting smaller and smaller,but the number of channels is increasing.Moreover,the extension factors for internal use of each residual module was 6(we conducted experiments in the range of 5–10 and finally chose 6)[21].

    3.2 Citrus Disease Detection Based on MobileNetV2

    In this paper,to establish an efficient citrus disease detection method,we adopt MobileNetV2 to implement our method,it is a lightweight network.The used dataset is enhanced through five ways in advance.Experiment with enhanced data sets on tweaked MobileNetV2.The intention is to reduce the training and testing time of the network,as well as the size of the network model while maintaining classification progress.In this way,we can use our method on the mobile terminal,which is convenient for users to use anytime and anywhere.

    4 Experimental Results and Analysis

    4.1 Experimental Environment

    The experiment adopted Intel(R)Core(TM)i7-8750h CPU@2.20ghz,16.00gb RAM and Nvidia GeForce GTX 1070.The framework adopted in this paper is Keras,which is an advanced neural network API.The learning rate= 0.001,batch size =8 and epochs= 50.

    4.2 The Establishment of Datasets

    In this experiment,we used the six typical citrus cases mentioned in the previous article.We collected these pictures through Internet search and field photography.The dataset includes six categories:Huanglongbing,Anthracnose,Canker,Black spot,Sand paper rust,and Scabis.We divided the dataset into the training set,testing set,and validation set in a ratio of 6:2:2.Because our data set is small,the training results may be poor,such as the phenomenon of overfitting.To solve this problem,we enhanced the dataset to improve accuracy and efficiency[22].We changed the brightness,contrast,horizontal ip,vertical ip,and horizontal vertical ip of the data set,resulting in a five-fold increase in the size of the training set and the testing set[23].The original and enhanced image of dataset are shown in Tab.2.

    4.3 Analysis the Classification Accuracy of Different Models

    We used the trained model in MobileNetV2 to test our validation set,and the classification accuracy comparison of the original data and data augmentation is shown in Tab.3.Experimental results show that the overall accuracy after data augmentation has been improved by about 3%.

    At the same time,we test the accuracy of each class in dataset with MobileNetV2,which are shown in Tab.4.

    As can be seen from Tab.3,after data augmentation,the accuracy of 4 diseases was improved,while the accuracy of 2 diseases was decreased.This phenomenon may be related to the small number of raw datasets in these two categories and the complexity of the image background.

    We also use the dataset after data enhancement to train in different networks and compare the accuracy of various networks,and the results are shown in Tab.5.

    Although MobileNetV2 is not as complex as other networks,it still performs well in our dataset in terms of classification,even slightly better than ResNet50(+0.75%).

    Table 2:Data samples of the original image and data augmentation

    Table 3:Classification accuracy of the original image and data augmentation

    Table 4:Accuracy comparison the of each category before and data augmentation

    Table 5:The classification accuracy of the different network

    4.4 Predict Time Consumption and Model Size of Different Network

    We put images of the validation set into several network models that we trained,recording the predicted time and model size used to test each model.

    From Figs.3 and 4,it can be seen that MobileNetV2 has little difference with other networks in the test accuracy.At the same time,Mobilenetv2 has a great advantage in the time used to verify the accuracy of the model compared with other network models,so it is more applicable on the mobile end.In this citrus disease classification,Mobilenetv2 keeps better accuracy and faster detection speed.It’s worth noting that the dataset used in this experiment is not large enough,if the dataset increases gradually,the speed advantage of MobileNetV2 will become more obvious.

    Figure 3:The compares of predict time consumption

    Figure 4:The compares of the model size of different model

    5 Discussion

    This method mainly uses MobileNetV2 to realize citrus disease detection with high efficiency.Therefore,the lightweight network model can play a meaningful role when the verification speed and model storage are limited.For example,as a mobile terminal,phones are often used by people.We can apply the trained network model to the App to automatically identify the disease by taking photos,and give the disease introduction and countermeasures.

