• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mixed Convection of Non-Newtonian Erying Powell Fluid with Temperature-Dependent Viscosity over a Vertically Stretched Surface

    2021-12-14 03:49:24AhlamAljabaliAbdulRahmanMohdKasimNurSyamilahAriandSharenaMohamadIsa
    Computers Materials&Continua 2021年1期

    Ahlam Aljabali,Abdul Rahman Mohd Kasim,*,Nur Syamilah Ari n and Sharena Mohamad Isa

    1Centre for Mathematical Sciences,UMP,Gambang,26300,Malaysia

    2Faculty Computer and Mathematical Sciences,UiTM Johor,Pasir Gudang Campus,Masai,81750,Malaysia

    3Manufacturing Engineering Technology Section,UniKL,Italy Design Institute,Kuala Lumpur,56100,Malaysia

    Abstract:The viscosity of a substance or material is intensely influenced by the temperature,especially in the field of lubricant engineering where the changeable temperature is well executed.In this paper,the problem of temperature-dependent viscosity on mixed convection flow of Eyring Powell fluid was studied together with Newtonian heating thermal boundary condition.The flow was assumed to move over a vertical stretching sheet.The model of the problem,which is in partial differential equations,was first transformed to ordinary differential equations using appropriate transformations.This approach was considered to reduce the complexity of the equations.Then,the transformed equations were solved using the Keller box method under the finite difference scheme approach.The validation process of the results was performed,and it was found to be in an excellent agreement.The results on the present computation are shown in tabular form and also graphical illustration.The major finding was observed where the skin friction and Nusselt number were boosted in the strong viscosity.

    Keywords:Temperature-dependent viscosity;Erying Powell fluid;numerical solution;combined convection

    1 Introduction

    Advancements in the study of fluid mechanics have contributed to the significant innovation in engineering devices where it is widely used in the technological and industrial fields.The process in manufacturing these devices involves the heat transfers procedure.Heat transfers also can be found in the boundary layer flow,heat exchangers,and solar core receivers,which are visible to wind currents,fancooling,the manufacturing of electronic devices,cooling nuclear reactors during an emergency shutdown,low-velocity heat exchangers and electrical equipment[1–4].Currently,this research area is emerging and has begun to gain a high interest among researchers due to the considerable applications in the engineering production comprising polymer processing.The advancement in fluid mechanics as well as heat transfer,for example,has continuously been the critical subjects in stipulating the pieces of machinery of manufactured polymers.Polymer properties,on account of their complex configuration,are different compared to viscous fluids like water or oil due to their excessive viscosity and viscoelasticity and that they are commonly non-Newtonian in nature.Some vigorous features of polymers are its retardation and relaxation criterion.In many circumstances,operations involving polymers by most manufacturing processes are generally in the laminar form as a result of their high viscosity level[5].The action of natural buoyancy forces on the fluid flow is termed as free or natural convection.Predominantly,the natural buoyancy forces increase density gradients in the fluid that is induced by[6]and differences in the temperature.Therefore,previous literature has worked on different areas of this respective flow in varying their characteristics,such as geometries,boundary conditions,and fluid-based forms.Such flow patterns exist concurrently in both the external forcing system and internal volumetric forces that are significant either with the influence of the buoyancy forces in forced convection or with the influence of forced flow in free convection.Forced convection occurs when λ →0 while free convection happens when λ →∞.Meanwhile,if the free convection and forced convection flows act together,mixed convection flow will occur.This mixed convection happens due to the difference between surface temperature and the surrounding fluid that results in the power of buoyancy forces.Several studies have mentioned the mixed convection flow for various physical and geometrical aspects[7–12].For example,Umavathi et al.[13]investigated the flow under free convection by considering the combined effects of variable viscosity and thermal conductivity over a vertical channel.An effect of the temperature-dependent fluid properties on the fluid-structure and heat transfer is essential in cases of moderate temperature difference cases.Studies on viscous dissipation on a vertically stretched surface for unsteady mixed convection and heat transfer have been performed by[14–18].In[19],the unsteady natural convection in the differentially heated square cavity of a fluid of temperature-dependent viscosity has been numerically analysed.It has been noticed that thermal convection is more intensive at near the hot wall for a variable viscosity fluid,and the heat input from the hot vertical wall to the cavity exceeds the heat output to the cold vertical wall during the transient phase.An enhanced viscosity correlation has been given by[20].Mass transfer effects on the flow through an accelerated vertical plate,as well as the combined effect of high viscosity and thermal conductivity have been studied by[21]and[22].In[23],the unsteady natural convection was examined with temperature-dependent viscosity within a square porous cavity.In[24],a mathematical analysis of a continuous,incompressible flow of a temperature-dependent on nanofluid from a vertical stretching surface under the external magnetic field and gravitational body force effects has been carried out using the Reynolds exponential viscosity model.The examination of convective flow and heat transport of fluids with temperature-dependent properties is of a great significance for the functional value of modern fluid systems,as mentioned in[25]and[26].Another analysis of the flow problem associated with this particular effect on temperature-dependent viscosity moving over a vertical plate has drawn some researchers’attention[27–29].

