• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prediction of COVID-19 Con rmed Cases Using Gradient Boosting Regression Method

    2021-12-14 03:49:02AbduGumaeiMabrookAlRakhamiMohamadMahmoudAlRahhalFahadRaddahAlbogamyEslamAlMaghayrehandHussainAlSalman
    Computers Materials&Continua 2021年1期

    Abdu Gumaei,Mabrook Al-Rakhami,Mohamad Mahmoud Al Rahhal,Fahad Raddah H.Albogamy,Eslam Al Maghayreh and Hussain AlSalman

    1College of Computer and Information Sciences,King Saud University,Riyadh,11362,Saudi Arabia

    2Computer Science Department,Faculty of Applied Science,Taiz University,Taiz,Yemen

    3College of Applied Computer Sciences,King Saud University,Riyadh,11362,Saudi Arabia

    Abstract:The fast spread of coronavirus disease(COVID-19)caused by SARSCoV-2 has become a pandemic and a serious threat to the world.As of May 30,2020,this disease had infected more than 6 million people globally,with hundreds of thousands of deaths.Therefore,there is an urgent need to predict confirmed cases so as to analyze the impact of COVID-19 and practice readiness in healthcare systems.This study uses gradient boosting regression(GBR)to build a trained model to predict the daily total confirmed cases of COVID-19.The GBR method can minimize the loss function of the training process and create a single strong learner from weak learners.Experiments are conducted on a dataset of daily confirmed COVID-19 cases from January 22,2020,to May 30,2020.The results are evaluated on a set of evaluation performance measures using 10-fold cross-validation to demonstrate the effectiveness of the GBR method.The results reveal that the GBR model achieves 0.00686 root mean square error,the lowest among several comparative models.

    Keywords:COVID-19;coronavirus disease;SARS-CoV-2;machine learning;gradient boosting regression(GBR)method

    1 Introduction

    At the end of December 2019,patients with clinical symptoms similar to those of the common cold and pneumonia were reported in Wuhan city,China.Chinese scientists detected that the cause of this pneumonia was a novel coronavirus[1].The most common clinical features of the disease are cough,fever,and difficulty in breathing.More severe symptoms in some cases can include lung damage,severe acute respiratory syndrome(SARS),breathing failure,and kidney failure,possibly causing death[2].Coronavirus disease 2019(COVID-19)was named by the World Health Organization(WHO)on February 11,2020[3].The International Committee on Taxonomy of Viruses(ICTV)refers to COVID-19 as severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)[3].

    The coronavirus(CoV)family includes the Middle East respiratory syndrome coronavirus(MERSCoV)and SARS and can cause symptoms with severity ranging down to those of the common cold[4].Published studies have shown that MERS-CoV and SARS-CoV infections,respectively,spread from dromedary camels and civet cats to humans.CoVs can be transmitted between humans and several animals,such as cattle,cats,camels,and bats[5].Animal CoVs,such as MERS-CoV,it is noted that it can hardly to be transmitted to humans and then spread between humans[6].Compared to SARS-CoV and MERS-CoV,SARS-CoV-2 spreads easily and has a low mortality rate[7].

    On May 30,2020,the WHO reported that COVID-19 had infected more than 6 million people in 213 countries and territories,with 369,126 fatalities since the cases were officially registered in January[6].COVID-19 has become a serious worldwide problem,especially in the United States,Brazil,Russia,Spain,the United Kingdom,India,and Italy[8].Since the disease has no specific treatment and it spreads rapidly,it is crucial to prepare healthcare services for future cases[9].

    Machine learning and approximation algorithms have been used to solve problems in areas such as healthcare[10],industry[11],cloud computing[12,13],human activity recognition[14],and brain tumor classification[15].Machine learning models are certainly useful to forecast future cases to take control of this global pandemic[16–18].

    Few studies have used statistical models and artificial intelligence(AI)methods to predict coronavirus cases.The autoregressive integrated moving average(ARIMA)was used to forecast the spread of SARSCoV-2[18].An AI framework to predict the clinical severity of coronavirus was proposed in[19].A simple and powerful method was proposed to predict the continuation of COVID-19[20].However,to develop an effective model to predict future confirmed cases of COVID-19 in the world in different time periods is a challenging issue that needs a solution.

