• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Forecast the In uenza Pandemic Using Machine Learning

    2021-12-14 03:49:08MuhammadAdnanKhanWajheUlHusnainAbidiMohammedAlGhamdiSultanAlmotiriShaziaSaqibTahirAlyasKhalidMasoodKhanandNasirMahmood
    Computers Materials&Continua 2021年1期

    Muhammad Adnan Khan,Wajhe Ul Husnain Abidi,Mohammed A.Al Ghamdi,Sultan H.Almotiri,Shazia Saqib,Tahir Alyas,Khalid Masood Khan and Nasir Mahmood

    1Department of Computer Science,Lahore Garrison University,Lahore,54792,Pakistan

    2Systems Limited,Lahore,54792,Pakistan

    3Computer Science Department,Umm Al-Qura University,Makkah City,715,Saudi Arabia

    4Department of Computer Science,University of Engineering and Technology,Lahore,54000,Pakistan

    Abstract:Forecasting future outbreaks can help in minimizing their spread.Influenza is a disease primarily found in animals but transferred to humans through pigs.In 1918,influenza became a pandemic and spread rapidly all over the world becoming the cause behind killing one-third of the human population and killing one-fourth of the pig population.Afterwards,that influenza became a pandemic several times on a local and global levels.In 2009,influenza ‘A’ subtype H1N1 again took many human lives.The disease spread like in a pandemic quickly.This paper proposes a forecasting modeling system for the influenza pandemic using a feed-forward propagation neural network(MSDII-FFNN).This model helps us predict the outbreak,and determines which type of influenza becomes a pandemic,as well as which geographical area is infected.Data collection for the model is done by using IoT devices.This model is divided into 2 phases:The training phase and the validation phase,both being connected through the cloud.In the training phase,the model is trained using FFNN and is updated on the cloud.In the validation phase,whenever the input is submitted through the IoT devices,the system model is updated through the cloud and predicts the pandemic alert.In our dataset,the data is divided into an 85% training ratio and a 15% validation ratio.By applying the proposed model to our dataset,the predicted output precision is 90%.

    Keywords:Influenza pandemic;machine learning;prediction influenza;influenza pandemic prediction;forecast pandemic influenza

    1 Introduction

    Influenza is a biological infection affecting the respiratory system that may harm nose,lungs,and throat of a person.The influenza virus is not alike the stomach flu virus.It is found in the body of infected animals,but in 1918 J.S Koen,a veterinarian observed that the same disease start spreading more in humans than pigs,and it is widely known as a“Spanish influenza pandemic of 1918”.Influenza is not a deadly disease but it can be catastrophic.After the end of the 1stworld war,a global killer emerged that caused an estimated 14 to 15 million deaths[1].The disease was highly infectious,when a patient coughs or sneezes,the droplets containing the virus transmits on the human body.On the physically contact with other persons,they also become infected.This is recognized as Spanish pandemic flu as it started from Spain and spread in the whole world.

    The second wave of this pandemic came by the end of the 20thcentury.At the beginning of the 21stcentury,the threat of this pandemic loomed largely.In April 2009,a new pandemic arose in Mexico,the virus is a subtype of H1N1 which was the same as the Spanish flu virus that came 90 years earlier.The H1N1 virus claimed almost 200 thousand human lives.The seasonal influenza epidemic is the cause of millions of respiratory diseases and results each year in 290,000 to 650,000 deaths all over the world[2–5].

    Influenza viruses are associates of the family of Orthomyxoviridae,a group of enveloped viruses containing a segmented negative-sense single-stranded RNA genome[6].Influenza viruses are types of Ribonucleic acid(RNA)viruses.Clinically,based on its Nucleoprotein(NP)and interstitial protein matrix(M),influenza is categorized in three types:A,B,and C[6–8]and they contain further subtypes.The influenza virus A has 8 genetic fragments that can be used for protein translation and the protein surface contain 18 HA and 11 neuraminidase(NA)subtypes[7].Different combinations of these HA and NA translation classify different subtypes that affect different hosts such as H1N1,H1N2,and H3N2 of the influenza virus[9]that infect human.The combinations of H5N1,H7N9,and H9N2 infect both animals and birds.Two more combinations of H17N10 and H18N11 are identified in bats[6,7].

    Influenza viruses ‘A’ and ‘B’ lead to epidemic influenza.Influenza ‘A’ produces sporadic pandemic.Influenza virus‘C’ causes mild disease.In all of these 3 types,the influenza virus‘A’is the most infectious and it leads to critical and incurable severe respiratory diseases.Furthermore,influenza virus ‘A’ and ‘B’cause many diseases in humans,and influenza virus C causes disease mainly in animals and birds[8].

