• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fingerprint-Based Millimeter-Wave Beam Selection for Interference Mitigation in Beamspace Multi-User MIMO Communications

    2021-12-14 03:48:06SangmiMoonHyeonsungKimSengPhilHongMingooKangandIntaeHwang
    Computers Materials&Continua 2021年1期

    Sangmi Moon,Hyeonsung Kim,Seng-Phil Hong,Mingoo Kang and Intae Hwang,*

    1Department of Electronic Engineering,Chonnam National University,Gwangju,61186,Korea

    2Hancom With Inc.,Seongnam-si,13493,Korea

    3Division of Information &Telecommunication,Hanshin University,Osan-si,18101,Korea

    Abstract:Millimeter-wave communications are suitable for application to massive multiple-input multiple-output systems in order to satisfy the ever-growing data traffic demands of the next-generation wireless communication.However,their practical deployment is hindered by the high cost of complex hardware,such as radio frequency(RF)chains.To this end,operation in the beamspace domain,through beam selection,is a viable solution.Generally,the conventional beam selection schemes focus on the feedback and exhaustive search techniques.In addition,since the same beam in the beamspace may be assigned to a different user,conventional beam selection schemes suffer serious multi-user interference.In addition,some RF chains may be wasted,since they do not contribute to the sum-rate performance.Thus,a fingerprint-based beam selection scheme is proposed to solve these problems.The proposed scheme conducts offline group-based fingerprint database construction and online beam selection to mitigate multi-user interference.In the offline phase,the contributing users with the same best beam are grouped.After grouping,a fingerprint database is created for each group.In the online phase,beam selection is performed for purposes of interference mitigation using the information contained in the group-based fingerprint database.The simulation results confirm that the proposed beam selection scheme can achieve a signal-to-interference-plus-noise ratio and sum-rate performance which is close to those of a fully digital system,and having much higher energy efficiency.

    Keywords:Beam selection;beamspace;group-based fingerprint;interference mitigation;millimeter-wave

    1 Introduction

    The emergence of fifth-generation(5G)mobile communication technology is promising to fulfill requirements and support various services,including enhanced mobile broadband(eMBB),massive machine-type communications(mMTC),and ultra-reliable low-latency communications(URLLCs),to facilitate the rapid growth in data usage and the development of new application services.The eMBB is designed to provide the users with a new experience through ultrahigh-definition holograms and virtualreality content,especially in hotspot areas with a high user density and low mobility.In the case of mMTC,low-cost Internet of Things(IoT)devices with long battery life are proposed to support the shortburst machine-type communication traffic,which may be less sensitive to delay.In other words,5G usage has been envisioned to facilitate efficient connectivity for numerous IoT devices at a low cost.The URLLC refers to cases of usage in areas such as industrial manufacturing,remote medical surgery,and safety in autonomous vehicles,all of which require enhanced capabilities in terms of throughput,latency,and availability[1,2].Among these services,eMBB has attracted the most attention.It requires a maximum downlink transmission rate of 20 Gbps,which is approximately 20 times that of the fourthgeneration(4G)systems,with a user-perceived transmission rate in the order of 100–1000 Mbps.The shorter wavelength of the millimeter-wave(mmWave)signals allow a base station to deploy tens or even hundreds of antennas in a relatively compact space,easily supporting massive multiple-input multipleoutput(MIMO)systems[3].Furthermore,the advantages of massive MIMO include increased data rate and link reliability[4],and improvements in the energy and spectral efficiencies by three orders and by one to two orders of magnitude,respectively[5].The combination of mmWave and massive MIMO could effectively counter their respective shortcomings,while sufficiently exploiting the benefits.The latest research results demonstrate the potential of mmWave’s massive MIMO for 5G wireless systems[6,7].

    The significant propagation and penetration losses suffered by mmWave communication can be compensated through techniques,such as directional beamforming(BF)[8–10].The BF technique select the most suitable beam direction,which is created through multiple antenna elements for user equipment(UE),in order to maximize the transmission rate and improve energy efficiency.The traditional algorithms for mmWave beam selection are based on perfectly estimating the channel-state information(CSI),which requires accurate channel estimation and CSI feedback to the base station[11].However,the traditional methods are greatly limited by the difficulty in capturing the real-time CSI for UE in mmWave transmission systems.In addition,the involved exhaustive beam search technique induces a large overhead and imposes a heavy computational burden on the system.Consequently,in recent years,new channel estimation algorithms for mmWave cellular systems have been developed.An adaptive compressed sensing(CS)-based algorithm,which estimates the parameters of mmWave channels efficiently was designed as in[12].Through the adoption of a temporally correlated mmWave channel model,Alexandropoulos et al.[13]presents two CS algorithms that exploit the temporal correlation in order to reduce the complexity of sparse channel estimation.In addition,the beam searching process could be accelerated by either position or direction estimation.The authors of[14]presented an efficient method,which utilize the exchange of position information between the network nodes in the design of their BF and combining vectors.In[15],the concept of radar-aided mmWave vehicular communication is introduced,and two protocols used for beam searching in a vehicle-to-infrastructure(V2I)scenario were proposed.The simulation results confirmed that the main directions of arrival for the radar and communication signals were similar and that the radar could act as a useful source of side information for configuring the mmWave V2I link.