    We aim to develop an effective model using a gradient boosting regression(GBR)algorithm to predict daily total confirmed cases and enhance the readiness of healthcare systems.

    The rest of the paper is organized as follows.Section 2 explains the materials and methods,including a COVID-19 data sample,the GBR method,and performance evaluation measures.Section 3 describes our experiments and their results.Section 4 provides our conclusions and suggestions for future work.

    2 Materials and Methods

    We describe the dataset used to evaluate the work,our computational method,and performance evaluation measures.

    2.1 COVID-19 Data Sample

    The data sample used in this study includes the total daily confirmed cases of COVID-19,collected from the official website(https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html)of Johns Hopkins University,in the period from January 22,2020,to May 30,2020,all over the world.It contains 130 time-series instances from which to build our model,which we compare to other predictive models.Tab.1 shows some example instances from the collected COVID-19 data sample Fig.1.

    The time-series instances of the dataset were processed for supervised learning methods using the timeseries data of the previous days as input to predict the next day.We used a sliding window technique to create three public benchmark datasets based on different time-intervals(5,10,and 15 days),respectively,called COVID-19_DataSet1,1https://github.com/abdugumaei/COVID-19-Time-Series-Prediction-Datasets/blob/master/COVID-19_DataSet1.csvCOVID-19_DataSet2,2https://github.com/abdugumaei/COVID-19-Time-Series-Prediction-Datasets/blob/master/COVID-19_DataSet2.csvand COVID-19_DataSet3.3https://github.com/abdugumaei/COVID-19-Time-Series-Prediction-Datasets/blob/master/COVID-19_DataSet3.csvTabs.2–4 demonstrate the first five instances of these datasets,whereTS1,TS2,…,TS15 are features variables of the previous days,andYis the predicted variable of the next day.

    Table 1:Some instances of the collected COVID-19 data sample

    Figure 1:Growth of total confirmed COVID-19 cases from January 22,2020,to May 30,2020

    Table 2:First five instances of COVID-19_DataSet1

    Table 3:First five instances of COVID-19_DataSet2

    Table 4:First five instances of COVID-19_DataSet3

    To make the values of independent feature variables suitable to ML methods and in a specific range,we transformed them to values between zero and one using a min-max normalization technique:

    wherefi,jis the feature variable in rowiand columnjof a COVID-19 dataset.

    2.2 Gradient Boosting Regression(GBR)

    Gradient boosting(GB)is a machine learning(ML)algorithm used for regression and classification tasks.It can build a prediction model using a combination of weak prediction models,often through decision trees(DTs)[21,22].This algorithm was first proposed to optimize a cost function[23]and has been used for regression[24,25]and energy theft detection[26].This led to the development of applications in statistics and artificial intelligence(AI)[27].

    GB regression(GBR)is an adaptive boosting algorithm that creates a single strong regression learner by iteratively combining a set of weak regression learners[28].Its objective function can use gradient descent to minimize the loss function computed from adding weak learners.In this case,the loss function is used to measure how the coefficients of a good model can fit the underlying instances of data.Such as in other boosting algorithms,GBR generates an additive model in a greedy style:

    Algorithm 1:Training GBR Method

    We train the GBR method on COVID-19 confirmed case datasets containing feature variables(xi)that represent total confirmed cases for previous days,and target labels(yi)that are confirmed cases of the following days.The trained GBR model predicts the total confirmed cases for the next day based on those of previous days.

    2.3 Performance Evaluation Measures

    To evaluate the experimental results of the study,a set of performance measures is utilized to evaluate the differences between the predicted and actual numbers of COVID-19 confirmed cases.These are the root mean square error(RMSE),mean absolute error(MAE),and coefficient of determination(R-squared).RMSE and MAE evaluate the errors between predicted and actual values,which should be small.In contrast,higher values of R-squared give a good indication that the model can correctly predict data instances.These measures are calculated as

    3 Experiments and Discussion

    We conducted a set of experiments to compare the GBR model to other predictive models in terms of the above performance evaluation measures.We describe and discuss the experimental results for the three COVID-19 datasets.All models were trained based on 10-fold cross-validation,a robust technique,used to train and evaluate ML models.It divides the dataset into 10 folds.The validation process is executed ten times,each time using one fold for testing and the others for training.The final evaluation result is the average over the 10 folds.Tabs.5–7 show the RMSE,MAE,R-squared,average,and standard deviation using this technique on the three datasets.