    Commonly,in industries,the non-Newtonian fluid is widely used,such as Erying Powell,Power law,Maxwell and micropolar fluid models.The model considered is complex and has a preference for other fluid types.The derivation of the Power-Law model is based on the kinetic theory of liquid rather than the empirical relation,which condenses the high and low shear levels according to properties of Newtonian significance.Previously,Erying Powell fluids’ flow has been numerically analysed by[30],which showed that the effects on Erying Powell to the magnetic field over a stretching area.The velocity profile declined as magnetic flux and Erying Powell fluid parameters rise in pressure.They noticed that for high Prandtl number values,the boundary layer would decrease.They also examined the increasing velocity profile by optimising suction parameter values.It displayed that the temperature of fluid decreases for a larger suction parameter.Apart from that,Ara et al.[31]focused on an investigation under exponential representation of the Erying Powell fluid flow over a shrinking surface.They investigated the increase in mass suction that improved the velocity profile,while the temperature profile displayed contrary behaviour.Besides,the thickness of the boundary layer decreased with increasing values of Prandtl number.Moreover,Malik et al.[32]studied the movement of Erying Powel fluid over an expanding cylinder and finally found two versions namely Reynaldo’s and Vogel’s.They found that the boundary layer decreased for high Prandtl number values.They also examined the increase in velocity profile that depended on the suction parameter.For large values of suction parameter,the temperature profile decreased.The nature of mass and heat transfer on free and forced convection flow in a stretching cone has been observed by[33].They noted that the flow parameters’tangential velocity varies in behaviour.Furthermore,the coefficient of skin friction increased due to the growth in the ratio of buoyancy forces.In[34],the relation of Erying Powell fluid series and numerical flow solutions with Newtonian heating has been reported.Meanwhile,the MHD flow of hyperbolic tangent fluid through a stretching cylinder and Keller box system has been studied by[35].In addition,the Erying Powell fluid’s model,has been examined under various physical conditions in[36–39].

    According to most industrial and engineering applications,the flow produced by a stretching surface generates keen interest.The analysis showed that the incompressible boundary layer of mixed convection flow over a stretching surface in two dimensions could be considered as a heating environment with the Newtonian heating boundary condition.The present study explores the solution on mixed convective of Eyring Powell fluid’s flow combined with temperature-dependent viscosity and embedded with thermal Newtonian heating past a vertical stretching surface.The numerical computation was performed by using the Keller box approach,and the solutions are presented through graphs and tables.

    2 Problem Formulation

    Consider the problem of two-dimensional incompressible Eyring Powell fluid under the mechanism of temperature-dependent viscosity embedded with thermal boundary condition known as Newtonian Heating(NH).The flow occurs over a vertical stretching sheet where it stretches in a direction and moves with uniform velocity.Thex-axis is defined as an upward direction alongside the sheet,whiley-axis assumes its upright direction to the surface.The basic theory on the derivation of the Eyring Powell model is constructed on the rate processes theory,which demonstrates the sheer of non-Newtonian flow.

    The constitutive equation of Cauchy stress of Eyring Powell Fluid is defined as

    where

    Apart from that,the second-order approximation of the sinh-1function is defined as

    In the Cartesian coordinate system,the governing equations representing Eyring Powell fluid with temperature-dependent viscosity can be expressed as

    Continuity equation

    x-momentum equation

    y-momentum equation

    Eqs.(5)and(6)were once investigated by[40]without considering buoyancy and temperaturedependent viscosity.The complexity of momentum equations was reduced by utilizing the boundary layer theory pioneered by Prandtl(1904).Through this theory,the complicated Navier–Stokes equation can be simplified into a set of equations known as the boundary layer equations[41].According to the principle under boundary layer theory,the velocity and temperature differential are more significant than those in the direction at right angles to the ground.Under the explanation on this simplification,the procedure is made available in which Eqs.(5)and(6)take the form

    Eq.(8)indicates that the equation is unconditional toy.If the lateral velocity is zero,then the pressure is constant.The power of volume is the forces acting on fluid flow.It is also known as the long-range arm.In general,the frequency of this force varies very slowly and works equally on all areas of fluid flow.Example of this type of forces is gravitational,given by

    wheregis the centre of gravity.In two-dimensional flows,the gravitational forces are defined as,

    The pressure,P,in the momentum equation,is the combination of hydrostatic pressure,Phwhile dynamic pressure in the quiescent ambient medium,Pd.Sincegis moving downwards andx-direction is upwards,the pressure gradient as described in[42]can be written as

    Substituting Eq.(11)into Eq.(7)produces

    When performing Boussinesq approximation,all consequences of variable properties are ignored except for density in the momentum equation.This approximation is used as a pure temperature effect to estimate the difference in density,which causes the flow as a result of an interaction between gravitational body force and hydrostatic pressure gradient.The maximum value is believed to be minimal,and the subsequent Taylor expansion becomes