    Among the challenges of realizing mmWave massive MIMO systems is the complexity of the hardware.Each antenna in the antenna array must be driven by a radio frequency(RF)chain,which forms a significant portion of the total system cost.In addition,the power consumption of an RF chain at mmWave frequencies is significantly higher than that at 6 GHz,making it practically prohibitive to have numerous RF chains[4,5].In order to reduce the cost of hardware and power consumption,a lens antenna array was recently investigated for use as an energy-efficient realization of hybrid beamforming for mmWave massive MIMO.By using the lens antenna array at the transmitter,the spatial channel could be represented by the beamspace(i.e.,angular domain).The beamspace channel is sparse,since the propagation of mmWaves is highly directional,occupying only a small number of directions.Since each beam in the beamspace corresponds to a single RF chain,we could reduce the number of RF chains without incurring considerable losses in the sum-rate performance,by appropriately selecting a small number of beams.In this regard,accurate beam selection is essential for beam-based mmWave communications.An enhanced spatialdivision multiple access scheme,in which the base station selects several beams that capture the main lobe of the channel,was presented to estimate the original high-dimensional channel,thereby reducing the feedback[16].Although this scheme could overcome the difficulty associated with the downlink CSI acquisition for a mmWave massive MIMO system,the computational complexity and feedback design have to be considered.Magnitude-maximization-based beam selection(MM-BS)was proposed in[17].In MM-BS,several beam widths of large magnitude are selected for each user.Despite its simplicity,MMBS has two problems:i)It only aims to retain the power of each user as much as possible,while not considering multi-user interference,which leads to a non-negligible performance loss in the achievable sum-rate;ii)Since different RF chains are likely to select the same beam,some RF chains can be wasted,because they do not contribute to the sum-rate performance.

    In this paper,we propose a fingerprint-based mmWave beam selection technique,which requires less feedback and shuns the high computational complexity occasioned by an exhaustive search while suppressing multi-user interference in beamspace MIMO communications.The proposed beam selection scheme consists of two phases:i)An offline phase that creates a group-based fingerprint database;ii)An online beam selection through suppressing multi-user interference.In the offline phase,the contributing users having similar best beam is grouped.Afterwards,the fingerprint database for each group is created.In the online phase,beam selection is performed using the information contained in the group-based fingerprint database.The remainder of this paper is organized as follows:In Section 2,we introduce the system models for beamspace mmWave multi-user systems.In Section 3,the proposed fingerprint-based beam selection technique is described.The simulation results are presented in Section 4.Finally,the conclusion of this paper is presented in Section 5.

    2 System Model

    Figure 1:Block diagram of mmWave beamspace massive MIMO with NRF RF chains

    3 Fingerprint-Based mmWave Beam Selection

    To achieve high data-rate gains in mmWave communication systems,the deployment of large antenna arrays at the transmitters and/or receivers is required.The best beam pair for these arrays is normally determined by performing an exhaustive search over a large codebook of candidate beams.However,this leads to large training overheads[20,21].Additionally,the same beam in the beamspace is likely to be selected for different users by different RF chains,causing serious multi-user interference.

    In order to solve these problems,we propose a fingerprint-based beam selection scheme consisting of two phases,as shown in Fig.2.The first consists of an offline phase to create the fingerprint database while the second one consists of an online beam selection through the control of multi-user interference.These phases are described in detail below.

    Figure 2:Fingerprint-based beam selection to mitigate multi-user interference

    3.1 Fingerprint Database Construction

    In the offline phase,the fingerprint database is created.Generally,a fingerprint refers to some characteristics of a channel at a given position.These characteristics may consist of the received signal strengths from different access points[22]or the multipath signature of the channel from an access point[23].In this paper,a fingerprint refers to a set of beam indexes of transmission at a given position[24].