    After identification,the purchase link of the required pesticides can be attached to provide disease treatment experience for experts and fruit farmers.This approach may also be applied to mobile intelligent sensing equipment for diseases and pests and automatic identification system,it can help fruit farmers quickly determine disease types and take measures to reduce economic losses,protect the healthy growth and quality of fruit[24].

    1)A rich database is the important basis for the classification and identification of crop diseases and insect pests,and a large dataset can increase the recognition accuracy after model training.Only by accumulating enough data can we give full play to the power of deep learning tools and technologies.In the future,we will continue to collect the number and types of expanded databases to improve the generalization ability of the model.

    2)The collected citrus disease data set can be used for image segmentation to remove complex picture backgrounds to obtain more accurate disease pictures for training models and improve the identification accuracy.

    3)The optimization of the convolution network algorithm is a direct way to achieve identification accuracy.In the case of further obtaining massive datasets,the optimization of the convolution operation can improve the identification accuracy.

    6 Conclusions

    In this paper,we trained MobileNetV2 to classify and identify six common citrus diseases.By comparing with other network models from the model accuracy,model size and model validation speed,we can see that MobileNetV2,performs well in the classification and identification of citrus diseases.As a lightweight network,MobileNetV2 has similar accuracy with other network models,and has fast validation.

    Acknowledgement:The author would like to thank the support of Central South University of Forestry&Technology and the support of National Natural Science Fund of China.

    Funding Statement:This work was supported in part by the National Natural Science Foundation of China under Grant 61772561,author J.Q,http://www.nsfc.gov.cn/;in part by the Key Research and Development Plan of Hunan Province under Grant 2018NK2012,author J.Q,http://kjt.hunan.gov.cn/;in part by the Key Research and Development Plan of Hunan Province under Grant 2019SK2022,author Y.T,http://kjt.hunan.gov.cn/;in part by the Science Research Projects of Hunan Provincial Education Department under Grant 18A174,author X.X,http://kxjsc.gov.hnedu.cn/;in part by the Science Research Projects of Hunan Provincial Education Department under Grant 19B584,author Y.T,http://kxjsc.gov.hnedu.cn/;in part by the Degree &Postgraduate Education Reform Project of Hunan Province under Grant 2019JGYB154,author J.Q,http://xwb.gov.hnedu.cn/;in part by the Postgraduate Excellent teaching team Project of Hunan Province under Grant[2019]370-133,author J.Q,http://xwb.gov.hnedu.cn/,in part by the Postgraduate Education and Teaching Reform Project of Central South University of Forestry &Technology under Grant 2019JG013,author X.X,http://jwc.csuft.edu.cn/ in part by the Natural Science Foundation of Hunan Province(No.2020JJ4140),author Y.T,http://kjt.hunan.gov.cn/;and in part by the Natural Science Foundation of Hunan Province(No.2020JJ4141),author X.X,http://kjt.hunan.gov.cn/.

    Conflicts of Interest:The authors declare that they have no con icts of interest to report regarding the present study.