    In humans,when an infected person coughs or sneezes,thousands of small droplets spread into the atmosphere.Even a very small droplet may contain thousands of viruses.These droplets transmit to the other person’s body and get absorbed with this person’s respiratory nucleus membrane.A protein on the surface of the virus combines the receptor molecule on the surface of the healthy cell.Once a virus gets attached to the cell,it enters the cell within no-time.Now the surface of the virus opens,RNA combines with a molecule,duplicates itself,and makes thousands of copies of itself.Now the cell is exhausted,it becomes very weak and dies.These new viruses start infecting nearby cells and this process is repeated many times.The damaged cell opens the door for other pathogens as bacteria and infection occurs.When the infected person coughs or sneezes,the whole process is repeated and the disease is transmitted.

    As the spread of the virus is very rapid and can infect people anytime anywhere in the world,so there is a need for the implementation of machine learning algorithms on the disease data set that can be helpful to forecast the influenza pandemic.Medical facilities need to be advanced so that better decisions for patient diagnosis and treatment options can be made[10].According to the data released by the World health organization(WHO),there were more than 1.3 million confirmed cases of H1N1 in the world,with a death toll of more than 14,000,that present a significant challenge to the world’s quarantine procedure[11].

    For doctors and the government,this is a very helpful tool to arrange the medication and medical equipment,apply precautions to the specific area and alert the people about the pandemic.It is also beneficial for other people to avoid visiting the infected area so that pandemic can be contained within the specified area and its further spread can be prevented.

    2 Literature Review

    The pandemic prediction system is the hot research area for experts so that the best and in-time medicine possible decision can be taken.Influenza outbreak can start anytime anywhere so the prediction of this pandemic is very essential.Tapak et al.[12]applied a Support vector machine(SVM),Artificial neural network(ANN),and Random forest(RF)time series models on the same type of datasets that our model is using but he has predicted the pandemic only for a specific country(Iran).The authors have separated data into two subsets,one is for training and the other is for testing and the selection ratio is 80% to 20%.Furthermore,they have separated this data into ascending order on a yearly and weekly basis.Then they have used a Gaussian radial basis(GRB)in SVM Model.For increasing the performance of SVM,he used the grid search method to find the optimum value.After that,they have used the ANN model for forecasting.By applying these models on 80% of training data and 20% of testing data,they have achieved the test accuracy of 86.5%and the total accuracy of SVM is 89.2%.

    Bhatt et al.[13]used a feedforward and backpropagation neural network for the prediction of influenza.They have divided the data into 2 subsets for 80%and 20%ratio respectively.In the first step of this model,they used the feedforward neural network on 80%of data using only one hidden layer.After feed-forward they minimized the error and applied the same model to the remaining 20%data,to predict whether a person suffers from influenza or not.The author continued the same process in all iterations and found the best results.After that,hidden layer neuron is increased by one unit and all the process is repeated.If the previous results are better than new results,the process is stopped,otherwise,the process remains continued.They tested their model on both the synthetic and real data obtained from a major hospital by hiding the patient details.The computational time can be reduced by applying the model in small iterations,

    In Tapak et al.[12]model,researchers used the data only for the specific geographical area.If we apply their model on the global dataset,the results may change and we can achieve better accuracy using a feedforward neural network.In Bhatt et al.[13]model,the algorithm gives better accuracy on less hidden neurons.The computational time is increased after increasing the number of hidden layers but its accuracy is also increased,hence we can say that accuracy is not dependent on a hidden layer.So,in the proposed model,hidden layer neurons are fixed and using the feedforward neural network,the model is trained and results are stored on the cloud to make them available globally.

    3 Data Analysis

    In this study,data is gathered from the World health organization(WHO)in the timespan of 19 Nov 2018 to 30 Nov 2019[14].After gathering data,it needs to be modified and has to be cleaned for further processing.The dataset has random values according to the WHO region-wise order so first this dataset is arranged on a yearly and weekly basis in ascending order.Then this dataset is divided according to the ratio of 85 and 15 percent.The 85% data is used for the training phase and the 15% data is used in the validation phase.The data has 19 inputs and 1 output which are shown in Tab.1.It has five types of output i.e.,sporadic,no activity of influenza,local outbreak,widespread outbreak,regional outbreak.The data has been collected from the whole world.In the period of 19thNov 2018 to 30thNov 2019,no widespread outbreak occurred,so by default,its values are zero.However,we cannot eliminate this output because it can occur in future and for that time it will be useful for the next pandemic situation.

    4 Proposed model

    Our research has proposed a new Modeling system for predicting the spread of the influenza infection disease using a feedforward propagation neural network(MSDII-FFNN).

    The whole process consists of two phases as shown in Fig.1.One is the training phase and the other one is the validation phase,both phases communicate to each other through a cloud.

    The training phase consists of 3 sub-layers.