    Table 5:Evaluation results of GBR method using 10-fold cross-validation on COVID-19_DataSet1

    Table 6:Evaluation results of GBR method using 10-fold cross-validation on COVID-19_DataSet2

    Table 7:Evaluation results of GBR method using 10-fold cross-validation on COVID-19_DataSet3

    In Figs.2–4,we visualize the averaged results of RSME,MAE,and R-squared for the GBR method on the three datasets.From the results,it is clear that the best evaluation results are on COVID-19_DataSet3,which is for a time interval of 15 days.This means that to train the model using a long period of total confirmed cases can produce more accurate predictions.

    Figure 2:Averaged RSME results of GBR method on the three datasets

    Figure 3:Averaged MAE results of GBR method on the three datasets

    We compared the performance of the GBR method to that of the popular ML regression methods of extreme gradient boosting regression(XGBR),support vector regression(SVR),and decision tree regression(DTR).Figs.5–7 show the actual and predicted total confirmed cases of fold 6 test instances for each dataset using GBR,XGBR,SVR,and DTR.From the figures,we can see that the actual and predicted total confirmed cases are better fitted by GBR than by the other methods,and SVR has the worst fitting among the compared methods.

    Figure 4:Averaged R-squared results of GBR method on the three datasets

    Figure 5:Actual and predicted total confirmed cases of test instances in fold 6 of COVID-19_DataSet1 for:(a)GBR;(b)XGBR;(c)SVR;(d)DTR

    Figure 6:Actual and predicted total confirmed cases of test instances in fold 6 of COVID-19_DataSet2 for:(a)GBR;(b)XGBR;(c)SVR;(d)DTR

    For the 10-fold cross-validation test,we report the average results of RMSE,MAE,and R-squared on the three datasets in Tabs.8–10.We can notice that GBR achieves the lowest average MAE and the highest average R-squared among the four methods.Figs.8–10 show the difference in RMSE results between GBR and the other methods on all three datasets.

    From the reported results,we find that GBR can effectively predict the total confirmed COVID-19 cases for the next day based on those of previous days.We also conclude that GBR performs better than popular predictive methods in terms of RSME,MAE,and R-squared.

    Figure 7:Actual and predicted total confirmed cases of test instances in fold 6 of COVID-19_DataSet3 for:(a)GBR;(b)XGBR;(c)SVR;(d)DTR

    Table 8:Comparison of GBR,XGBR,SVR,and DTR on COVID-19_DataSet1

    Table 9:Comparison of GBR,XGBR,SVR,and DTR on COVID-19_DataSet2

    Table 10:Comparison of GBR,XGBR,SVR,and DTR on COVID-19_DataSet3

    Figure 8:Average RMSE for GBR,XGBR,SVR,and DTR on COVID-19_DataSet1

    Figure 9:Average RMSE for GBR,XGBR,SVR,and DTR on COVID-19_DataSet2

    Figure 10:Average RMSE for GBR,XGBR,SVR,and DTR on COVID-19_DataSet3

    4 Conclusion and Future Work

    The SARS-CoV-2 pandemic has become a serious worldwide problem.Prediction of future confirmed cases of COVID-19 disease using ML methods is important to provide medical services and have readiness in healthcare systems.We proposed the GBR method to predict the daily total confirmed cases of COVID-19 based on the totals of previous days.We selected GBR because it can minimize the loss function in the training process and create a single strong learner from weak learners.We conducted experiments using 10-fold cross-validation on the daily confirmed cases of COVID-19 collected from January 22,2020,to May 30,2020.Experimental results were evaluated using RMSE,MAE,and R-squared.The results revealed that GBR is an effective ML tool to predict the daily confirmed cases of COVID-19.The results showed that GBR achieves 0.00686 RMSE,which is the lowest among GBR and the comparison XGBR,SVR,and DTR models on the same datasets.In future work,we plan to conduct a comprehensive study of ML methods to predict the total deaths and recovered cases as well as the total confirmed cases of COVID-19,so as to analyze their performance in more detail.