    欧美日韩亚洲高清精品| 日产精品乱码卡一卡2卡三| 99久久中文字幕三级久久日本| 视频中文字幕在线观看| 性色av一级| 人妻 亚洲 视频| 肉色欧美久久久久久久蜜桃| 亚州av有码| 一区二区三区免费毛片| 九九爱精品视频在线观看| 高清视频免费观看一区二区| 亚洲精品乱码久久久久久按摩| 亚洲精品色激情综合| 精品国产国语对白av| 女的被弄到高潮叫床怎么办| 国产成人freesex在线| 亚洲一区二区三区欧美精品| 狂野欧美激情性xxxx在线观看| 成年人午夜在线观看视频| av在线app专区| av有码第一页| 国产一区二区在线观看日韩| 日本爱情动作片www.在线观看| 国产日韩欧美视频二区| 热99久久久久精品小说推荐| 男的添女的下面高潮视频| 亚洲av.av天堂| 一二三四中文在线观看免费高清| 国产视频内射| 狠狠婷婷综合久久久久久88av| 九草在线视频观看| 亚洲精品日韩av片在线观看| 亚洲色图综合在线观看| 亚洲精品国产av蜜桃| 欧美激情国产日韩精品一区| 亚洲色图 男人天堂 中文字幕 | 3wmmmm亚洲av在线观看| 少妇猛男粗大的猛烈进出视频| 蜜桃国产av成人99| 久久鲁丝午夜福利片| 国产精品偷伦视频观看了| 久久久精品94久久精品| 久久精品夜色国产| 国产毛片在线视频| 国产精品一国产av| 亚洲精品久久午夜乱码| 成年av动漫网址| 亚洲国产日韩一区二区| 亚洲av成人精品一二三区| 一区二区三区四区激情视频| 丝瓜视频免费看黄片| 少妇高潮的动态图| 搡女人真爽免费视频火全软件| 最近中文字幕高清免费大全6| 久久久精品区二区三区| 久久鲁丝午夜福利片| 日本色播在线视频| 久久午夜福利片| 久热久热在线精品观看| 色94色欧美一区二区| 最新中文字幕久久久久| 国语对白做爰xxxⅹ性视频网站| 亚洲av在线观看美女高潮| 精品酒店卫生间| 五月伊人婷婷丁香| 最后的刺客免费高清国语| av线在线观看网站| 我的老师免费观看完整版| 精品一区二区免费观看| 老司机亚洲免费影院| av在线老鸭窝| 久久热精品热| 一级二级三级毛片免费看| 一边摸一边做爽爽视频免费| 91精品三级在线观看| 如日韩欧美国产精品一区二区三区 | 黄片播放在线免费| 自线自在国产av| 亚洲成色77777| 极品人妻少妇av视频| 最后的刺客免费高清国语| 91成人精品电影| 熟女电影av网| 在线观看三级黄色| 99热全是精品| 少妇高潮的动态图| 五月玫瑰六月丁香| 日韩 亚洲 欧美在线| 少妇被粗大的猛进出69影院 | 日本午夜av视频| 亚洲色图综合在线观看| av在线老鸭窝| 最新的欧美精品一区二区| 国产精品欧美亚洲77777| 美女cb高潮喷水在线观看| 亚洲精品成人av观看孕妇| 国产精品不卡视频一区二区| 视频区图区小说| 午夜老司机福利剧场| tube8黄色片| 纵有疾风起免费观看全集完整版| 在线观看美女被高潮喷水网站| 美女视频免费永久观看网站| 国产av码专区亚洲av| 97超视频在线观看视频| 人妻人人澡人人爽人人| 国产av一区二区精品久久| 免费高清在线观看视频在线观看| 热re99久久国产66热| 久久久a久久爽久久v久久| 男女免费视频国产| 国产精品女同一区二区软件| 99久久人妻综合| 日本免费在线观看一区| 成人影院久久| 乱人伦中国视频| 国产成人精品在线电影| 日本猛色少妇xxxxx猛交久久| 久久久久国产精品人妻一区二区| a级片在线免费高清观看视频| 男人操女人黄网站| 老司机亚洲免费影院| 少妇的逼水好多| 