    1.Data acquisition layer

    2.Preprocessing layer

    3.Application training layer

    Table 1:Input/output variables of the proposed MSDII-FFNN

    4.1 Training Layer

    4.1.1 Data Acquisition Layer

    In the acquisition layer,the data is collected from IoT enabled devices,that contain the information of countries,WHO regions,flu region,the start date of gathering data,the end date of gathering data,number of specimens received/collected,number of specimens processed,number of influenza“A”viruses detected by subtypes i.e.,A H1,A H1N1 2009,A H3,A H5,number of influenza“B”viruses detected by subtypes i.e.,B(Yamagata lineage),B(Victoria lineage),B(lineage not determined),total B type influenza,the total number of influenza-positive viruses,the total number of influenza negative viruses and title of influenza disease.The data is sent to the central database.The data may have some missing values so that we can call it the raw uncleaned data.

    4.1.2 Preprocessing Layer

    After collecting the raw uncleaned data,the preprocessing layer is activated in which we mitigate the noise and missing data using a number of methods containing the moving average method,mean method,and normalization method.The processed data is sent to the application training layer.

    Figure 1:Proposed MSDII-FFNN system model

    4.1.3 Application Training Layer

    After preprocessing,the application training layer is activated,which is further divided into two sublayers i.e.,the prediction layer and the performance evaluation layer.In the prediction layer,we have used the adapted feedforward neural network.It is further divided into 3 layers which are the input layer,hidden layer,and the output layer.In the input layer,neurons are the same as in the data acquisition layer input sensors.In the hidden layer,30 hidden neurons are used in the output layer so there is only one output as shown in Fig.1.

    To forecast the influenza infection spread,the previous data in the current system plays an important role.To predict the behavior of the neural network,the resources are dynamically allocated.The variables defined as input are enlisted in Tab.1.

    As five output neurons are sporadic,there is no activity in the local outbreak,widespread outbreak and regional outbreak.Different steps are involved in the feedforward propagation neural network.The activation function of every neuron in the hidden layer is s(x)=sigmoid(x),and the sigmoid function for input is written as shown in Eq.(1)

    The hidden layer of the proposed MSDII-FFNN system using the sigmoid function is shown in Eq.(2)

    Input is taken from the output layer as shown in Eq.(3)

    The output layer activation function is shown in Eq.(4)

    Error in feed-forward propagation is written in Eq.(5)

    After that,we evaluate the performance of the prediction layer in terms of Mean squared error(MSE),accuracy,and miss rate.If required learning criteria is not met then we retrain the prediction layer.If learning criteria is met then we store the trained model on the cloud for validation purposes.

    4.2 Validation Layer

    After saving the data on the cloud,the validation phase is activated which is further divided into two layers i.e.,data acquisition layer and the prediction layer.In the data acquisition layer,input data is same as mentioned before.The data is sent to the prediction layer that evaluates the data and predicts the disease type and determines whether it is sporadic,local outbreak,widespread outbreak,or regional outbreak.

    5 Results and Discussions

    In the proposed research,the Machine learning(ML)algorithm has been applied to the dataset and the MATLAB tool is used for simulations.The dataset is collected from WHO[14].In the ML approach,there were 1281 instances for training the dataset.85%of data is used in training(1081 samples)while remaining 15%data is used for validation and testing(200 samples).

    To measure the performance of the proposed MSDII-FFNN model,we used the following different statistical measures.

    The total precision of the current model is calculated by the Eq.(7)

    Eq.(8)represents the formula to calculate the prediction value

    The specificity can be calculated by using Eq.(9)

    Eq.(10)is used to calculate the sensitivity.

    The false positive ratio(FPR)is calculated with Eq.(11)

    Eq.(12)is used to calculated the false negative ratio

    Eq.(13)is used to calculate the Likelihood ratio positive

    The likelihood ratio negative can be calculated with Eq.(14)

    In Tab.2,the proposed MSDII-FFNN model has predicted the spread of influenza pandemic type during the validation phase.A total of 200 samples are used in validation which are further divided into 94,35,64,0 and 07 samples of sporadic(p1),no activity(p2),local outbreak(p3),Widespread outbreak(p4),and regional outbreak(p5)respectively.It clearly shows that during validation 86,33,57 &4 samples are predicted correctly using the proposed model.

    Tab.3 shows the performance of the proposed model during validation considering different statistical parameters.It is observed that the proposed system achieves 97.91%,91.48%,2.09%,8.52%,43.77,0.087,97.72%and 92.12%,specificity,sensitivity,false-positive ratio,false-negative ratio,likelihood positive&negative value,and positive &negative predicted values respectively in case of Sporadic output.It is observed that in all cases such as No Activity,Local outbreak,widespread outbreak ®ional outbreak,the proposed system gives more promising results according to various statistical measures.