    Manipulating the Eq.(13),yields

    Therefore,after substituting Eq.(14)into Eq.(12),the continuity and energy equations are given correspondingly,which takes the form as describe in[43]

    The present flow analysis is subjected to the following boundary conditions

    whereuw(x)is taken as velocity of the stretched surface withaa as positive constant,(u,v),ν,T,T∞,ρ,cp,μ,hs,P,α,?β andcare the velocity components inx-,y-directions,kinematic viscosity,temperature,ambient temperature,density,specific heat at constant pressure,viscosity coefficient,the heat transfer parameter,a pressure,thermal diffusivity and fluid factors of the Powell’ model,respectively.Meanwhile,?β andchave the dimension of(time-1).

    To obtain the set f similarity equation in the form of an ordinary differential equation,the similarity transformation variables as in Eq.(19)are adopted and applied to the Eqs.(15)to(17),which yields

    To feign the temperature-dependent viscosity variable,the Reynolds exponential viscosity model is taken into account,which gives a detailed approach to

    where fluid viscosity is assumed to vary as a linear inverse temperature function

    The resulting equations are obtained as follows

    together with the transformed boundary conditions as

    3 Computation Procedures

    The obtained solvable equations are resolved using Keller box technique in the form of established ordinary differential equations.Eqs.(22)and(23)according to boundary conditions(24)are condensed to a system of the first order.For that matter,the independent variables are demonstrated as

    Then the respective equations can be written as

    In Eqs.(19),(22)to(24),the notation prime(′)corresponds to the derivative with respect to η.Additionally,where the fluid parameters,MandB,Prandtl number,Pr,conjugate parameter,γ,viscosity parameter,α,fluid kinematic viscosity,νfand mixed convection,λ,are defined as,

    The steps of Keller box techniques are as follows

    i)The Eqs.(22)and(23)are reduced to a first-order arrangement.

    ii)The attained system in(i)is changed to a system of algebraic equations by means of the central difference formula.

    iii)The resultant in(ii)is linearized using Newton’s method and prepared in matrix-vector system.

    iv)The output(iii)is determined using the block-tridiagonal elimination method.

    In this present mathematical model,the magnitudes of the skin friction coefficient and the Nusselt number are as follows

    4 Validation Procedure

    The present model is computed using the Keller box approach.The upshot of fluid parameters(MandB)representing Eyring model,Prandtl number(Pr),mixed convection parameter(λ),conjugate parameter(γ)and viscosity parameter(α)on velocity and temperature profile against η are figured via MATLAB software.The proposed method is undeniably suitable since it is proven to be unconditionally stable,even for a higher-order model.It is worth mentioning here that,the comparison between the present results with the previous existing solution for limiting case is essential to claim that the current model and its output are acceptable.

    The direct comparative studies with the existing literature have been conducted to corroborate the numerical solutions acquired in this study.The Tab.1 shows the summary of the work done by[24].The momentum equation on particular works can be reduced to its limiting case by fixing theBr=0 andM=0.

    Table 1:Model by[24]

    The output from the comparative study on momentum equation shows a firm agreement,indicating that the current model and its findings are acceptable.A clear picture of this working is presented in Tab.2.Besides,the present works also presents a comparative study on the value of θ(0)and -θ′(0)and the results were undeniably in agreement with the reports by[44]and[45].The results on this particular matter are presented in Tab.3.

    Table 2:Comparison of value(1-αθ(0 ))f′′(0)at λ=1,B=M =0

    5 Results and Discussion

    The numerical solutions obtained were analysed after undergoing proper validation process.The results were computed under the NH boundary condition for various parameters Pr,α,M,B,γ and λ.The computation was done by assigning a set of fixed values of the parameter followed by the calculation on the value ofand.

    Table 3:Comparison on value θ(0)and -θ′(0)at B=λ=0,M =γ=1

    Tab.4 depicts the variations ofandwith variation of value of pertinent parameters involved.For the entire computation,the value of γ was set as 1.It was noticed that a more substantial value of Pr,λ,γ,α,MandBboosted the.This was due to the presence on those parameters that made the convective process in the fluid flow become more active.Thewas increased in the higher values of γ and α but showed a reduction trend in the larger values of Pr,λ,MandB.The increasing trend happened due to the strengthen on drag forces,which increased the viscosity of the fluid.Meanwhile,the lessening was due to the weakness in the resistance of fluid with the surface.

