• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    General Steganalysis Method of Compressed Speech Under Different Standards

    2021-12-11 13:29:16PengLiuSongbinLiQiandongYanJingangWangandChengZhang
    Computers Materials&Continua 2021年8期

    Peng Liu,Songbin Li,*,Qiandong Yan,Jingang Wang and Cheng Zhang

    1Institute of Acoustics,Chinese Academy of Sciences,Beijing,100190,China

    2The University of Melbourne,Melbourne,VIC3010,Australia

    Abstract:Analysis-by-synthesis linear predictive coding(AbS-LPC)is widely used in a variety of low-bit-rate speech codecs.Most of the current steganalysis methods for AbS-LPC low-bit-rate compressed speech steganography are specifically designed for a specific coding standard or category of steganography methods,and thus lack generalization capability.In this paper,a general steganalysis method for detecting steganographies in low-bit-rate compressed speech under different standards is proposed.First,the code-element matrices corresponding to different coding standards are concatenated to obtain a synthetic code-element matrix, which will be mapped into an intermediate feature representation by utilizing the pre-trained dictionaries.Then,bidirectional long short-term memory is employed to capture long-term contextual correlations.Finally, a code-element affinity attention mechanism is used to capture the global inter-frame context,and a full connection structure is used to generate the prediction result.Experimental results show that the proposed method is effective and better than the comparison methods for detecting steganographies in cross-standard low-bit-rate compressed speech.

    Keywords: Cross-standard; compressed speech; steganalysis; attention

    1 Introduction

    Data hiding is a technique of embedding secrets into digital media imperceptibly, and different types of media data are considered for steganography, including image [1,2], text [3,4],and video [5,6].In recent years, with the continuous growth of network bandwidth and the enhancement of network convergence, network streaming media services for communication have undergone unprecedented development.Since Voice over Internet Protocol (VoIP) technology [7,8]has been widely used for real-time communication, it has become an excellent carrier for transmitting secret information over the Internet.VoIP steganography is a means of imperceptibly embedding secret information into VoIP-based cover speech.There are many VoIP speech codecs,including G.711, G.723.1, G.726, G.728, G.729, internet Low Bitrate Codec (iLBC), and the Adaptive Multi-Rate (AMR) codec.Most of them, including G.723.1, G.729, AMR, and iLBC, are low-bit-rate speech codecs that use analysis-by-synthesis linear predictive coding (AbS-LPC) [9].At present, most methods of speech steganography utilize AbS-LPC low-bit-rate speech codecs to embed secret information for covert communication.Therefore, it is essential to develop a powerful steganalysis method to analyze low-bit-rate speech streams.

    Information-hiding methods based on low-bit-rate speech streams can be divided into three categories according to the embedding position:The first category uses a pitch synthesis filter for information hiding [10-16], the second uses a LPC synthesis filter to hide information [17-22],and the third embeds information by directly modifying the value of some code elements in the compressed speech stream [23-30].

    Figure 1:Difference between different levels of general steganalysis methods:(a) Non-general steganalysis method; (b) C1- and (c) C2-level general steganalysis methods

    The existing steganalysis methods for AbS-LPC low-bit-rate compressed speech steganography are specifically designed for a specific coding standard or category of steganography methods.Thus, they lack generalization capacity.When general steganalysis is required, it is complex and time-consuming to enumerate all the steganalysis methods that correspond to the steganographic methods, which makes it difficult to meet the requirements of practical applications.In this paper,the generality of steganalysis algorithms is divided into two levels:one is general for different steganography algorithms under the same compression standard, and the other is general for steganography algorithms under different standards.For interpreting the idea of the proposed method, the generality of the first one is referred to as C1and that of the second one as C2.The general steganalysis algorithm of the C1level can effectively detect different information-hiding algorithms (e.g., quantization index modulation [31]) under the same standard, such as G.729.The general steganalysis method of the C2level can detect different information-hiding algorithms under an arbitrary standard.For example, to achieve general steganalysis of different coding standards, if non-general steganography detection methods are used, it is necessary to jointly use multiple steganalysis methods for different coding standards and different steganography methods,as shown in Fig.1a.As demonstrated in Fig.1b, different methods must be combined under different coding standards when using the steganalysis methods of the C1level.As shown in Fig.1c, only one detection method of the C2level is needed.Obviously, the ideal steganalysis method is to achieve C2-level generality, which is also the research focus of this paper.

    Since speech signals are encoded by different encoding standards, the number of code elements (CEs) and their connotations are quite different.Therefore, it is unrealistic to perform C2-level general steganalysis directly based on the original compressed speech stream.In this paper, the compressed speech stream of different coding standards is first converted into an intermediate feature representation.Then, a classification network based on a CE affinity attention mechanism is built to accomplish steganalysis.

    2 Proposed Method

    The architecture of the proposed steganalysis method is illustrated in Fig.2.It can be divided into two parts:Intermediate feature representation and the steganalysis network.The intermediate feature representation is mainly used to convert compressed speech data under different coding standards into a general intermediate feature representation, and the steganalysis network performs steganalysis based on the intermediate feature.The details are described below.