    Acknowledgement:The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group No.RG-1441-502.

    Funding Statement:The financial support provided from the Deanship of Scientific Research at King Saud University,Research group No.RG-1441-502.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    免费av中文字幕在线| 女人久久www免费人成看片| 久久精品熟女亚洲av麻豆精品| 极品少妇高潮喷水抽搐| 亚洲国产成人一精品久久久| 一边摸一边做爽爽视频免费| 老司机影院成人| 天美传媒精品一区二区| 国产一区二区 视频在线| 亚洲国产中文字幕在线视频| 国产精品人妻久久久影院| 亚洲成国产人片在线观看| 亚洲一级一片aⅴ在线观看| 少妇人妻 视频| 亚洲美女视频黄频| 香蕉国产在线看| 亚洲av中文av极速乱| 国产女主播在线喷水免费视频网站| 老司机影院毛片| 国产欧美亚洲国产| 久久天堂一区二区三区四区| 精品一品国产午夜福利视频| 国产爽快片一区二区三区| 精品少妇一区二区三区视频日本电影 | 1024香蕉在线观看| 成人午夜精彩视频在线观看| 波多野结衣av一区二区av| 纯流量卡能插随身wifi吗| 国产精品一二三区在线看| 妹子高潮喷水视频| 欧美日韩精品网址| 亚洲自偷自拍图片 自拍| 欧美日韩国产mv在线观看视频| 最近中文字幕高清免费大全6| 国产亚洲午夜精品一区二区久久| 在线观看三级黄色| 国产激情久久老熟女| 久久热在线av| 久久久久精品国产欧美久久久 | 亚洲av在线观看美女高潮| 精品亚洲乱码少妇综合久久| 一区福利在线观看| 18禁国产床啪视频网站| 国产在线视频一区二区| 亚洲成av片中文字幕在线观看| 国产毛片在线视频| 免费在线观看完整版高清| 黄色视频不卡| 五月开心婷婷网| 丝袜美腿诱惑在线| 午夜福利网站1000一区二区三区| 久久久久久久久久久久大奶| 日韩av在线免费看完整版不卡| 免费高清在线观看视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲一卡2卡3卡4卡5卡精品中文| 大码成人一级视频| 最近手机中文字幕大全| 午夜福利乱码中文字幕| 街头女战士在线观看网站| 亚洲国产精品一区三区| 在线亚洲精品国产二区图片欧美| 一级毛片黄色毛片免费观看视频| 亚洲av男天堂| 亚洲欧美中文字幕日韩二区| 亚洲精品一二三| 丝袜人妻中文字幕| 丁香六月欧美| 精品亚洲成a人片在线观看| 欧美最新免费一区二区三区| 精品久久蜜臀av无| 久久国产亚洲av麻豆专区| 无限看片的www在线观看| av卡一久久| 久久ye,这里只有精品| 99久久精品国产亚洲精品| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品久久午夜乱码| 美国免费a级毛片| 777久久人妻少妇嫩草av网站| 麻豆精品久久久久久蜜桃| 狠狠精品人妻久久久久久综合| 久久人人爽人人片av| 中文字幕高清在线视频| 欧美日本中文国产一区发布| 在线观看免费高清a一片| 中文乱码字字幕精品一区二区三区| 中文字幕精品免费在线观看视频| netflix在线观看网站| 久热爱精品视频在线9| 九九爱精品视频在线观看| 日韩 欧美 亚洲 中文字幕| 午夜福利乱码中文字幕| 捣出白浆h1v1| 