亚洲精品,欧美精品| 一区二区三区四区激情视频| 青春草视频在线免费观看| 日韩人妻高清精品专区| 青青草视频在线视频观看| 欧美日韩亚洲高清精品| 欧美xxⅹ黑人| 在线观看美女被高潮喷水网站| 国产爽快片一区二区三区| 国产有黄有色有爽视频| 亚洲国产精品一区三区| 久久久久久人妻| 肉色欧美久久久久久久蜜桃| 黑人猛操日本美女一级片| 成人二区视频| 欧美最新免费一区二区三区| 高清av免费在线| 国产亚洲一区二区精品| 国产有黄有色有爽视频| 亚洲av电影在线观看一区二区三区| 国产一级毛片在线| 日本免费在线观看一区| 在线观看美女被高潮喷水网站| 欧美成人午夜免费资源| 午夜日本视频在线| 一区二区三区免费毛片| 成人午夜精彩视频在线观看| 成人国产麻豆网| 2021少妇久久久久久久久久久| 久久这里有精品视频免费| 中文欧美无线码| 午夜福利视频精品| 亚洲人成网站在线观看播放| 国产欧美日韩综合在线一区二区| 九色亚洲精品在线播放| 国产av精品麻豆| 夫妻午夜视频| 久久久久久人妻| 寂寞人妻少妇视频99o| 人人妻人人澡人人看| 免费观看性生交大片5| 国产精品蜜桃在线观看| 日本黄色日本黄色录像| 各种免费的搞黄视频| 秋霞在线观看毛片| 伦理电影大哥的女人| 大码成人一级视频| 亚洲国产成人一精品久久久| 日韩人妻高清精品专区| 国语对白做爰xxxⅹ性视频网站| 久热这里只有精品99| 欧美日韩视频精品一区| 国产片特级美女逼逼视频| 色5月婷婷丁香| 国产一区二区在线观看av| 亚洲国产色片| 国产精品.久久久| 自拍欧美九色日韩亚洲蝌蚪91| 99热这里只有是精品在线观看| 久久久国产精品麻豆| 在线观看三级黄色| 免费看av在线观看网站| 国产成人精品无人区| xxxhd国产人妻xxx| 成人午夜精彩视频在线观看| 成人国语在线视频| 晚上一个人看的免费电影| 高清午夜精品一区二区三区| 久久影院123| 黑人巨大精品欧美一区二区蜜桃 | 免费av中文字幕在线| 女的被弄到高潮叫床怎么办| 国产黄色免费在线视频| 免费日韩欧美在线观看| 91精品三级在线观看| 爱豆传媒免费全集在线观看| 成人二区视频| 91午夜精品亚洲一区二区三区| 黄色毛片三级朝国网站| 亚洲国产精品999| 极品人妻少妇av视频| 少妇 在线观看| 亚洲av二区三区四区| 一级a做视频免费观看| 飞空精品影院首页| 午夜日本视频在线| 老司机影院成人| 国产成人freesex在线| 中文精品一卡2卡3卡4更新| 嘟嘟电影网在线观看| 成年美女黄网站色视频大全免费 | 精品国产露脸久久av麻豆| 亚洲精品国产色婷婷电影| 黑人巨大精品欧美一区二区蜜桃 | 亚洲欧洲精品一区二区精品久久久 | 伊人久久精品亚洲午夜| a级毛片免费高清观看在线播放| 亚洲精品国产av蜜桃| 久久热精品热| 亚洲av免费高清在线观看| 国产探花极品一区二区| 久久久国产一区二区| 亚洲国产成人一精品久久久| 免费人妻精品一区二区三区视频| 亚洲国产精品成人久久小说| 99视频精品全部免费 在线| 亚洲情色 制服丝袜| 丁香六月天网| 少妇人妻 视频| 免费黄色在线免费观看| 制服丝袜香蕉在线| 嫩草影院入口| 人妻制服诱惑在线中文字幕| 青春草亚洲视频在线观看| 亚洲少妇的诱惑av| 26uuu在线亚洲综合色| 下体分泌物呈黄色| 免费高清在线观看日韩| 国精品久久久久久国模美| av专区在线播放| 九九久久精品国产亚洲av麻豆| 韩国av在线不卡| 在线天堂最新版资源| 天美传媒精品一区二区| 国产精品人妻久久久久久| 一级毛片 