    Table 4:Numerical results of and various values of Pr,α,M,B,λ and γ

    Table 4:Numerical results of and various values of Pr,α,M,B,λ and γ

    PrαMBγλθ(0)Cf Rex1/2NuxRex-1/2 70.110.110.10.381319-1.3878820.618680 9 0.331691-1.3913230.668308 120.252203-1.3949750.747796 100.150.317005-1.3897970.682994 0.30.303985-1.3828030.696014 0.40.292714-1.3785980.707285 100.10.50.322521-1.0732250.677478 0.90.315830-1.2269560.684169 1.50.261353-1.4654830.738646 100.110.30.314332-1.3536980.685667 0.60.289651-1.3005270.710348 0.80.289522-1.2672000.710477 100.10.110.70.238458-0.9916740.533079 1.20.348424-0.9862010.781890 1.70.431920-0.9818950.965734 100.110.910.30.255546-1.2482680.744453 0.50.254600-1.2413040.745398 0.70.247357-1.2404690.752642

    Furthermore,the behaviours on various values of parameters Pr,α,M,B,γ and λ on the velocity and temperature of fluid are depicted from Figs.1 to 12.An increasing trend on velocity can be seen in the larger value ofMand λ as captured in Figs.5 and 11.This behaviour shows that the properties of those parameters characterises the ability to exchange thermal energy with its surroundings.Meanwhile,a contradicting behaviour can be seen for larger values of Pr,B,α and γ as illustrated in Figs.1,3,7,and 9.The temperature distribution showed increasing trend for the parameters α,Pr and λ while the opposite trend was observed for γ,MandB.These trends happened due to the respective parameters with properties to absorb and release the energy to the fluid.

    All the figures indicate,at far from the plate,that the velocity and temperature profiles of fluid asymptotically approached zero,which has fittingly fulfilled the boundary condition.

    Figure 1:Variation of f ′(η)at M =γ=1,B=0.1,λ=3 and α=0.3 for various values of Pr

    Figure 2:Variation of θ(η)at M =γ=1,B=0.1,λ=3 and α=0.3 for various values of Pr

    Figure 3:Variation of f′(η)at B=λ=0.1 and Pr=10 for various values of α

    Figure 4:Variation of θ(η)at M =γ=1,B=λ=0.1 and Pr=10 for various values of α

    Figure 5:Variation of f′(η)at B=0.5,α=0.1,γ=1,λ=0.01 and Pr=10 for various values of M

    Figure 6:Variation of θ(η)at B=0.5,α=0.1,γ=1,λ=0.01 and Pr=10 for various values of M

    Figure 7:Variation of f′(η)at M =γ=1,α=λ=0.1 and Pr=10 for various values of B

    Figure 8:Variation of θ(η)at M =γ=1,α=λ=0.1 and Pr=10 for various values of B

    Figure 9:Variation of f′(η)at λ=3,Pr=10 and M =B=α=0.1 for various values of γ

    Figure 10:Variation of θ(η)at λ=3,Pr=10 and M =B=α=0.1 for various values of γ

    Figure 11:Variation of f′(η)at M =γ=1,B=α=0.1 and Pr=10 for various values of λ

    Figure 12:Variation of θ(η)at M =γ=1,B=α=0.1 and Pr=10 for various values of λ

    6 Conclusion

    This present research has integrated the mixed convective flow of an Eyring Powell fluid over a vertically stretched surface that was reviewed by highlighting the effects of temperature-dependent viscosity involving the parameters of Pr,α,M,B,γ and λ.From the mathematical analysis,a similar trend can be noticed in the motion and temperature distributions of fluid,respectively,when parameters were increased.The results of the parameters are illustrated in the specified graphs and tables.Nevertheless,the variations on the velocity distribution as well as fluid temperature portrayed the importance of the parameters investigated.The findings in this study contribute to a better understanding of the characteristics of fluid flow and its advancement.

    Funding Statement:This project has been supported by Ministry of Higher Education and Universiti Malaysia Pahang through RDU182307.

    Conflicts of Interest:The authors declare no conflicts of interest to report regarding the present study.