午夜福利网站1000一区二区三区| 亚洲av中文av极速乱| 亚洲激情五月婷婷啪啪| 成人国产麻豆网| 2018国产大陆天天弄谢| 少妇猛男粗大的猛烈进出视频| 2021少妇久久久久久久久久久| 侵犯人妻中文字幕一二三四区| 激情视频va一区二区三区| 老熟女久久久| 久热这里只有精品99| 90打野战视频偷拍视频| 精品福利永久在线观看| 免费高清在线观看视频在线观看| 性少妇av在线| 国产精品欧美亚洲77777| 亚洲情色 制服丝袜| av在线播放精品| 一本久久精品| 国产一级毛片在线| 国产精品久久久久久精品古装| av线在线观看网站| 国产又爽黄色视频| 久久婷婷青草| 国产午夜精品一二区理论片| 美女脱内裤让男人舔精品视频| 亚洲一区二区三区欧美精品| 99香蕉大伊视频| 欧美日韩一级在线毛片| 一级,二级,三级黄色视频| 国产精品久久久久久人妻精品电影 | 精品少妇内射三级| 国产黄色视频一区二区在线观看| 亚洲欧美日韩另类电影网站| 啦啦啦啦在线视频资源| 老熟女久久久| 精品人妻在线不人妻| 国产精品二区激情视频| 久久国产精品大桥未久av| 成年美女黄网站色视频大全免费| 最新的欧美精品一区二区| 国产97色在线日韩免费| 一本久久精品| 久久av网站| 欧美日韩一级在线毛片| av电影中文网址| 男女无遮挡免费网站观看| 色精品久久人妻99蜜桃| 日日摸夜夜添夜夜爱| 韩国精品一区二区三区| 亚洲精品aⅴ在线观看| 中文字幕最新亚洲高清| 伊人久久国产一区二区| 18在线观看网站| 亚洲,一卡二卡三卡| 国产在线一区二区三区精| 免费观看av网站的网址| 最近最新中文字幕免费大全7| 成年人午夜在线观看视频| 国产又色又爽无遮挡免| 国产麻豆69| 免费日韩欧美在线观看| 亚洲精品美女久久av网站| 久久久精品国产亚洲av高清涩受| 一边摸一边抽搐一进一出视频| 精品人妻在线不人妻| 国产精品无大码| 精品卡一卡二卡四卡免费| av在线老鸭窝| 国产一区二区三区av在线| 啦啦啦在线免费观看视频4| 亚洲图色成人| 丝袜人妻中文字幕| 99久久综合免费| 搡老岳熟女国产| 最新的欧美精品一区二区| 亚洲精品av麻豆狂野| 91成人精品电影| 老鸭窝网址在线观看| 国产日韩一区二区三区精品不卡| 三上悠亚av全集在线观看| 免费观看av网站的网址| 国产成人啪精品午夜网站| 国产精品国产三级国产专区5o| 国产成人一区二区在线| 精品久久久久久电影网| 亚洲精品日本国产第一区| 国产成人午夜福利电影在线观看| 国产麻豆69| 在线 av 中文字幕| 十八禁网站网址无遮挡| 国产精品欧美亚洲77777| 中文字幕制服av| 国产成人精品久久久久久| 青春草亚洲视频在线观看| 久久久久久人妻| 男女免费视频国产| 国产成人av激情在线播放| 国产乱人偷精品视频| 色精品久久人妻99蜜桃| 我要看黄色一级片免费的| 日韩一区二区视频免费看| 欧美精品一区二区免费开放| 欧美日韩av久久| 黄色一级大片看看| av一本久久久久| 亚洲精品国产av蜜桃| 国产福利在线免费观看视频| 毛片一级片免费看久久久久| 久久av网站| 十分钟在线观看高清视频www| 少妇 在线观看| 国产欧美亚洲国产| 中文字幕最新亚洲高清| 精品一区二区三卡| 亚洲国产av新网站| 蜜桃国产av成人99| 日本欧美国产在线视频| 久久久久精品人妻al黑| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲av综合色区一区| av.