在线播放| 欧美3d第一页| 蜜臀久久99精品久久宅男| 亚洲欧美清纯卡通| 人人妻人人澡人人爽人人夜夜| 青春草亚洲视频在线观看| 天天影视国产精品| 国产成人91sexporn| 婷婷色av中文字幕| 国产黄色免费在线视频| 黄色视频在线播放观看不卡| 伦理电影大哥的女人| √禁漫天堂资源中文www| 亚洲少妇的诱惑av| 99热国产这里只有精品6| 黄色视频在线播放观看不卡| 夜夜看夜夜爽夜夜摸| 啦啦啦中文免费视频观看日本| 一区二区日韩欧美中文字幕 | 中文精品一卡2卡3卡4更新| 九九爱精品视频在线观看| 大香蕉久久成人网| 免费黄色在线免费观看| 午夜福利网站1000一区二区三区| 免费观看无遮挡的男女| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 色网站视频免费| 校园人妻丝袜中文字幕| 中国美白少妇内射xxxbb| 亚洲av福利一区| 亚洲av在线观看美女高潮| 日本av免费视频播放| 黄色视频在线播放观看不卡| 我的老师免费观看完整版| 王馨瑶露胸无遮挡在线观看| 国产精品一区二区三区四区免费观看| 黄片播放在线免费| 尾随美女入室| 在线观看国产h片| 欧美一级a爱片免费观看看| 日韩制服骚丝袜av| 99热这里只有精品一区| 婷婷色综合大香蕉| 亚洲av综合色区一区| 久久免费观看电影| 亚洲国产色片| 亚洲欧美一区二区三区黑人 | 国产黄片视频在线免费观看| 日日摸夜夜添夜夜添av毛片| 国产片内射在线| 黄色欧美视频在线观看| 精品午夜福利在线看| 国产在线一区二区三区精| av免费观看日本| 人妻系列 视频| 母亲3免费完整高清在线观看 | 亚洲一级一片aⅴ在线观看| 精品99又大又爽又粗少妇毛片| 免费人妻精品一区二区三区视频| 人妻系列 视频| 精品人妻偷拍中文字幕| 曰老女人黄片| 天天操日日干夜夜撸| 最近手机中文字幕大全| 国产av码专区亚洲av| 男男h啪啪无遮挡| 成年人免费黄色播放视频| 国产视频首页在线观看| 国产又色又爽无遮挡免| 搡老乐熟女国产| 人妻 亚洲 视频| 久久人人爽人人爽人人片va| 久久国产精品男人的天堂亚洲 | 国产亚洲精品久久久com| 日韩熟女老妇一区二区性免费视频| 视频中文字幕在线观看| 伊人久久精品亚洲午夜| 一区二区三区四区激情视频| 国产在线免费精品| 男男h啪啪无遮挡| 欧美激情极品国产一区二区三区 | 如何舔出高潮| 五月伊人婷婷丁香| 中文字幕免费在线视频6| 欧美日韩视频精品一区| 飞空精品影院首页| 日韩伦理黄色片| 国产无遮挡羞羞视频在线观看| 亚洲精品乱码久久久久久按摩| 亚洲欧美中文字幕日韩二区| 伊人亚洲综合成人网| 色婷婷久久久亚洲欧美| 三级国产精品欧美在线观看| 下体分泌物呈黄色| 亚洲精品乱码久久久久久按摩| 久久久久精品性色| 久久热精品热| 日韩一区二区三区影片| 91aial.com中文字幕在线观看| 人妻系列 视频| 久久久午夜欧美精品| 久久精品夜色国产| 超色免费av| 亚洲精品第二区| 国产永久视频网站| 简卡轻食公司| 亚洲精品视频女| 熟女人妻精品中文字幕| 久久久亚洲精品成人影院| 国产精品99久久99久久久不卡 | 如何舔出高潮| 亚洲av成人精品一二三区| 99热这里只有精品一区| 国产成人91sexporn| 高清在线视频一区二区三区| 各种免费的搞黄视频| 久久久久久久亚洲中文字幕| 国产国拍精品亚洲av在线观看| 午夜影院在线不卡| 国产亚洲午夜精品一区二区久久| 午夜免费男女啪啪视频观看| 久久综合国产亚洲精品| 