    Two types of fingerprints are defined,and are characterized based on the storage method of the measurement data.The first type is the user-based fingerprint.This method adopts the conventional exhaustive-search-based beam sweeping,during which the base station periodically transmits reference signals(RSs)via each configured Tx beam.The user measures the reference signal received power(RSRP)and transmits the optimal beam index back,along with the UE position,to the base station.Although it is possible to store all the measurements of all the beams from each contributing user,it is unnecessary.Only the measurements of the top-M beams require to be stored.This is because most of the beams do not travel along any propagation path and have negligible RSRP.Therefore,there is no information gained in retaining the data of all the beams.An example of a user-based fingerprint is shown as in Tab.1,whereis theuth contributing user position andis them-th best beam of theuth contributing user.

    Table 1:Example of user-based fingerprint

    The group-based fingerprint is created from the user-based fingerprint.The measurement data are stored according to the best beam.This is because the direction of the beam or the number of beams available is highly dependent on the user’s position.The users are grouped according to the best beam.The number of groups is determined by the coverage of the base station.After grouping,all the beams,except for the best beam,are sorted for all the users in each group based on the RSRP.Finally,the fingerprint is constructed by resorting to a beam index of the order of the highest beam index for each group.An example of a group-based fingerprint is shown as in Tab.2,whereis thes-th group andis thek-th best beam of thes-th group.This example utilizes the top-K beams.

    Table 2:Example of group-based fingerprint

    3.2 Beam Selection for Interference Mitigation

    Owing to the readily available nature of position information as a built-in feature(e.g.,global positioning system or network positioning system)with an increasing degree of accuracy,it can be safely assuming that the user is aware of their current position and feeds this information back to the base station.The base station then matches the contributing user position fed back by the user with the fingerprint database.The contributing user positions in the fingerprint database are then matched sequentially.Matching refers to the action of identifying the best-matched fingerprint user position in the fingerprint database having the smallest error based on the current position of the userk,

    Algorithm 1:Proposed Beam Selection for Interference Mitigation

    4 Simulation Results

    In this section,we evaluate the performance of the proposed fingerprint-based mmWave beam selection technique using realistic 3D ray-tracing simulations.

    4.1 Simulation Setup

    The simulation setup was based on the publicly available generic DeepMIMO[25]dataset,with the parameters listed as in Tab.3.These parameters were obtained using the 3D ray-tracing software,Wireless InSite[26],which captured the channel dependence on the frequency.In particular,we considered base station 4 in the street-level outdoor scenario “O1,” communicating with the mobile users from row R1200 to R1500.The frequency of the mmWave was set at 60 GHz.Additionally,the base station was equipped with a UPA antenna array withantennas.Each user was equipped with one antenna.The development of the system model is described in Section 2.The channel vector was constructed using parameters such as complex gain,azimuth angle,and elevation angle.

    Table 3:DeepMIMO dataset parameters

    4.2 Performance Evaluation

    The following schemes are simulated for comparison:

    1.Fully digital BF system(Fully DBF).Here,every antenna corresponds to an RF chain,all the beams are used to send data,and no beam selection algorithm is utilized.

    2.Random beam selection(Random BS).The beams are randomly selected from all the beams in the beamspace MIMO.Here,there is a likelihood that the same beam in the beamspace will be selected for different users.

    3.User-based fingerprint beam selection(User-FP BS).The positions of the users are matched with a reference position in a user-based fingerprint database in order to perform beam selection.In the matching process,the best beam for each user is obtained and selected.Here,there is a likelihood that the same beam in the beamspace will be selected for different users.

    4.Group-based fingerprint beam selection(Group-FP BS).The user’s positions are matched with the group in a group-based fingerprint database in order to perform beam selection.In the matching process,the beam set for each group is obtained.The beams are then selected to mitigate the intragroup and intergroup beam interferences.

    The sum-rate of the beamspace MIMO precoder are assessed.Since the main focus is on the beam selection in the analog domain,a widely used zero-forcing precoder is utilized for the baseband and is given as[27],where α is a scaling factor to ensureand ρ is the transmit power of the base station,which is equal to the transmit signal-to-noise ratio(SNR)for σ2=1.Thus,the factor α is given as:

    When an equal power allocation scheme is utilized at the base station,the average rate of thekthuser is obtained as:

    Fig.3 shows the sum-rate against SNR,where K =8 is the number of users.We can observe that the proposed beam selection scheme(Group-FP BS)can achieve a higher sum-rate than random and user-FP BS schemes,where the sum-rate gaps are about 30 bps/Hz and 41 bps/Hz at SNR 10 dB,respectively.This is because the same beam will be selected for different users and the dimension-reduced beamspace channel matrix ?Hbwill be rank-deficient in the case of random and user-FP BS schemes.This indicates that some users cannot be served,leading to user unfairness and a significant performance loss in terms of the sumrate.In contrast,the proposed beam selection scheme guarantee that all K users can be served simultaneously with a sum-rate close to that of a fully digital system.The dimension-reduced precoding matrix Pbis able to closely approximate their fully digital precoding matrix P.