在线天堂| 亚洲av电影在线观看一区二区三区| 欧美成人午夜精品| 深夜精品福利| 交换朋友夫妻互换小说| 亚洲国产av影院在线观看| 久久99热这里只频精品6学生| 韩国av在线不卡| 欧美人与善性xxx| 香蕉国产在线看| 欧美久久黑人一区二区| 少妇人妻精品综合一区二区| 日韩 欧美 亚洲 中文字幕| 丝袜美腿诱惑在线| 操出白浆在线播放| 看免费av毛片| 国产精品久久久久久精品电影小说| 精品亚洲成a人片在线观看| h视频一区二区三区| 国产成人精品久久久久久| 日韩一卡2卡3卡4卡2021年| 看免费av毛片| 久久久精品区二区三区| 一本一本久久a久久精品综合妖精| 最新的欧美精品一区二区| 搡老乐熟女国产| 亚洲熟女毛片儿| 天天影视国产精品| 精品国产露脸久久av麻豆| 亚洲精品,欧美精品| √禁漫天堂资源中文www| netflix在线观看网站| 午夜精品国产一区二区电影| 午夜福利,免费看| 伊人亚洲综合成人网| 亚洲一级一片aⅴ在线观看| 国产1区2区3区精品| 老汉色∧v一级毛片| videosex国产| 久久久精品国产亚洲av高清涩受| 毛片一级片免费看久久久久| 三上悠亚av全集在线观看| 午夜福利乱码中文字幕| 欧美精品人与动牲交sv欧美| 国产男人的电影天堂91| 欧美日韩av久久| 亚洲精品久久成人aⅴ小说| 亚洲人成77777在线视频| 国产精品无大码| 人人澡人人妻人| 一区二区三区激情视频| 国产不卡av网站在线观看| 亚洲七黄色美女视频| 久久这里只有精品19| 久久99热这里只频精品6学生| 水蜜桃什么品种好| 精品国产一区二区三区四区第35| 亚洲精华国产精华液的使用体验| 久久国产精品大桥未久av| 少妇的丰满在线观看| 免费在线观看视频国产中文字幕亚洲 | 丝瓜视频免费看黄片| 99国产精品免费福利视频| 老鸭窝网址在线观看| 两个人看的免费小视频| 亚洲av综合色区一区| 精品国产一区二区三区四区第35| 大话2 男鬼变身卡| 日日撸夜夜添| 咕卡用的链子| 新久久久久国产一级毛片| 国产高清不卡午夜福利| 操出白浆在线播放| 久久国产亚洲av麻豆专区| 超碰97精品在线观看| 国产又色又爽无遮挡免| 亚洲精品自拍成人| 久久久久精品国产欧美久久久 | 亚洲国产欧美日韩在线播放| 大香蕉久久网| 日本色播在线视频| 亚洲国产精品一区三区| 下体分泌物呈黄色| 久久精品国产a三级三级三级| 亚洲第一青青草原| a级毛片在线看网站| 日本vs欧美在线观看视频| 午夜福利视频精品| 中文字幕亚洲精品专区| 极品少妇高潮喷水抽搐| 99re6热这里在线精品视频| 美女主播在线视频| av电影中文网址| 80岁老熟妇乱子伦牲交| 久久性视频一级片| 制服人妻中文乱码| 超碰97精品在线观看| 精品少妇黑人巨大在线播放| 免费高清在线观看视频在线观看| 精品少妇久久久久久888优播| 国产精品久久久久久久久免| 五月开心婷婷网| 七月丁香在线播放| 热99国产精品久久久久久7| 午夜福利一区二区在线看| 免费人妻精品一区二区三区视频| 黑人欧美特级aaaaaa片| 女的被弄到高潮叫床怎么办| 叶爱在线成人免费视频播放| 激情五月婷婷亚洲| 久久久久久久国产电影| 51午夜福利影视在线观看| 大码成人一级视频| 美女视频免费永久观看网站| 最近中文字幕2019免费版| 精品久久蜜臀av无| 9热在线视频观看99| 国产av一区二区精品久久| 只有这里有精品99| 久久精品久久精品一区二区三区| 亚洲国产成人一精品久久久| av.在线天堂| 亚洲精品国产色婷婷电影| 国产成人欧美| 午夜免费鲁丝| 欧美 亚洲 国产 日韩一| 蜜桃在线观看..| 亚洲av国产av综合av卡| 人人妻人人添人人爽欧美一区卜| 乱人伦中国视频| 在线看a的网站| 亚洲国产精品一区三区| 嫩草影视91久久| 男女下面插进去视频免费观看| 久久人人爽av亚洲精品天堂| www.