    2021天堂中文幕一二区在线观| 国产 一区 欧美 日韩| 亚洲三级黄色毛片| av在线蜜桃| 亚洲av.av天堂| 岛国在线免费视频观看| 99久国产av精品| 国产午夜精品论理片| 神马国产精品三级电影在线观看| 欧美黑人欧美精品刺激| 国产精品自产拍在线观看55亚洲| 夜夜爽天天搞| 午夜精品久久久久久毛片777| 国产单亲对白刺激| 精品一区二区三区av网在线观看| 91狼人影院| 国产女主播在线喷水免费视频网站 | 日韩强制内射视频| 午夜激情欧美在线| 国产成人一区二区在线| 美女大奶头视频| 亚洲最大成人av| 成人av在线播放网站| 黄色欧美视频在线观看| 日韩中文字幕欧美一区二区| 亚洲国产欧洲综合997久久,| 18禁黄网站禁片午夜丰满| 联通29元200g的流量卡| 又粗又爽又猛毛片免费看| 色哟哟·www| 久久久色成人| 国产色婷婷99| 日韩人妻高清精品专区| 我要看日韩黄色一级片| 女的被弄到高潮叫床怎么办 | 一区二区三区免费毛片| 老师上课跳d突然被开到最大视频| 免费无遮挡裸体视频| av国产免费在线观看| 超碰av人人做人人爽久久| xxxwww97欧美| av黄色大香蕉| 国产69精品久久久久777片| 日本免费a在线| 美女高潮喷水抽搐中文字幕| 九色成人免费人妻av| 成年女人永久免费观看视频| 变态另类丝袜制服| 精品久久国产蜜桃| 日本免费a在线| 精品久久久久久久末码| 亚洲成人久久爱视频| 色尼玛亚洲综合影院| 免费在线观看日本一区| 午夜日韩欧美国产| 人妻制服诱惑在线中文字幕| 免费观看在线日韩| 色在线成人网| 久久精品国产清高在天天线| 国产一区二区激情短视频| 深爱激情五月婷婷| 日韩欧美精品免费久久| 亚洲欧美激情综合另类| 国产在线男女| 国产一区二区三区av在线 | 五月伊人婷婷丁香| 国模一区二区三区四区视频| 啦啦啦观看免费观看视频高清| 亚洲第一区二区三区不卡| 88av欧美| 在线看三级毛片| 国产伦一二天堂av在线观看| 男人舔女人下体高潮全视频| 一本久久中文字幕| 久久久久久久久中文| 国语自产精品视频在线第100页| 波多野结衣高清无吗| 淫秽高清视频在线观看| 国产v大片淫在线免费观看| 日韩精品中文字幕看吧| 美女黄网站色视频| 亚洲欧美激情综合另类| 国产午夜精品论理片| 日本色播在线视频| 久久午夜福利片| 在线播放国产精品三级| 亚洲专区中文字幕在线| 99九九线精品视频在线观看视频| 女人被狂操c到高潮| 亚洲欧美日韩高清在线视频| 变态另类成人亚洲欧美熟女| 精品久久国产蜜桃| 99久久精品国产国产毛片| 亚洲美女搞黄在线观看 | 国产主播在线观看一区二区| 亚洲欧美日韩高清专用| 欧美日本视频| 国产精品av视频在线免费观看| 97热精品久久久久久| 九色国产91popny在线| 身体一侧抽搐| 俄罗斯特黄特色一大片| 国产精品永久免费网站| 一区二区三区高清视频在线| 男女之事视频高清在线观看| 久久国产精品人妻蜜桃| 91午夜精品亚洲一区二区三区 | av福利片在线观看| 久久久久久久午夜电影| 极品教师在线视频| 国产一区二区三区视频了| 精品久久国产蜜桃| 久久草成人影院| 亚洲经典国产精华液单| 精品乱码久久久久久99久播| 欧美丝袜亚洲另类 | 亚洲欧美清纯卡通| 午夜免费男女啪啪视频观看 | 成人午夜高清在线视频| 中文字幕久久专区| 此物有八面人人有两片| 久久天躁狠狠躁夜夜2o2o| 亚洲av成人精品一区久久| 22中文网久久字幕| 欧美一区二区亚洲| 一本精品99久久精品77| 91午夜精品亚洲一区二区三区 | 日本黄色视频三级网站网址| 国内毛片毛片毛片毛片毛片| 国产色爽女视频免费观看| ponron亚洲| 欧美性猛交╳xxx乱大交人| 蜜桃亚洲精品一区二区三区| 欧美三级亚洲精品| 久久精品综合一区二区三区| 亚洲人成网站在线播| 欧美三级亚洲精品| 国产伦人伦偷精品视频| 亚洲第一电影网av| 欧美又色又爽又黄视频| 午夜福利在线观看吧| 大又大粗又爽又黄少妇毛片口| 国产三级中文精品| 亚洲精华国产精华精| 黄色欧美视频在线观看| av天堂在线播放| 欧美zozozo另类| 午夜久久久久精精品| 午夜福利高清视频| 欧美黑人巨大hd| 亚洲av成人精品一区久久| 日韩欧美国产一区二区入口| 嫩草影院新地址| 精品久久久久久久久久久久久| 国产高潮美女av| 免费观看人在逋| 亚洲精品乱码久久久v下载方式| 