    Figure 3:Sum rate against SNR,where the number of users is K =8

    To evaluate the trade-off between the performance and RF complexity in practical implementation,the energy efficiency obtained using the different beam selection schemes are shown in terms of the number of RF chains required.The definition of energy efficiency used in[28]are applied as follows:

    whereRrepresents the sum rate in[bps/Hz],Ptis the transmitted power of the system in[W],andPRFis the power consumed in the components per RF chain in[W].We use the practical values ofPRF=250 mW(which accounts for the mixer,digital-to-analog converter,and filters)andPt=1 W(30 dBm).These metrics are particularly useful to show the effects of the selection of a decreased number of beams on the power required by the system,in addition to the effects on the average sum-rate of the system.

    Fig.4 shows the energy efficiency against SNR.We can observe that the proposed beam selection scheme(Group-FP BS)achieve a higher energy efficiency than to the random and user-FP BS schemes.In addition,it can achieve a much higher energy efficiency compared to the fully DBF scheme,where the number of RF chains is equal to the number of base station antennas,which leads to very high energy consumption.In contrast,in the proposed beam selection scheme,the number of RF chains is much smaller than the number of antennas.Therefore,the high energy consumption caused by the RF chains can be significantly reduced in comparison with that of the fully DBF scheme.

    Figure 4:Energy efficiency against SNR,where the number of users is K =8

    In summary,the proposed beam selection scheme can effectively select a beam,with low complexity.In addition,the proposed scheme can effectively mitigate the influence of beam interference and thus improve the performance of the system.

    5 Conclusion

    In this paper,a fingerprint-based mmWave beam selection technique consisting of offline and online phases was proposed by considering the potential multi-user interferences.In the offline phase,a usergroup-based fingerprint database was constructed.In the online phase,the beam set for each group was obtained from the fingerprint database.Later,the beams were selected in order to eliminate the intragroup and intergroup beam interferences.The simulation results confirmed that the proposed beam selection scheme could achieve a sum-rate performance close to that of a fully digital system,albeit with a higher energy efficiency.