    Tab.4 shows the proposed system performance during training and testing phases in terms of precision,miss rate,and RMSE.It clearly shows that the proposed model gives 96.31%,3.69% &1.22 × 10-1accuracy,miss rate &RMSE respectively during the training phase.The proposed model gives 90.00%,10%&2.92×10-1,accuracy,miss rate &RMSE respectively during the validation phase.

    In Fig.2,the blue line represents precision while the orange line represents the miss rate.The gray line shows the specificity and while yellow color indicates the sensitivity of each pandemic’s outputs class like Sporadic(p1),No Activity(p2),Local outbreak(p3),widespread outbreak(p4)®ional outbreak(p5).

    Fig.3 shows the proposed system model performance comparison with the previously published state of the art methods like SVM,RF&ANN with respect to precision&miss rate.The proposed approach with FFNN outperforms with a 90%precision rate by other prototypes like RF[12],SVM[12],and ANN[12].It also observed that the proposed MSDII-FFNN system gives the lowest(10%)miss rate as compared to previously published approaches.

    Table 2:Testing the accuracy of the proposed MSDII-FFNN,for the prediction of the spread of influenza pandemic type

    Table 3:Different statistical measures for prediction of the influenza pandemic

    Table 4:Performance evaluation of proposed MSDII-FFNN

    Figure 2:Graphical representation of different statistical measures for prediction of influenza pandemic using proposed MSDII-FFNN system model

    Figure 3:Comparison of the proposed MSDII-FFNN system with state-of-the-art methods

    7 Conclusions and Future Work

    In this study,we have used the machine learning approach to forecast the spread of the deadly influenza pandemic.The influenza pandemic spread several times in 20thcentury[15],took one-third human lives,and have a massive impact on the world economy.The USA was one of the most affected countries from influenza.The spread was so fast that no one knew that how it became a pandemic and had such a massive impact on the world population and its economy.

    In the proposed MSDII_FFNN model,the data is stored and shared using the cloud,whereas the cloud data is updated on a regular area-wide basis.The proposed model also determines which subtype of influenza may become a pandemic.This information can be used to stop the spread and control the damage in a specific area.It can also assist the government to handle the pandemic more efficiently.Simulation results have shown that the proposed MSDII-FFNN model achieves high accuracy rates of 96.31% &90.00% during training and validation respectively that are superior in comparison to previously published approaches.

    A pandemic spread can be of variable level based on environment,weather,humidity,and temperature.So,these parameters can also be used to predict influenza pandemic to achieve better performance.In future,deep extreme learning techniques will also be used to enhance the accuracy of our proposed model.

    Acknowledgement:Thanks to our families&colleagues who supported us morally.

    Funding Statement:This work is supported by Data and Artificial Intelligence Scientific Chair at Umm AlQura University.