不卡一级毛片| 欧美在线一区亚洲| 联通29元200g的流量卡| 色噜噜av男人的天堂激情| 国产亚洲精品久久久com| 中文字幕av在线有码专区| 搡老岳熟女国产| a在线观看视频网站| 赤兔流量卡办理| 美女大奶头视频| 嫁个100分男人电影在线观看| 国产在线男女| 国产91精品成人一区二区三区| 狂野欧美白嫩少妇大欣赏| 内射极品少妇av片p| 亚洲av.av天堂| 非洲黑人性xxxx精品又粗又长| 色综合色国产| 最近视频中文字幕2019在线8| 亚洲不卡免费看| 一区二区三区高清视频在线| 一个人观看的视频www高清免费观看| 国产在线精品亚洲第一网站| 亚洲精品一区av在线观看| 我要看日韩黄色一级片| 亚洲国产色片| 亚洲国产精品久久男人天堂| 一级黄色大片毛片| 国产主播在线观看一区二区| 男女边吃奶边做爰视频| 夜夜爽天天搞| 久久精品国产亚洲网站| 亚洲av成人精品一区久久| 黄色配什么色好看| av中文乱码字幕在线| 国产精品日韩av在线免费观看| 午夜免费激情av| 国产v大片淫在线免费观看| netflix在线观看网站| 日本黄大片高清| 国产精品国产三级国产av玫瑰| 亚洲aⅴ乱码一区二区在线播放| 麻豆精品久久久久久蜜桃| 成人综合一区亚洲| 免费观看在线日韩| 美女黄网站色视频| 99热6这里只有精品| 一个人看的www免费观看视频| 精品久久国产蜜桃| 国产综合懂色| 男人舔女人下体高潮全视频| 麻豆精品久久久久久蜜桃| 欧美区成人在线视频| 亚洲狠狠婷婷综合久久图片| 淫妇啪啪啪对白视频| 国产精品福利在线免费观看| 精品一区二区三区视频在线| 黄色日韩在线| 男女之事视频高清在线观看| 国产精品国产三级国产av玫瑰| 欧美xxxx黑人xx丫x性爽| 欧美高清成人免费视频www| 久久99热这里只有精品18| 熟女人妻精品中文字幕| 久久精品91蜜桃| 搡老妇女老女人老熟妇| 18+在线观看网站| 久久久久久久久大av| 久久99热6这里只有精品| 夜夜看夜夜爽夜夜摸| 我要看日韩黄色一级片| 久久久精品大字幕| 色噜噜av男人的天堂激情| 国产人妻一区二区三区在| 精品福利观看| 午夜亚洲福利在线播放| 成人欧美大片| 久久中文看片网| 国产69精品久久久久777片| 欧美日韩黄片免| 日日干狠狠操夜夜爽| 国产在线精品亚洲第一网站| 九九久久精品国产亚洲av麻豆| 韩国av在线不卡| 全区人妻精品视频| 色播亚洲综合网| 99精品在免费线老司机午夜| 国内揄拍国产精品人妻在线| 亚洲精品456在线播放app | 美女高潮的动态| 不卡一级毛片| 日本 欧美在线| 亚洲国产日韩欧美精品在线观看| 女生性感内裤真人,穿戴方法视频| 国产单亲对白刺激| 日本五十路高清| a在线观看视频网站| 欧美绝顶高潮抽搐喷水| 噜噜噜噜噜久久久久久91| 男女那种视频在线观看| 久久久久久伊人网av| 最新在线观看一区二区三区| 一区二区三区高清视频在线| 亚洲最大成人手机在线| 国产毛片a区久久久久| 日韩强制内射视频| 国产激情偷乱视频一区二区| 波多野结衣高清作品| 亚洲av不卡在线观看| 又粗又爽又猛毛片免费看| 嫁个100分男人电影在线观看| 欧美日韩瑟瑟在线播放| 校园人妻丝袜中文字幕| 在线观看舔阴道视频| 国产欧美日韩精品亚洲av| 亚洲图色成人| eeuss影院久久| 欧美xxxx性猛交bbbb| 女同久久另类99精品国产91| 观看美女的网站| 欧美潮喷喷水| 99在线人妻在线中文字幕| 欧美国产日韩亚洲一区| 国产 一区精品| 51国产日韩欧美| 国产午夜福利久久久久久| 久久6这里有精品| 看黄色毛片网站| 免费不卡的大黄色大毛片视频在线观看 | 成年女人毛片免费观看观看9| 成人一区二区视频在线观看| 日本黄大片高清| 深夜精品福利| 1024手机看黄色片| 国产伦精品一区二区三区四那| 网址你懂的国产日韩在线| АⅤ资源中文在线天堂| 女人被狂操c到高潮| 熟妇人妻久久中文字幕3abv| 人人妻,人人澡人人爽秒播| 少妇裸体淫交视频免费看高清| 亚洲男人的天堂狠狠| 欧美不卡视频在线免费观看| 他把我摸到了高潮在线观看| 亚洲av免费高清在线观看| 成人美女网站在线观看视频| 中文字幕av成人在线电影| 久久久久久国产a免费观看| 两人在一起打扑克的视频| 在线播放无遮挡| av在线观看视频网站免费| 一夜夜www| 日本三级黄在线观看| 日本黄色视频三级网站网址| 色综合站精品国产| 少妇人妻精品综合一区二区 | 日本爱情动作片www.