    Funding Statement:This research was supported by the Ministry of Science and ICT(MSIT),Korea,under the Information Technology Research Center(ITRC)support program(IITP-2020-2016-0-00314)supervised by the Institute for Information &communications Technology Planning &Evaluation(IITP).and was supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT:Ministry of Science and ICT)(2018R1A2B6002255 and 2020R1I1A1A01073948).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    欧美成人精品欧美一级黄| av免费观看日本| 色哟哟·www| 婷婷色综合www| 欧美日韩亚洲高清精品| 蜜桃在线观看..| 亚洲av欧美aⅴ国产| 女人精品久久久久毛片| 亚洲国产最新在线播放| 亚洲美女搞黄在线观看| 性高湖久久久久久久久免费观看| 国产极品粉嫩免费观看在线 | 国产日韩一区二区三区精品不卡 | 熟女人妻精品中文字幕| 久久久a久久爽久久v久久| 黄色日韩在线| 亚洲欧美成人综合另类久久久| 综合色丁香网| 国产精品蜜桃在线观看| 国产成人freesex在线| 一区二区三区精品91| 久久久精品94久久精品| 少妇 在线观看| 免费人成在线观看视频色| 一级毛片黄色毛片免费观看视频| 久久久久久伊人网av| 国产精品无大码| 在线免费观看不下载黄p国产| 五月天丁香电影| 国产日韩欧美亚洲二区| 精品熟女少妇av免费看| 99热网站在线观看| 在线 av 中文字幕| 国产av一区二区精品久久| 一级毛片黄色毛片免费观看视频| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲经典国产精华液单| 亚洲综合色惰| 大片免费播放器 马上看| 国产欧美日韩一区二区三区在线 | 日韩中字成人| 亚洲婷婷狠狠爱综合网| 久久久久久人妻| 亚洲欧美日韩另类电影网站| 亚洲精品乱久久久久久| 夫妻午夜视频| 丰满乱子伦码专区| 久久久久人妻精品一区果冻| 啦啦啦视频在线资源免费观看| 精品国产国语对白av| 日本欧美国产在线视频| 99久国产av精品国产电影| 一本大道久久a久久精品| 亚洲精品国产av成人精品| 热99国产精品久久久久久7| 在线免费观看不下载黄p国产| 青春草国产在线视频| 伊人久久国产一区二区| 亚洲av成人精品一区久久| 午夜视频国产福利| 色5月婷婷丁香| 国产有黄有色有爽视频| 少妇的逼好多水| 国产亚洲精品久久久com| av在线老鸭窝| 欧美精品一区二区大全| 亚洲欧洲精品一区二区精品久久久 | 极品人妻少妇av视频| 一二三四中文在线观看免费高清| 国产深夜福利视频在线观看| 亚洲中文av在线| 欧美bdsm另类| 夜夜骑夜夜射夜夜干| 一个人免费看片子| 91午夜精品亚洲一区二区三区| 成人特级av手机在线观看| 丰满少妇做爰视频| 能在线免费看毛片的网站| 啦啦啦在线观看免费高清www| 国产精品女同一区二区软件| 丰满少妇做爰视频| 亚洲欧美清纯卡通| 国产精品99久久99久久久不卡 | 18禁在线播放成人免费| 久久97久久精品| 人人妻人人添人人爽欧美一区卜| 丰满少妇做爰视频| 三级国产精品片| 亚洲美女搞黄在线观看| 久热这里只有精品99| 女性生殖器流出的白浆| 国产精品人妻久久久影院| 久久久久网色| 伦精品一区二区三区| 观看av在线不卡| 国产免费视频播放在线视频| 免费少妇av软件| 日韩人妻高清精品专区| 精品少妇久久久久久888优播| 中文字幕免费在线视频6| 五月开心婷婷网| 精品久久久久久电影网| 热99国产精品久久久久久7| 久久这里有精品视频免费| 这个男人来自地球电影免费观看 | 欧美日韩亚洲高清精品| 亚洲电影在线观看av| 啦啦啦在线观看免费高清www| 国产成人aa在线观看| 尾随美女入室| 哪个播放器可以免费观看大片| 日日摸夜夜添夜夜爱| 中文字幕人妻熟人妻熟丝袜美| 永久网站在线| 免费大片18禁| 高清毛片免费看| 欧美三级亚洲精品| 多毛熟女@视频| 韩国高清视频一区二区三区| 人体艺术视频欧美日本| 国产精品一区二区在线不卡| 国产在线一区二区三区精| 永久网站在线| 午夜免费鲁丝| 