    Con icts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    国产一区有黄有色的免费视频| 2021少妇久久久久久久久久久| 久久久精品94久久精品| 国产永久视频网站| 成人亚洲欧美一区二区av| 尾随美女入室| 秋霞伦理黄片| 99久久人妻综合| 欧美日韩综合久久久久久| 久久精品国产亚洲网站| 在线 av 中文字幕| 国语对白做爰xxxⅹ性视频网站| 国产精品女同一区二区软件| 大片电影免费在线观看免费| 成人国产麻豆网| 国产精品成人在线| 在线观看av片永久免费下载| 国产熟女欧美一区二区| 亚洲经典国产精华液单| 九草在线视频观看| 91狼人影院| 国产伦精品一区二区三区四那| 久久久久久久久久久丰满| 一级av片app| 少妇熟女欧美另类| 男人和女人高潮做爰伦理| 精品久久久久久久末码| 黄色怎么调成土黄色| 丰满乱子伦码专区| 国产成人精品婷婷| 亚洲国产欧美在线一区| 黑人高潮一二区| 中国三级夫妇交换| 久久久久久伊人网av| 看非洲黑人一级黄片| 婷婷色麻豆天堂久久| 在线天堂最新版资源| 亚洲av成人精品一二三区| freevideosex欧美| 亚洲精品乱码久久久久久按摩| 亚洲电影在线观看av| 伦理电影大哥的女人| 亚洲精品456在线播放app| 少妇熟女欧美另类| 日韩 亚洲 欧美在线| 51国产日韩欧美| 在线 av 中文字幕| 久久久久网色| 春色校园在线视频观看| 欧美成人一区二区免费高清观看| 91精品国产国语对白视频| 国产综合精华液| 久久精品久久精品一区二区三区| 黑人猛操日本美女一级片| 欧美少妇被猛烈插入视频| 91久久精品国产一区二区三区| 97超视频在线观看视频| 亚洲精品日韩av片在线观看| 午夜日本视频在线| av播播在线观看一区| 自拍偷自拍亚洲精品老妇| 国产永久视频网站| 国产永久视频网站| 亚洲精品视频女| 男人舔奶头视频| 中文字幕av成人在线电影| 亚洲精品久久久久久婷婷小说| 一级毛片黄色毛片免费观看视频| 国产精品一区二区在线观看99| 黑丝袜美女国产一区| 国产伦理片在线播放av一区| 麻豆成人av视频| 久久鲁丝午夜福利片| 99re6热这里在线精品视频| 欧美日本视频| 国产成人一区二区在线| 国产精品一区二区三区四区免费观看| 亚洲最大成人中文| 内射极品少妇av片p| 肉色欧美久久久久久久蜜桃| 久热这里只有精品99| 熟女av电影| 人体艺术视频欧美日本| .国产精品久久| 大陆偷拍与自拍| 国产在线免费精品| 成人免费观看视频高清| 成人亚洲欧美一区二区av| 亚洲电影在线观看av| 熟女电影av网| 亚洲精品aⅴ在线观看| 日韩一本色道免费dvd| 国产 一区精品| 精品国产乱码久久久久久小说| 欧美bdsm另类| 草草在线视频免费看| 中文字幕久久专区| 久久国产精品男人的天堂亚洲 | 少妇人妻久久综合中文| 久久热精品热| 亚洲经典国产精华液单| 亚洲色图av天堂| 免费av不卡在线播放| 日本-黄色视频高清免费观看| 身体一侧抽搐| 亚洲激情五月婷婷啪啪| av在线观看视频网站免费| 哪个播放器可以免费观看大片| 久久久久精品久久久久真实原创| 99久久中文字幕三级久久日本| 久久人人爽人人爽人人片va| 成人影院久久| 亚洲精品久久午夜乱码| 亚洲婷婷狠狠爱综合网| 中文字幕精品免费在线观看视频 | 久久国产亚洲av麻豆专区| 亚洲va在线va天堂va国产| 国产精品一区www在线观看| 热re99久久精品国产66热6| 97在线人人人人妻| 精品视频人人做人人爽| 久久久欧美国产精品| 十八禁网站网址无遮挡 | 中文资源天堂在线| h日本视频在线播放| 国产高潮美女av| 国产精品成人在线| 最近最新中文字幕免费大全7| 日韩三级伦理在线观看| av一本久久久久| 高清不卡的av网站| 久久国内精品自在自线图片| 国产无遮挡羞羞视频在线观看| 丝瓜视频免费看黄片| 精品视频人人做人人爽| 欧美高清成人免费视频www| 国产探花极品一区二区| 国产高清不卡午夜福利| 永久免费av网站大全| 久久99蜜桃精品久久| 美女国产视频在线观看| 日韩精品有码人妻一区| av免费在线看不卡| 校园人妻丝袜中文字幕| 亚洲国产最新在线播放| 国产乱来视频区| 99热这里只有精品一区| 男女无遮挡免费网站观看| 亚洲精华国产精华液的使用体验| 亚洲在久久综合| 亚洲电影在线观看av| 国产午夜精品久久久久久一区二区三区| 日韩中字成人| 