在线观看 | 亚洲乱码一区二区免费版| 国产欧美日韩一区二区精品| 我的老师免费观看完整版| a在线观看视频网站| 网址你懂的国产日韩在线| 精品免费久久久久久久清纯| 日本熟妇午夜| 国产黄色小视频在线观看| 欧美日本视频| 一级毛片久久久久久久久女| 熟妇人妻久久中文字幕3abv| 一夜夜www| 色5月婷婷丁香| 亚洲最大成人av| 小蜜桃在线观看免费完整版高清| 欧美一区二区国产精品久久精品| 小蜜桃在线观看免费完整版高清| 淫秽高清视频在线观看| 亚洲成av人片在线播放无| 亚洲国产欧美人成| 久久久久久久久中文| 成年女人永久免费观看视频| 看黄色毛片网站| 成年女人永久免费观看视频| 在线国产一区二区在线| 露出奶头的视频| 亚洲av中文字字幕乱码综合| 日韩强制内射视频| 久久久久免费精品人妻一区二区| 我要搜黄色片| 国产精品乱码一区二三区的特点| 国产精品自产拍在线观看55亚洲| 真实男女啪啪啪动态图| 精品福利观看| 黄色配什么色好看| 久久99热这里只有精品18| 成人无遮挡网站| 精品国内亚洲2022精品成人| 搡老岳熟女国产| 麻豆成人午夜福利视频| 国产午夜精品论理片| 在线观看一区二区三区| 久久午夜亚洲精品久久| 欧美日韩国产亚洲二区| avwww免费| 午夜精品久久久久久毛片777| 两性午夜刺激爽爽歪歪视频在线观看| www.色视频.com| 色播亚洲综合网| 久久久久久久久久久丰满 | 97人妻精品一区二区三区麻豆| 午夜福利视频1000在线观看| 麻豆一二三区av精品| 久久精品夜夜夜夜夜久久蜜豆| 亚洲人成伊人成综合网2020| 村上凉子中文字幕在线| 国产v大片淫在线免费观看| 一级a爱片免费观看的视频| 男人狂女人下面高潮的视频| 欧美日韩精品成人综合77777| 特大巨黑吊av在线直播| 国产伦精品一区二区三区视频9| 日本三级黄在线观看| 黄色女人牲交| 99热这里只有是精品50| 有码 亚洲区| 国产精品电影一区二区三区| 国产精品爽爽va在线观看网站| 国产在线男女| 国内毛片毛片毛片毛片毛片| 国产毛片a区久久久久| 欧美zozozo另类| 成年版毛片免费区| 国产成人影院久久av| 成人特级黄色片久久久久久久| 久久国内精品自在自线图片| 22中文网久久字幕| 桃色一区二区三区在线观看| eeuss影院久久| 亚洲男人的天堂狠狠| 亚洲美女视频黄频| 男女那种视频在线观看| 亚洲国产欧美人成| 色5月婷婷丁香| 一个人免费在线观看电影| 看免费成人av毛片| 亚洲精品久久国产高清桃花| 精品一区二区三区视频在线观看免费| 久99久视频精品免费| 男女啪啪激烈高潮av片| 夜夜夜夜夜久久久久| 亚洲国产精品sss在线观看| 人妻久久中文字幕网| 在线观看一区二区三区| 国产又黄又爽又无遮挡在线| 国产男人的电影天堂91| 少妇的逼水好多| 美女xxoo啪啪120秒动态图| 特级一级黄色大片| 欧美成人a在线观看| 久久香蕉精品热| 国产亚洲精品久久久com| 1000部很黄的大片| 日本撒尿小便嘘嘘汇集6| 成人三级黄色视频| 内地一区二区视频在线| 亚洲自偷自拍三级| 看黄色毛片网站| 超碰av人人做人人爽久久| 看免费成人av毛片| 性色avwww在线观看| 国产极品精品免费视频能看的| 简卡轻食公司| 无遮挡黄片免费观看| 欧美日韩亚洲国产一区二区在线观看| 丰满的人妻完整版| 日日夜夜操网爽| 我要看日韩黄色一级片| 亚洲av五月六月丁香网| 国产亚洲精品久久久com| 国产爱豆传媒在线观看| 久久久国产成人精品二区| 午夜a级毛片| 中文在线观看免费www的网站| 高清日韩中文字幕在线| 啦啦啦韩国在线观看视频| 噜噜噜噜噜久久久久久91| 日韩国内少妇激情av| 中亚洲国语对白在线视频| 日本-黄色视频高清免费观看| 乱系列少妇在线播放| 自拍偷自拍亚洲精品老妇| 欧美日韩亚洲国产一区二区在线观看| 免费不卡的大黄色大毛片视频在线观看 | 看片在线看免费视频| 国产精品精品国产色婷婷| 不卡视频在线观看欧美| 性色avwww在线观看| 国产高潮美女av| 两人在一起打扑克的视频| 久久精品久久久久久噜噜老黄 | 淫秽高清视频在线观看| 在线播放无遮挡| 精品久久久久久久久av| av在线老鸭窝| 少妇丰满av| xxxwww97欧美| 亚洲专区国产一区二区| 色精品久久人妻99蜜桃| 