自偷自拍.com| 人体艺术视频欧美日本| 中国国产av一级| 黑人巨大精品欧美一区二区蜜桃| 黄频高清免费视频| 久久久久精品国产欧美久久久 | 一本一本久久a久久精品综合妖精| 两性夫妻黄色片| 欧美 亚洲 国产 日韩一| h视频一区二区三区| 欧美精品一区二区免费开放| 久久精品国产综合久久久| 亚洲国产毛片av蜜桃av| 久久免费观看电影| 欧美日韩视频高清一区二区三区二| 99热全是精品| 亚洲久久久国产精品| 亚洲精品乱久久久久久| 国产精品免费视频内射| 伦理电影大哥的女人| 亚洲av福利一区| 日韩一区二区三区影片| 伦理电影大哥的女人| 欧美中文综合在线视频| 精品国产超薄肉色丝袜足j| 久久久国产精品麻豆| 一本色道久久久久久精品综合| 少妇 在线观看| 国产av一区二区精品久久| 亚洲人成电影观看| av一本久久久久| 纯流量卡能插随身wifi吗| 一级毛片黄色毛片免费观看视频| 亚洲精品乱久久久久久| 韩国av在线不卡| 女性生殖器流出的白浆| 亚洲综合色网址| 韩国高清视频一区二区三区| 欧美xxⅹ黑人| 国产人伦9x9x在线观看| 国产精品蜜桃在线观看| 男女免费视频国产| 午夜福利视频精品| 国产又爽黄色视频| 男人操女人黄网站| 国产精品嫩草影院av在线观看| 一区福利在线观看| 婷婷色麻豆天堂久久| 丁香六月欧美| 亚洲精品久久成人aⅴ小说| 日本午夜av视频| 免费观看性生交大片5| 日韩 欧美 亚洲 中文字幕| 观看av在线不卡| 日本欧美国产在线视频| 成人亚洲精品一区在线观看| 丰满乱子伦码专区| 久久精品国产a三级三级三级| 老鸭窝网址在线观看| xxxhd国产人妻xxx| 两个人免费观看高清视频| 操出白浆在线播放| 婷婷色综合www| 黄片小视频在线播放| 国产精品亚洲av一区麻豆 | 亚洲国产日韩一区二区| 啦啦啦在线观看免费高清www| 久久久精品区二区三区| 黑丝袜美女国产一区| 成人18禁高潮啪啪吃奶动态图| 十八禁高潮呻吟视频| 国产精品偷伦视频观看了| 亚洲四区av| 欧美最新免费一区二区三区| 久久人人爽av亚洲精品天堂| 国产av一区二区精品久久| 可以免费在线观看a视频的电影网站 | 亚洲在久久综合| av一本久久久久| 欧美97在线视频| 99久久精品国产亚洲精品| 飞空精品影院首页| 十八禁人妻一区二区| 9热在线视频观看99| 免费观看人在逋| 99久久综合免费| 日韩,欧美,国产一区二区三区| 国产视频首页在线观看| 国产色婷婷99| 看非洲黑人一级黄片| 欧美日韩亚洲高清精品| 十分钟在线观看高清视频www| 美女中出高潮动态图| 男女国产视频网站| 高清视频免费观看一区二区| 精品卡一卡二卡四卡免费| 天堂中文最新版在线下载| 国产精品99久久99久久久不卡 | videos熟女内射| 亚洲精品国产一区二区精华液| 午夜免费男女啪啪视频观看| 性少妇av在线| 亚洲第一av免费看| 国产亚洲最大av| 成年人免费黄色播放视频| 王馨瑶露胸无遮挡在线观看| 国产福利在线免费观看视频| 丰满饥渴人妻一区二区三| bbb黄色大片| 国产精品久久久av美女十八| 久久午夜综合久久蜜桃| 国产免费现黄频在线看| 国产片特级美女逼逼视频| 大香蕉久久成人网| 老熟女久久久| www.