亚洲av福利一区| 丰满迷人的少妇在线观看| 欧美xxxx黑人xx丫x性爽| 最近的中文字幕免费完整| 中文字幕制服av| tube8黄色片| 亚洲在久久综合| 成人毛片60女人毛片免费| 五月伊人婷婷丁香| 黑人高潮一二区| 男女边吃奶边做爰视频| 最近中文字幕高清免费大全6| 成人无遮挡网站| 在线免费观看不下载黄p国产| 成人二区视频| av视频免费观看在线观看| 看十八女毛片水多多多| 在线看a的网站| 日韩中字成人| 精品一区在线观看国产| 欧美一区二区亚洲| 最后的刺客免费高清国语| 少妇熟女欧美另类| 久久精品国产亚洲av天美| 在线观看免费视频网站a站| 国产欧美亚洲国产| 久久久久久九九精品二区国产| xxx大片免费视频| 日韩中字成人| 少妇人妻久久综合中文| 在线观看国产h片| 国模一区二区三区四区视频| 最近2019中文字幕mv第一页| 老熟女久久久| 久久久久久久久久成人| 国产女主播在线喷水免费视频网站| 美女主播在线视频| 伦理电影免费视频| 性色avwww在线观看| 久久99热6这里只有精品| 老女人水多毛片| 十八禁网站网址无遮挡 | .国产精品久久| 免费高清在线观看视频在线观看| 日韩不卡一区二区三区视频在线| 欧美老熟妇乱子伦牲交| 精品一区二区三区视频在线| 亚洲人成网站在线播| 亚洲三级黄色毛片| 国产精品一区二区三区四区免费观看| 亚洲精品乱码久久久久久按摩| 亚洲av.av天堂| 校园人妻丝袜中文字幕| 简卡轻食公司| 高清在线视频一区二区三区| 内射极品少妇av片p| 人妻夜夜爽99麻豆av| 国产精品秋霞免费鲁丝片| 免费久久久久久久精品成人欧美视频 | 久久影院123| 夜夜骑夜夜射夜夜干| 狠狠精品人妻久久久久久综合| 80岁老熟妇乱子伦牲交| 黑丝袜美女国产一区| 亚洲成人中文字幕在线播放| 一级a做视频免费观看| 亚洲va在线va天堂va国产| 国产精品久久久久成人av| 女的被弄到高潮叫床怎么办| 亚洲精品一二三| 亚洲人成网站在线观看播放| 成人无遮挡网站| 亚洲av综合色区一区| 秋霞伦理黄片| av天堂中文字幕网| 精华霜和精华液先用哪个| 国产男女内射视频| 婷婷色综合www| 特大巨黑吊av在线直播| 人妻一区二区av| 男女免费视频国产| 国产成人91sexporn| 一级毛片久久久久久久久女| av女优亚洲男人天堂| 最近最新中文字幕大全电影3| 国产黄片美女视频| 2022亚洲国产成人精品| 国产亚洲午夜精品一区二区久久| 国产免费视频播放在线视频| 亚洲av综合色区一区| 一级毛片aaaaaa免费看小| 免费观看av网站的网址| 日韩制服骚丝袜av| 日韩成人av中文字幕在线观看| 日韩一区二区三区影片| 精品一区二区三卡| 久久久久久久久久久免费av| 免费观看a级毛片全部| 欧美日韩视频高清一区二区三区二| 国产中年淑女户外野战色| 国产淫语在线视频| 欧美三级亚洲精品| 最近最新中文字幕免费大全7| 美女福利国产在线 | 国产色爽女视频免费观看| 人妻制服诱惑在线中文字幕| 高清黄色对白视频在线免费看 | 亚洲美女视频黄频| 亚洲色图综合在线观看| 如何舔出高潮| 亚洲久久久国产精品| 只有这里有精品99| 亚洲精品国产成人久久av| 乱系列少妇在线播放| 国产日韩欧美在线精品| 全区人妻精品视频| 丰满人妻一区二区三区视频av| 性色avwww在线观看| 丝袜喷水一区| 国产有黄有色有爽视频| 亚洲美女视频黄频| 久久韩国三级中文字幕| 91精品国产九色| 日韩,欧美,国产一区二区三区| 只有这里有精品99| a级毛片免费高清观看在线播放| 99久国产av精品国产电影| 在线观看人妻少妇| 国产成人精品福利久久| 自拍偷自拍亚洲精品老妇| 激情 狠狠 欧美| 午夜激情福利司机影院| 久久毛片免费看一区二区三区| 亚洲精品aⅴ在线观看| 午夜激情久久久久久久| 在线 av 中文字幕| 久久久久久久亚洲中文字幕| 十分钟在线观看高清视频www | 亚洲色图av天堂| 日本av免费视频播放| 亚洲国产精品一区三区| 亚洲精品成人av观看孕妇| 男人添女人高潮全过程视频| 九草在线视频观看| 日韩中字成人| 91久久精品国产一区二区成人| 亚洲图色成人| 人人妻人人爽人人添夜夜欢视频 | 久久这里有精品视频免费| 永久免费av网站大全| 一边亲一边摸免费视频| 亚洲精品第二区| 蜜桃在线观看..