十八禁网站网址无遮挡| 男男h啪啪无遮挡| 亚洲av二区三区四区| 美女内射精品一级片tv| 国产有黄有色有爽视频| 国产片特级美女逼逼视频| 亚洲精品aⅴ在线观看| 成年人午夜在线观看视频| 午夜福利网站1000一区二区三区| 久久精品夜色国产| 亚洲美女黄色视频免费看| 免费看av在线观看网站| 久久久久精品久久久久真实原创| 极品少妇高潮喷水抽搐| av又黄又爽大尺度在线免费看| 在线观看一区二区三区激情| 国产精品免费大片| 日韩成人伦理影院| 国精品久久久久久国模美| 少妇高潮的动态图| 国语对白做爰xxxⅹ性视频网站| 在线天堂最新版资源| 国产精品久久久久成人av| 国产成人精品久久久久久| 国产精品熟女久久久久浪| 久久99一区二区三区| 亚洲国产精品成人久久小说| 蜜臀久久99精品久久宅男| 欧美丝袜亚洲另类| av免费观看日本| 国产爽快片一区二区三区| 国产一区二区在线观看av| 国产日韩欧美亚洲二区| 久久久国产一区二区| 人妻 亚洲 视频| 制服人妻中文乱码| 欧美激情极品国产一区二区三区 | 97在线人人人人妻| 大片电影免费在线观看免费| 18+在线观看网站| 在线观看美女被高潮喷水网站| 人妻制服诱惑在线中文字幕| 午夜老司机福利剧场| 久久人妻熟女aⅴ| 老司机影院成人| 久久久亚洲精品成人影院| 青春草国产在线视频| 亚洲色图 男人天堂 中文字幕 | 中文字幕久久专区| 在线观看国产h片| 一个人看视频在线观看www免费| 91在线精品国自产拍蜜月| 国产成人精品福利久久| 插阴视频在线观看视频| 天天操日日干夜夜撸| 亚洲精品成人av观看孕妇| 中文欧美无线码| 三上悠亚av全集在线观看| 国产伦精品一区二区三区视频9| 伊人久久国产一区二区| 中文精品一卡2卡3卡4更新| av视频免费观看在线观看| 久久影院123| 久久鲁丝午夜福利片| 18禁在线无遮挡免费观看视频| 中文字幕人妻丝袜制服| 免费黄色在线免费观看| 精品久久久久久久久亚洲| 国产在线一区二区三区精| 国产欧美另类精品又又久久亚洲欧美| 另类亚洲欧美激情| 亚洲,一卡二卡三卡| 夫妻性生交免费视频一级片| 国产成人91sexporn| 日韩视频在线欧美| 在线观看国产h片| 欧美激情极品国产一区二区三区 | 国产色爽女视频免费观看| 精品久久久久久久久av| av视频免费观看在线观看| 人人妻人人添人人爽欧美一区卜| 色94色欧美一区二区| 国内精品宾馆在线| 欧美亚洲 丝袜 人妻 在线| 纯流量卡能插随身wifi吗| 七月丁香在线播放| 赤兔流量卡办理| 日本爱情动作片www.在线观看| 欧美最新免费一区二区三区| 下体分泌物呈黄色| 男人操女人黄网站| av在线老鸭窝| 久久午夜综合久久蜜桃| 亚洲成色77777| 国产老妇伦熟女老妇高清| 伊人久久精品亚洲午夜| 午夜91福利影院| 在线看a的网站| 三级国产精品片| 制服诱惑二区| 免费黄频网站在线观看国产| 国产精品一区二区在线不卡| 看十八女毛片水多多多| 亚洲国产色片| 免费观看a级毛片全部| 涩涩av久久男人的天堂| 欧美国产精品一级二级三级| 日韩,欧美,国产一区二区三区| 精品国产国语对白av| 男的添女的下面高潮视频| 亚洲av综合色区一区| 亚洲av男天堂| 国产午夜精品一二区理论片| 亚洲,一卡二卡三卡| 狠狠婷婷综合久久久久久88av| 免费黄色在线免费观看| 少妇人妻 视频| 大又大粗又爽又黄少妇毛片口| 国产精品一区二区在线不卡| 波野结衣二区三区在线| 丝袜脚勾引网站| 亚洲熟女精品中文字幕| 少妇精品久久久久久久| 久久午夜综合久久蜜桃| 成人亚洲欧美一区二区av| 熟女人妻精品中文字幕| 99热国产这里只有精品6| 欧美一级a爱片免费观看看| 黑人欧美特级aaaaaa片| 夫妻性生交免费视频一级片| 日韩 亚洲 欧美在线| 一区在线观看完整版| av在线老鸭窝| 黄片播放在线免费| .