久久久久久久亚洲中文字幕| 国产精品成人在线| av国产精品久久久久影院| 亚洲国产精品国产精品| 人人妻人人澡人人爽人人夜夜| 日韩大片免费观看网站| 天堂俺去俺来也www色官网| 国产在线视频一区二区| 欧美精品国产亚洲| 女的被弄到高潮叫床怎么办| 永久网站在线| av国产精品久久久久影院| 又爽又黄a免费视频| 欧美三级亚洲精品| 黄色怎么调成土黄色| 老熟女久久久| 亚洲一区二区三区欧美精品| 精品国产国语对白av| 国产亚洲av片在线观看秒播厂| 青春草视频在线免费观看| 日日撸夜夜添| 国产一区二区三区av在线| 国产一区二区在线观看av| 一级片'在线观看视频| 九色成人免费人妻av| av国产久精品久网站免费入址| 少妇熟女欧美另类| 国产日韩欧美在线精品| 精品少妇黑人巨大在线播放| 国产成人精品无人区| 国产欧美日韩综合在线一区二区 | 国产成人a∨麻豆精品| 国产黄色视频一区二区在线观看| 国产精品一区二区三区四区免费观看| 亚洲一级一片aⅴ在线观看| a 毛片基地| 赤兔流量卡办理| 大陆偷拍与自拍| 大片电影免费在线观看免费| 亚洲国产欧美日韩在线播放 | 免费观看的影片在线观看| 人妻 亚洲 视频| 深夜a级毛片| 精品国产国语对白av| av专区在线播放| 一区在线观看完整版| 国产在视频线精品| 99re6热这里在线精品视频| 亚洲av.av天堂| 国产成人aa在线观看| 伊人久久精品亚洲午夜| 色婷婷av一区二区三区视频| 黄色毛片三级朝国网站 | 亚洲欧美精品自产自拍| 国产一区二区三区av在线| 国产伦精品一区二区三区视频9| 少妇人妻一区二区三区视频| 天堂8中文在线网| 午夜激情福利司机影院| 伊人久久国产一区二区| 欧美日韩综合久久久久久| 亚洲欧洲国产日韩| 校园人妻丝袜中文字幕| 人妻系列 视频| 18禁动态无遮挡网站| 男女无遮挡免费网站观看| 免费大片黄手机在线观看| av播播在线观看一区| 一级片'在线观看视频| 一级毛片我不卡| 极品教师在线视频| 免费人成在线观看视频色| 插逼视频在线观看| 国产欧美日韩综合在线一区二区 | 国产91av在线免费观看| 国产又色又爽无遮挡免| xxx大片免费视频| 亚洲精品中文字幕在线视频 | 国产精品久久久久久av不卡| 18+在线观看网站| 草草在线视频免费看| 国产黄色视频一区二区在线观看| 高清午夜精品一区二区三区| 91在线精品国自产拍蜜月| 又黄又爽又刺激的免费视频.| 2022亚洲国产成人精品| 99九九在线精品视频 | 嫩草影院入口| 国产伦在线观看视频一区| 成人国产av品久久久| 亚洲怡红院男人天堂| 一级毛片 在线播放| 国产亚洲最大av| 色婷婷久久久亚洲欧美| 一级黄片播放器| 18禁动态无遮挡网站| 尾随美女入室| 天天躁夜夜躁狠狠久久av| 看非洲黑人一级黄片| 多毛熟女@视频| 插阴视频在线观看视频| 如何舔出高潮| 久久精品国产亚洲av涩爱| 三级经典国产精品| 69精品国产乱码久久久| 精品国产国语对白av| 成年女人在线观看亚洲视频| 久久国产精品大桥未久av | 久久人人爽人人片av| 久久精品熟女亚洲av麻豆精品| 亚洲av二区三区四区| 精品久久久久久电影网| 毛片一级片免费看久久久久| 美女视频免费永久观看网站| 特大巨黑吊av在线直播| 内射极品少妇av片p| 最新中文字幕久久久久| 99九九在线精品视频 | 中国三级夫妇交换| 丰满少妇做爰视频| 丝袜在线中文字幕| 不卡视频在线观看欧美| 少妇人妻一区二区三区视频| 成人无遮挡网站| 又爽又黄a免费视频| 国产成人精品久久久久久| 高清av免费在线| 亚洲婷婷狠狠爱综合网| 欧美精品高潮呻吟av久久| 看免费成人av毛片| 亚洲欧美精品专区久久| √禁漫天堂资源中文www| 免费看av在线观看网站| 日韩在线高清观看一区二区三区| 久久99精品国语久久久| 亚洲av男天堂| 午夜老司机福利剧场| 亚洲成人一二三区av| 欧美最新免费一区二区三区| 97超视频在线观看视频| 女人精品久久久久毛片| 成年人午夜在线观看视频| 久久婷婷青草| 国产黄频视频在线观看| 少妇裸体淫交视频免费看高清| 插阴视频在线观看视频| 国产欧美日韩精品一区二区| 成人毛片a级毛片在线播放| 久久国产乱子免费精品| 久久久久人妻精品一区果冻| 三级国产精品片| 午夜影院在线不卡| 男人舔奶头视频| 九九久久精品国产亚洲av麻豆| 欧美日韩国产mv在线观看视频| 热re99久久精品国产66热6| 免费大片黄手机在线观看| 波野结衣二区三区在线| 国产色爽女视频免费观看| 久久久久久久久久久免费av| 亚洲欧美成人综合另类久久久| 18禁在线播放成人免费| 麻豆成人午夜福利视频| 亚洲精品一二三| 