| 两个人的视频大全免费| 国产男人的电影天堂91| 在现免费观看毛片| 午夜免费观看性视频| 日韩av不卡免费在线播放| 成人影院久久| 久久99热6这里只有精品| 麻豆成人av视频| 日韩av在线免费看完整版不卡| 精品一区在线观看国产| 欧美丝袜亚洲另类| 秋霞伦理黄片| av在线观看视频网站免费| 一级二级三级毛片免费看| 亚洲av综合色区一区| 九草在线视频观看| 亚洲欧洲国产日韩| 夜夜骑夜夜射夜夜干| 久久婷婷青草| 亚洲精品aⅴ在线观看| 精品一区在线观看国产| 国产亚洲一区二区精品| 欧美激情国产日韩精品一区| 哪个播放器可以免费观看大片| 高清av免费在线| 亚洲,一卡二卡三卡| 亚洲国产最新在线播放| 国产精品国产三级国产专区5o| 青春草国产在线视频| 久久99热6这里只有精品| 国产精品久久久久久精品电影小说 | 国产精品无大码| 22中文网久久字幕| 寂寞人妻少妇视频99o| 亚洲欧美日韩无卡精品| 精品一区在线观看国产| 天堂俺去俺来也www色官网| 99re6热这里在线精品视频| 婷婷色综合大香蕉| 男男h啪啪无遮挡| 精品亚洲乱码少妇综合久久| 老司机影院毛片| 成人国产av品久久久| 美女脱内裤让男人舔精品视频| 日韩不卡一区二区三区视频在线| 亚洲欧美清纯卡通| 精品久久久噜噜| 国产极品天堂在线| 久久精品久久精品一区二区三区| 纯流量卡能插随身wifi吗| 国产av码专区亚洲av| 欧美国产精品一级二级三级 | 在现免费观看毛片| 久热这里只有精品99| 中文字幕av成人在线电影| 深爱激情五月婷婷| 欧美日韩亚洲高清精品| 亚洲成色77777| 国产欧美另类精品又又久久亚洲欧美| 人妻少妇偷人精品九色| 久久毛片免费看一区二区三区| 精品国产乱码久久久久久小说| 中文字幕精品免费在线观看视频 | 久久久久久久亚洲中文字幕| 91久久精品电影网| 欧美性感艳星| 内地一区二区视频在线| 国产熟女欧美一区二区| 2018国产大陆天天弄谢| 国产乱来视频区| 欧美日韩综合久久久久久| 色吧在线观看| 91精品伊人久久大香线蕉| 国产日韩欧美亚洲二区| 夜夜看夜夜爽夜夜摸| xxx大片免费视频| 久久久久性生活片| 日韩成人伦理影院| 久久精品国产自在天天线| av国产精品久久久久影院| 国产亚洲av片在线观看秒播厂| 日本黄大片高清| 国产亚洲午夜精品一区二区久久| 美女高潮的动态| 女性生殖器流出的白浆| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久久精品性色| 人人妻人人看人人澡| 91aial.com中文字幕在线观看| 亚洲欧美日韩卡通动漫| 97在线人人人人妻| 午夜福利高清视频| 深爱激情五月婷婷| 日日啪夜夜爽| 国内少妇人妻偷人精品xxx网站| 天堂8中文在线网| 老熟女久久久| 成人毛片60女人毛片免费| 成人18禁高潮啪啪吃奶动态图 | 99re6热这里在线精品视频| 18禁在线播放成人免费| 亚洲精品国产av蜜桃| 人妻制服诱惑在线中文字幕| 日韩三级伦理在线观看| 久久久久性生活片| 久久女婷五月综合色啪小说| 国产国拍精品亚洲av在线观看| 国产无遮挡羞羞视频在线观看| 一个人看的www免费观看视频| 亚洲av男天堂| 乱系列少妇在线播放| 久久鲁丝午夜福利片| 国产成人免费观看mmmm| 在线免费十八禁| 国产精品.久久久| 舔av片在线| av在线app专区| 国产真实伦视频高清在线观看| 国产淫片久久久久久久久| 久久鲁丝午夜福利片| 一级片'在线观看视频| 亚洲精品中文字幕在线视频 | 男人狂女人下面高潮的视频| 你懂的网址亚洲精品在线观看| av一本久久久久| 极品少妇高潮喷水抽搐| 免费人妻精品一区二区三区视频| 夜夜骑夜夜射夜夜干| 国产精品99久久久久久久久| 亚洲伊人久久精品综合| 久久精品夜色国产| 女人久久www免费人成看片| 2018国产大陆天天弄谢| 午夜精品国产一区二区电影| 国内少妇人妻偷人精品xxx网站| 大片免费播放器 马上看| 亚洲人成网站在线观看播放| 精品久久久久久电影网| 精品久久久精品久久久| 欧美日本视频| 国产精品国产三级国产av玫瑰| 少妇 在线观看| 黄色一级大片看看| 亚洲综合色惰| 国产人妻一区二区三区在| 赤兔流量卡办理| 久久99热这里只有精品18| 国产黄色视频一区二区在线观看| 国产白丝娇喘喷水9色精品| 激情五月婷婷亚洲| 中文字幕人妻熟人妻熟丝袜美| 在线观看人妻少妇| 热re99久久精品国产66热6| 欧美日韩一区二区视频在线观看视频在线| 男女国产视频网站| 中文在线观看免费www的网站| 日韩一本色道免费dvd| 