精华液| 午夜福利,免费看| 91精品伊人久久大香线蕉| 天堂中文最新版在线下载| 侵犯人妻中文字幕一二三四区| av免费观看日本| 91成人精品电影| 免费av中文字幕在线| 十八禁网站网址无遮挡| 夜夜骑夜夜射夜夜干| 日韩av在线免费看完整版不卡| 如何舔出高潮| 亚洲一级一片aⅴ在线观看| 国产av一区二区精品久久| xxxhd国产人妻xxx| 黄频高清免费视频| 一区二区三区激情视频| 99久久精品国产亚洲精品| 午夜福利乱码中文字幕| 亚洲,一卡二卡三卡| 久久人妻熟女aⅴ| 国产乱来视频区| 成人国产麻豆网| 精品一区二区三卡| 日本av手机在线免费观看| 国产高清不卡午夜福利| 欧美xxⅹ黑人| 国产无遮挡羞羞视频在线观看| 精品一区二区免费观看| 亚洲国产精品国产精品| 精品一区二区免费观看| 乱人伦中国视频| 极品人妻少妇av视频| 乱人伦中国视频| 日本vs欧美在线观看视频| 亚洲av在线观看美女高潮| 99热国产这里只有精品6| 黄色 视频免费看| 波多野结衣一区麻豆| 欧美成人精品欧美一级黄| 青草久久国产| 亚洲精品国产区一区二| 香蕉国产在线看| 婷婷色av中文字幕| av免费观看日本| 在线亚洲精品国产二区图片欧美| av福利片在线| 九九爱精品视频在线观看| 亚洲国产av新网站| 国产野战对白在线观看| 日韩大片免费观看网站| 少妇精品久久久久久久| av又黄又爽大尺度在线免费看| 国产xxxxx性猛交| 亚洲综合色网址| h视频一区二区三区| 欧美另类一区| 考比视频在线观看| 在线观看国产h片| 国产欧美亚洲国产| 曰老女人黄片| 国产熟女午夜一区二区三区| 搡老岳熟女国产| 黄色怎么调成土黄色| 欧美xxⅹ黑人| 悠悠久久av| 一级片'在线观看视频| 不卡视频在线观看欧美| 老司机深夜福利视频在线观看 | 国产乱人偷精品视频| 亚洲成国产人片在线观看| 一级爰片在线观看| 成年女人毛片免费观看观看9 | 国产免费现黄频在线看| 日韩 亚洲 欧美在线| 操出白浆在线播放| 两个人免费观看高清视频| 嫩草影院入口| 亚洲精品久久久久久婷婷小说| 精品人妻一区二区三区麻豆| 久久久久精品国产欧美久久久 | 亚洲国产毛片av蜜桃av| 国产男女内射视频| 国产一卡二卡三卡精品 | 久久狼人影院| 搡老乐熟女国产| 亚洲中文av在线| 嫩草影院入口| 免费女性裸体啪啪无遮挡网站| 国产片特级美女逼逼视频| 国产极品天堂在线| 成年av动漫网址| av又黄又爽大尺度在线免费看| 免费看不卡的av| 精品少妇久久久久久888优播| 大香蕉久久网| av卡一久久| 久久人妻熟女aⅴ| 丝袜脚勾引网站| 亚洲精品自拍成人| 国产精品国产三级国产专区5o| 一区在线观看完整版| 飞空精品影院首页| 国产一区二区在线观看av| 国产成人系列免费观看| 色综合欧美亚洲国产小说| 免费看不卡的av| 一区二区三区四区激情视频| 免费看不卡的av| 午夜日韩欧美国产| 男的添女的下面高潮视频| 悠悠久久av| 亚洲伊人久久精品综合| 日韩 欧美 亚洲 中文字幕| 天堂8中文在线网| 夫妻性生交免费视频一级片| 99九九在线精品视频| 高清黄色对白视频在线免费看| 久久人人爽人人片av| 香蕉国产在线看| 伊人久久大香线蕉亚洲五| 成年女人毛片免费观看观看9 | 精品少妇久久久久久888优播| 午夜福利在线免费观看网站| www日本在线高清视频| 亚洲第一区二区三区不卡| 久久久久精品性色| 国产一区二区三区av在线| 亚洲精品在线美女| 亚洲欧美成人综合另类久久久| 亚洲第一av免费看| av天堂久久9| 成人亚洲精品一区在线观看| www日本在线高清视频| 超色免费av| 久久人人97超碰香蕉20202| 久久久久国产一级毛片高清牌| 欧美老熟妇乱子伦牲交| 99久久99久久久精品蜜桃| 亚洲av欧美aⅴ国产| 建设人人有责人人尽责人人享有的| 国产欧美日韩综合在线一区二区| 波多野结衣av一区二区av| 中文字幕最新亚洲高清| 女性生殖器流出的白浆| 中文字幕精品免费在线观看视频| 精品免费久久久久久久清纯 | 啦啦啦视频在线资源免费观看| 国产熟女欧美一区二区| 一边摸一边抽搐一进一出视频|