成人毛片a级毛片在线播放| 国产精品三级大全| 99久国产av精品国产电影| 亚洲人成网站在线观看播放| 久久人妻熟女aⅴ| 一级毛片电影观看| 一级av片app| 人人妻人人看人人澡| 国产熟女午夜一区二区三区 | 麻豆成人午夜福利视频| 日本欧美视频一区| 天天操日日干夜夜撸| 精品少妇久久久久久888优播| 中文字幕亚洲精品专区| 久久女婷五月综合色啪小说| 国产成人91sexporn| 久久综合国产亚洲精品| 老熟女久久久| 精品酒店卫生间| 男人舔奶头视频| 亚洲高清免费不卡视频| 亚洲精华国产精华液的使用体验| 日本免费在线观看一区| 久久99热这里只频精品6学生| 在线观看美女被高潮喷水网站| 国产欧美日韩一区二区三区在线 | 国产精品一区二区在线观看99| 免费观看无遮挡的男女| 亚洲精品国产av蜜桃| 麻豆成人av视频| 国产黄频视频在线观看| 亚洲精品久久午夜乱码| 亚洲成人一二三区av| 欧美最新免费一区二区三区| 亚洲欧洲日产国产| 欧美日韩av久久| 老女人水多毛片| 国产精品.久久久| 日日啪夜夜撸| 国产av国产精品国产| 97精品久久久久久久久久精品| 久久精品国产鲁丝片午夜精品| 国产伦在线观看视频一区| 制服丝袜香蕉在线| 日韩伦理黄色片| 亚洲精品色激情综合| 91精品国产九色| 人妻夜夜爽99麻豆av| 亚洲色图综合在线观看| 亚洲精品日本国产第一区| 亚洲性久久影院| 欧美bdsm另类| 一区二区三区乱码不卡18| 青春草视频在线免费观看| a级毛片在线看网站| 日韩中文字幕视频在线看片| 国产无遮挡羞羞视频在线观看| 亚洲国产精品999| 3wmmmm亚洲av在线观看| 性色avwww在线观看| 中文字幕久久专区| 国产精品成人在线| 亚洲色图综合在线观看| 久久久久久久国产电影| 免费av不卡在线播放| 一边亲一边摸免费视频| 国产中年淑女户外野战色| 少妇高潮的动态图| 中国三级夫妇交换| 人妻少妇偷人精品九色| 亚洲第一区二区三区不卡| 亚洲精品国产av成人精品| 欧美日韩综合久久久久久| 18禁在线无遮挡免费观看视频| 麻豆成人av视频| 欧美国产精品一级二级三级 | 少妇裸体淫交视频免费看高清| 国产伦理片在线播放av一区| 日本av手机在线免费观看| 99国产精品免费福利视频| 免费不卡的大黄色大毛片视频在线观看| 秋霞在线观看毛片| 国产黄频视频在线观看| 51国产日韩欧美| 国产精品一区二区在线观看99| 免费观看性生交大片5| 99国产精品免费福利视频| 日本av手机在线免费观看| 久久精品国产亚洲av涩爱| 久久久久久久精品精品| av有码第一页| 99九九在线精品视频 | 少妇熟女欧美另类| 国产真实伦视频高清在线观看| 性色av一级| 欧美日韩视频精品一区| 国产欧美日韩一区二区三区在线 | 久久午夜福利片| 久久国产精品大桥未久av | 国产黄色免费在线视频| 国产69精品久久久久777片| 欧美精品一区二区免费开放| 国产欧美日韩一区二区三区在线 | videossex国产| 色网站视频免费| 亚洲高清免费不卡视频| 中文资源天堂在线| 啦啦啦在线观看免费高清www| 国产日韩欧美亚洲二区| 亚洲怡红院男人天堂| 99热这里只有是精品在线观看| 伦理电影大哥的女人| 欧美国产精品一级二级三级 | 欧美日韩精品成人综合77777| av在线播放精品| 亚洲三级黄色毛片| 2022亚洲国产成人精品| 婷婷色综合www| 国产精品国产av在线观看| 日韩伦理黄色片| 黄色视频在线播放观看不卡| 国产成人午夜福利电影在线观看| 色吧在线观看| 超碰97精品在线观看| 亚洲av日韩在线播放| 久久这里有精品视频免费| 亚洲国产av新网站| 丝袜喷水一区| 一级毛片电影观看| 久久精品国产亚洲av涩爱| 啦啦啦视频在线资源免费观看| 欧美最新免费一区二区三区| 亚洲精品久久久久久婷婷小说| 在线观看www视频免费| 婷婷色综合大香蕉| videos熟女内射| 久久人人爽人人爽人人片va| 午夜免费男女啪啪视频观看| 国产高清有码在线观看视频| 人体艺术视频欧美日本| 人妻少妇偷人精品九色| 如日韩欧美国产精品一区二区三区 | 午夜福利影视在线免费观看| 日韩欧美 国产精品| 一级黄片播放器| 亚洲精品日韩av片在线观看| 亚洲精品乱码久久久v下载方式| 日韩大片免费观看网站| 80岁老熟妇乱子伦牲交| 久久综合国产亚洲精品| .国产精品久久| 免费观看的影片在线观看| 国内少妇人妻偷人精品xxx网站| 建设人人有责人人尽责人人享有的| 亚洲精品,欧美精品| 亚洲国产成人一精品久久久| 免费不卡的大黄色大毛片视频在线观看| 美女中出高潮动态图| av天堂久久9| 看免费成人av毛片| 中文字幕精品免费在线观看视频 | 欧美日韩综合久久久久久| 在线 av 中文字幕| 国产极品天堂在线| 在线亚洲精品国产二区图片欧美 | av不卡在线播放| 欧美精品人与动牲交sv欧美| 天堂俺去俺来也www色官网| 精品久久久久久电影网| 国产在线一区二区三区精| 777米奇影视久久| 赤兔流量卡办理| 日本爱情动作片www.