国产av国产精品国产| 国产亚洲av片在线观看秒播厂| 免费人妻精品一区二区三区视频| 国产在视频线精品| 亚洲人成网站在线观看播放| 少妇人妻久久综合中文| 亚洲人与动物交配视频| 亚洲国产日韩一区二区| 有码 亚洲区| 女的被弄到高潮叫床怎么办| 国产免费一级a男人的天堂| 久久人人爽av亚洲精品天堂 | 精品久久久久久久久亚洲| 中文字幕精品免费在线观看视频 | 国产成人一区二区在线| 亚洲精品色激情综合| 国产精品蜜桃在线观看| 成人毛片60女人毛片免费| 卡戴珊不雅视频在线播放| 亚洲三级黄色毛片| 精品国产乱码久久久久久小说| 日本一二三区视频观看| 精品视频人人做人人爽| 欧美日韩精品成人综合77777| 久久久色成人| 成人亚洲欧美一区二区av| 在线观看美女被高潮喷水网站| 亚洲av中文字字幕乱码综合| 色吧在线观看| 久久久久国产精品人妻一区二区| 99视频精品全部免费 在线| 亚洲内射少妇av| 亚洲精品乱码久久久v下载方式| 日本-黄色视频高清免费观看| 丰满迷人的少妇在线观看| 免费少妇av软件| 国产精品秋霞免费鲁丝片| 国产精品伦人一区二区| 纵有疾风起免费观看全集完整版| 舔av片在线| 老熟女久久久| 日本午夜av视频| 丝袜脚勾引网站| 久久国产精品大桥未久av | av又黄又爽大尺度在线免费看| 狠狠精品人妻久久久久久综合| 国产精品无大码| 免费黄色在线免费观看| 大话2 男鬼变身卡| 国产在视频线精品| 亚洲色图av天堂| 亚洲av电影在线观看一区二区三区| 日韩欧美一区视频在线观看 | 我的女老师完整版在线观看| 纯流量卡能插随身wifi吗| 久久99精品国语久久久| 亚洲av免费高清在线观看| 三级经典国产精品| 超碰av人人做人人爽久久| 日韩一区二区视频免费看| 爱豆传媒免费全集在线观看| 亚洲国产精品国产精品| 国内揄拍国产精品人妻在线| 狠狠精品人妻久久久久久综合| 久久久亚洲精品成人影院| 久久久久网色| 边亲边吃奶的免费视频| 日韩亚洲欧美综合| 你懂的网址亚洲精品在线观看| 精品久久久精品久久久| av福利片在线观看| 91久久精品国产一区二区成人| 国产成人一区二区在线| 成人18禁高潮啪啪吃奶动态图 | 一本一本综合久久| 色网站视频免费| 午夜福利视频精品| 国产一区二区三区综合在线观看 | av又黄又爽大尺度在线免费看| 欧美3d第一页| 亚洲欧美精品专区久久| 麻豆乱淫一区二区| 亚洲精品视频女| 乱系列少妇在线播放| 国产爱豆传媒在线观看| 男人爽女人下面视频在线观看| 在线看a的网站| 老司机影院成人| 国产高清不卡午夜福利| 精品久久久久久久末码| 成人免费观看视频高清| 高清不卡的av网站| 伦理电影大哥的女人| 美女福利国产在线 | 男女下面进入的视频免费午夜| 亚洲精品456在线播放app| 深夜a级毛片| 中文字幕制服av| 精品国产乱码久久久久久小说| 在线亚洲精品国产二区图片欧美 | 中文字幕制服av| 日本午夜av视频| 国产精品久久久久久久久免| 黄片wwwwww| 亚洲av在线观看美女高潮| 99久久精品热视频| 中文字幕亚洲精品专区| 黄片wwwwww| 国产久久久一区二区三区| 又大又黄又爽视频免费| 蜜桃久久精品国产亚洲av| 亚洲av成人精品一二三区| 欧美高清性xxxxhd video| 男女下面进入的视频免费午夜| 国产深夜福利视频在线观看| 久久精品国产自在天天线| 国产爽快片一区二区三区| 99热国产这里只有精品6| 高清在线视频一区二区三区| 一本—道久久a久久精品蜜桃钙片| 国产 一区 欧美 日韩| 亚洲精品色激情综合| 涩涩av久久男人的天堂| 97超视频在线观看视频| 亚洲第一av免费看| 18禁裸乳无遮挡动漫免费视频| 纯流量卡能插随身wifi吗| 26uuu在线亚洲综合色| 久久精品国产亚洲av天美| 七月丁香在线播放| 国产色婷婷99| a级毛片免费高清观看在线播放| 人人妻人人看人人澡| 国产精品一区二区在线不卡| 亚洲精品一二三| 激情五月婷婷亚洲| 十八禁网站网址无遮挡 | 一区二区三区免费毛片| 国产熟女欧美一区二区| 男人和女人高潮做爰伦理| 久久精品人妻少妇| 美女高潮的动态| 欧美bdsm另类| 久久精品国产鲁丝片午夜精品| 免费播放大片免费观看视频在线观看| 99久久人妻综合| 99久久中文字幕三级久久日本| 亚洲第一av免费看| 亚洲精品国产成人久久av| 中国美白少妇内射xxxbb| 啦啦啦中文免费视频观看日本| 国产白丝娇喘喷水9色精品|