国产精品久久| 国产免费一区二区三区四区乱码| 亚洲人成77777在线视频| 精品一区二区三区视频在线| 国产精品无大码| 婷婷成人精品国产| 99热国产这里只有精品6| 免费黄频网站在线观看国产| 美女xxoo啪啪120秒动态图| 人人妻人人澡人人爽人人夜夜| 国产精品一区www在线观看| 如日韩欧美国产精品一区二区三区 | 久久久久久久久久人人人人人人| 少妇 在线观看| 国产伦精品一区二区三区视频9| 午夜免费观看性视频| 亚洲,一卡二卡三卡| 在线看a的网站| 丝袜在线中文字幕| 国产男人的电影天堂91| 人妻制服诱惑在线中文字幕| 男人爽女人下面视频在线观看| 免费观看a级毛片全部| 在线观看一区二区三区激情| 日本av手机在线免费观看| 成年美女黄网站色视频大全免费 | 我的女老师完整版在线观看| 亚洲精华国产精华液的使用体验| 亚洲国产最新在线播放| 亚洲精品久久久久久婷婷小说| 日日啪夜夜爽| 中国国产av一级| 国产av码专区亚洲av| 久久久精品区二区三区| 黑人高潮一二区| 十八禁网站网址无遮挡| a级毛片黄视频| 日韩中字成人| 久热这里只有精品99| av卡一久久| 亚洲精品视频女| 日日啪夜夜爽| 中国国产av一级| 你懂的网址亚洲精品在线观看| 久久精品久久久久久久性| 爱豆传媒免费全集在线观看| 国产探花极品一区二区| av女优亚洲男人天堂| 久久精品久久久久久噜噜老黄| 一区二区日韩欧美中文字幕 | 欧美精品亚洲一区二区| 亚洲怡红院男人天堂| 80岁老熟妇乱子伦牲交| videossex国产| 大香蕉久久成人网| 国产日韩欧美在线精品| 日日爽夜夜爽网站| 91午夜精品亚洲一区二区三区| 亚洲国产精品国产精品| 搡老乐熟女国产| 欧美日韩一区二区视频在线观看视频在线| 性色av一级| 自拍欧美九色日韩亚洲蝌蚪91| 黄色配什么色好看| 欧美xxxx性猛交bbbb| www.色视频.com| 国产成人一区二区在线| 国产老妇伦熟女老妇高清| 最新中文字幕久久久久| 国产成人午夜福利电影在线观看| 一级毛片我不卡| 日本与韩国留学比较| 欧美一级a爱片免费观看看| 一二三四中文在线观看免费高清| 日韩av在线免费看完整版不卡| 乱人伦中国视频| 黄片播放在线免费| 纵有疾风起免费观看全集完整版| 亚洲精品乱码久久久v下载方式| 在线观看国产h片| 欧美xxⅹ黑人| 蜜桃久久精品国产亚洲av| 91久久精品国产一区二区三区| 一级毛片黄色毛片免费观看视频| 国产精品久久久久久久久免| 多毛熟女@视频| 插逼视频在线观看| 如何舔出高潮| av一本久久久久| 免费观看av网站的网址| 国产欧美日韩一区二区三区在线 | 亚洲经典国产精华液单| 久久99热6这里只有精品| 自拍欧美九色日韩亚洲蝌蚪91| 久久久国产精品麻豆| 久久99热6这里只有精品| 久久人人爽人人爽人人片va| .国产精品久久| 亚洲av综合色区一区| 多毛熟女@视频| 全区人妻精品视频| 亚洲精品国产av蜜桃| 久久午夜综合久久蜜桃| 人妻夜夜爽99麻豆av| 亚洲国产精品国产精品| 日本av手机在线免费观看| 日韩av在线免费看完整版不卡| 国产高清三级在线| 午夜福利视频精品| av播播在线观看一区| 精品视频人人做人人爽|