在线观看| av福利片在线观看| 国产精品一区www在线观看| 一区二区三区精品91| 中文字幕免费在线视频6| 十分钟在线观看高清视频www | 最近最新中文字幕免费大全7| 久久狼人影院| 天美传媒精品一区二区| 欧美区成人在线视频| a 毛片基地| 少妇人妻一区二区三区视频| 丁香六月天网| a级毛片免费高清观看在线播放| 亚洲久久久国产精品| videossex国产| 91久久精品电影网| a级毛色黄片| 一区二区av电影网| 大又大粗又爽又黄少妇毛片口| 欧美性感艳星| 成人亚洲欧美一区二区av| 黄色视频在线播放观看不卡| 欧美日韩精品成人综合77777| 老女人水多毛片| 男女国产视频网站| 欧美激情极品国产一区二区三区 | 国产精品久久久久久av不卡| 纵有疾风起免费观看全集完整版| 成人二区视频| 亚州av有码| a级片在线免费高清观看视频| 91精品国产国语对白视频| 男女免费视频国产| 国产精品久久久久久精品古装| 国产成人91sexporn| 人妻 亚洲 视频| 久久97久久精品| 亚洲欧美精品自产自拍| 超碰97精品在线观看| 七月丁香在线播放| 亚洲精品一二三| 嫩草影院入口| 日韩av在线免费看完整版不卡| 晚上一个人看的免费电影| 亚洲精品乱久久久久久| 国产成人一区二区在线| 一本久久精品| 亚洲真实伦在线观看| 伊人久久国产一区二区| 91久久精品国产一区二区三区| 国产成人精品福利久久| 久久久久精品性色| 日韩中字成人| 成年女人在线观看亚洲视频| 黄色毛片三级朝国网站 | 一级av片app| 亚洲一级一片aⅴ在线观看| 91精品一卡2卡3卡4卡| 国产免费一区二区三区四区乱码| 男人舔奶头视频| av线在线观看网站| 狂野欧美激情性xxxx在线观看| 久久久国产精品麻豆| 黄色视频在线播放观看不卡| 久久久久精品久久久久真实原创| h视频一区二区三区| 亚洲欧美日韩卡通动漫| 两个人的视频大全免费| 三上悠亚av全集在线观看 | 99国产精品免费福利视频| 午夜福利影视在线免费观看| 中文欧美无线码| 又黄又爽又刺激的免费视频.| 青青草视频在线视频观看| 免费观看av网站的网址| 国产精品伦人一区二区| 国产男人的电影天堂91| 99国产精品免费福利视频| 日本欧美国产在线视频| 五月伊人婷婷丁香| 欧美97在线视频| 日日爽夜夜爽网站| a级毛片在线看网站| 亚洲精品乱码久久久v下载方式| 久久久精品94久久精品| 黑丝袜美女国产一区| 日韩一区二区三区影片| 色婷婷av一区二区三区视频| 尾随美女入室| 亚洲av免费高清在线观看| 一区在线观看完整版| 美女中出高潮动态图| 国产成人免费无遮挡视频| 日韩人妻高清精品专区| 十八禁高潮呻吟视频 | 九九在线视频观看精品| 人妻系列 视频| 97超视频在线观看视频| 国产一区二区三区综合在线观看 | 国语对白做爰xxxⅹ性视频网站| 免费高清在线观看视频在线观看| 国产亚洲av片在线观看秒播厂| 欧美日韩视频高清一区二区三区二| 永久网站在线| 狠狠精品人妻久久久久久综合| 有码 亚洲区| 欧美日本中文国产一区发布| 国产淫片久久久久久久久| 日韩伦理黄色片| 亚洲人成网站在线观看播放| 一区二区三区乱码不卡18| av播播在线观看一区| 成人美女网站在线观看视频| 国精品久久久久久国模美| 日韩av不卡免费在线播放| 97在线人人人人妻| 人人澡人人妻人| 两个人的视频大全免费| 高清毛片免费看| 在线观看国产h片| 欧美xxⅹ黑人| 午夜精品国产一区二区电影| 夫妻午夜视频| 在线天堂最新版资源| 香蕉精品网在线| 啦啦啦在线观看免费高清www| 精品酒店卫生间| 在线免费观看不下载黄p国产| 日日撸夜夜添| 国产一区二区三区综合在线观看 | 热99国产精品久久久久久7| 久久精品国产自在天天线| 国产又色又爽无遮挡免| av不卡在线播放| 国内揄拍国产精品人妻在线| 国产精品人妻久久久久久| av不卡在线播放| 人人妻人人澡人人看| 尾随美女入室| 国产淫片久久久久久久久| 亚洲国产精品专区欧美| 久久av网站| 曰老女人黄片| 最黄视频免费看| 日韩在线高清观看一区二区三区| 精品国产国语对白av| 国产一区二区三区av在线| 久热这里只有精品99| 春色校园在线视频观看| 国产极品粉嫩免费观看在线 | 大香蕉久久网| 麻豆精品久久久久久蜜桃| 在线观看三级黄色| av福利片在线观看|