亚洲av五月六月丁香网| 国产 一区精品| 男人的好看免费观看在线视频| 特级一级黄色大片| 欧美精品国产亚洲| 久久精品国产鲁丝片午夜精品 | 乱系列少妇在线播放| 亚洲,欧美,日韩| 丰满乱子伦码专区| 大又大粗又爽又黄少妇毛片口| 精品乱码久久久久久99久播| 在线国产一区二区在线| 一个人观看的视频www高清免费观看| 成人特级黄色片久久久久久久| 狂野欧美白嫩少妇大欣赏| 亚洲成人中文字幕在线播放| 国产精品一区二区免费欧美| 亚洲性夜色夜夜综合| 国产乱人伦免费视频| 日韩亚洲欧美综合| 亚洲欧美日韩无卡精品| 老师上课跳d突然被开到最大视频| 国产精品三级大全| 久久久久国产精品人妻aⅴ院| 男插女下体视频免费在线播放| 22中文网久久字幕| 老司机福利观看| 免费不卡的大黄色大毛片视频在线观看 | 国产精品乱码一区二三区的特点| 日本一二三区视频观看| 久久欧美精品欧美久久欧美| 亚洲图色成人| 国产精品日韩av在线免费观看| 国产精品乱码一区二三区的特点| 日本欧美国产在线视频| 国产一区二区三区av在线 | 中文字幕免费在线视频6| 亚洲一级一片aⅴ在线观看| 日韩欧美在线乱码| 精品久久久久久久末码| 又粗又爽又猛毛片免费看| 校园春色视频在线观看| 国产黄a三级三级三级人| 不卡视频在线观看欧美| 久久久色成人| 搡老岳熟女国产| 日本一本二区三区精品| 超碰av人人做人人爽久久| 99视频精品全部免费 在线| 国产麻豆成人av免费视频| 五月伊人婷婷丁香| 啦啦啦观看免费观看视频高清| 日本免费a在线| 免费观看在线日韩| 久久久国产成人精品二区| 亚洲一级一片aⅴ在线观看| 在线观看舔阴道视频| 亚洲精品久久国产高清桃花| 人人妻,人人澡人人爽秒播| 亚洲第一电影网av| 久久久精品欧美日韩精品| av天堂中文字幕网| 非洲黑人性xxxx精品又粗又长| 婷婷六月久久综合丁香| 中文字幕高清在线视频| 欧美xxxx黑人xx丫x性爽| 亚洲av中文av极速乱 | 精品久久久久久久久av| 欧美不卡视频在线免费观看| 熟女人妻精品中文字幕| 国产高清激情床上av| 日日夜夜操网爽| 69av精品久久久久久| 久久久久久九九精品二区国产| 成人亚洲精品av一区二区| 亚洲内射少妇av| 欧美不卡视频在线免费观看| 国产麻豆成人av免费视频| 亚洲美女视频黄频| 日韩欧美在线乱码| 国产成人影院久久av| 欧美日本亚洲视频在线播放| 男女那种视频在线观看| 日本爱情动作片www.在线观看 | 男女边吃奶边做爰视频| 婷婷精品国产亚洲av| 18禁黄网站禁片午夜丰满| 久久这里只有精品中国| 国产亚洲精品综合一区在线观看| www.www免费av| 国产男靠女视频免费网站| 尤物成人国产欧美一区二区三区| 精品久久久久久久人妻蜜臀av| 亚洲国产精品成人综合色| 国产乱人视频| 欧美国产日韩亚洲一区| 黄色视频,在线免费观看| 免费观看在线日韩| 特大巨黑吊av在线直播| 国产一区二区激情短视频| 白带黄色成豆腐渣| x7x7x7水蜜桃| 我的女老师完整版在线观看| 搞女人的毛片| 亚洲欧美日韩高清专用| 一区福利在线观看| 国产亚洲精品综合一区在线观看| 午夜福利视频1000在线观看| 五月伊人婷婷丁香| 精品久久久久久久人妻蜜臀av| 97热精品久久久久久| 亚洲乱码一区二区免费版| 黄色欧美视频在线观看| 夜夜爽天天搞| 国产av在哪里看| 淫妇啪啪啪对白视频| 69av精品久久久久久| 波多野结衣高清无吗| 久久国产精品人妻蜜桃| 日日干狠狠操夜夜爽| 男女啪啪激烈高潮av片| 国产大屁股一区二区在线视频| 国产伦人伦偷精品视频| 久久热精品热| 又爽又黄a免费视频| 午夜亚洲福利在线播放| 日本免费一区二区三区高清不卡| 国产在视频线在精品| 国产精品女同一区二区软件 | 久久草成人影院| 色哟哟·www| 欧美区成人在线视频| 国产精品久久久久久久久免| 亚洲内射少妇av| 国产老妇女一区| 成年女人毛片免费观看观看9| 国产精品三级大全| 亚洲人成网站在线播放欧美日韩| 中出人妻视频一区二区| 欧美性猛交黑人性爽| 亚洲第一区二区三区不卡| 亚洲人成网站在线播| 欧美性猛交╳xxx乱大交人| av在线蜜桃| 黄色丝袜av网址大全| 亚洲av一区综合| 22中文网久久字幕| 最近最新中文字幕大全电影3| 狠狠狠狠99中文字幕| 神马国产精品三级电影在线观看| 亚洲在线自拍视频| 天天躁日日操中文字幕|