    Figure 2:Architecture of the proposed method.It consists of two parts:Intermediate feature representation and steganalysis network.The code elements of a speech are first converted to an intermediate feature representation.Then, a steganalysis network based on a code-element affinity attention module is employed to detect whether the speech contains hidden information

    2.1 Intermediate Feature Representation

    Assuming that one must detectmtypes of coding standards at the same time, the CE matrixXicorresponding to theith coding standard can be expressed as

    whereNiis the number of CEs in a frame corresponding to theith coding standard, andis the value of theNith CE in frameT.To detect different coding standards at the same time,the CE matrices corresponding tomcoding standards are concatenated to obtain a synthetic CE matrixX:

    whereis the value of theNmth CE in frameTcorresponding to themth coding standard.

    To convert the values of CEs into a form that is easy to use by the neural network, one-hot coding is utilized to map each CE into a feature vector.For a CE that occupiesnbits, its coded value range is 0 ?2n?1.In one-hot encoding, a vector with a length of 2nis used to represent this CE.If the coded value of this CE isu, the one-hot representation can be denoted as

    where

    After one-hot coding, a group of independent CE one-hot representations are obtained, which are then aggregated according to the order of the original CEs to form a long feature vector,called a multi-hot vector.This process is called multi-hot coding.Taking the example in which there areMcode elements in a frame, the length of the corresponding multi-hot vector can be calculated as

    wheredidenotes the number of bits that theith CE occupies.

    However, some CEs may occupy too many bits, which will greatly increase the amount of calculation of the model.When the one-hot coding operation is conducted on these code elements,the length of the one-hot vector will become very large.This explosive dimension increase is more than can be afforded, so dimensionality reduction is needed.Therefore, a frequency count method is employed on these CEs.Experiments prove that this is a simple but very effective coding method.Specifically, for each CE that occupies more than 8 bits, the occurrence frequency of its every coded value is counted.Then, the coded values are arranged in order of frequency, and the first 255 values selected.These values are encoded as 0-254.The other coded values are encoded as 255.In this way, the coded value of all CEs can be mapped into 0-255.

    A sparse representationRcan be obtained by applying multi-hot encoding.However, the sparse representation will bring an additional computational cost to the model, which is unfavorable for the real-time requirements of steganalysis.Inspired by natural language processing tasks, an embedding method for each CE is introduced.First, dictionaries are built for each CE to convert the multi-hot vectors to more compact representations into the intermediate feature.The parameters are randomly initialized in the dictionaries with the normal distribution.It is hoped that such an embedding representation can be obtained that has a strong robustness to the different embedding rates.Then, a large dataset consisting of different stego data and cover data is built to pre-train the dictionaries.At the pre-training stage, two-layer bidirectional long short-term memory (Bi-LSTM) [32] and a full connection layer are used, followed by a sigmoid activation function.Dictionaries and the training network are trained together.In addition, the dictionaries are fixed once the training is done.Before utilizing the steganalysis network to classify the input sample, the matrixRwill be converted into the embedding matrixEbased on the trained dictionaries.

    2.2 Steganalysis Network

    Since the front and back frames of a speech sample can influence each other, a two-layer Bi-LSTM is first employed to capture long-term contextual correlations ofE, and a better representation of the frame vector is generated.However, Bi-LSTM can only capture longrange dependencies, which lack local CE information.Inferring inter-frame context information from local CE information can simultaneously capture both intra- and inter-frame relationships,which is very important for low-bit-rate compressed speech steganalysis tasks.Global context information is useful for extracting a wide range of inter-frame dependencies and providing a comprehensive understanding of the entire input speech sequence, while local CE information plays a key role in understanding the secret information embedded in different CE positions.Based on this theory, the CE affinity attention module is proposed, which adaptively infers the global context information between frames under the guidance of the codeword affinity representation.

    The architecture of the CE affinity attention module is illustrated in Fig.2.It consists of two branches:the first branch is used to calculate the local affinity attention vector, and the second deals with the feature representationyat a single scale.Moreover, the second branch determines the amount of information contained in the local affinity vectors.Both branches will be described in detail below.

    In this paper, the output features calculated by Bi-LSTM are defined asO, whereTindicates the number of frames of the input data, andSthe feature dimension.In the first branch, the featuresOare first calculated by a global average pooling operation to obtain the global information representationg(O), which can express the global inter-frame information.The process can be defined as

    whereoi,jdenotes the feature value at thejth position of theith frame.Then, a frame-wise multiplication between global informationg(Oi)and input featuresOis employed to obtain a new global-guided feature representation, which can be calculated by

    whereaj∈Aindicates the affinity factor.

    To endow the features used for classification with both long-range dependencies and global inter-frame context, the features output from Bi-LSTM and the codeword affinity module are integrated to form a more powerful feature representation.Then, the features are inputted into a classification that consists of two layers of full connection and a sigmoid activation function.A prediction probability valuep, which determines whether the hidden message exists in an input speech sequence, is then obtained:

    3 Equations and Mathematical Expressions

    Seven thousand speech segments were collected from the Internet, including samples from seven human voice categories, to form the speech database.Each category contains 1,000 speech segments.The seven categories are Chinese man, Chinese woman, English man, English woman,French, German, and Japanese.Each human voice category contains samples from more than five individuals.The duration of each speech segment is 10 s, and each segment is formatted as a mono PCM file with an 8,000-Hz sampling rate and 16-bit quantization.The speech segments in each category are divided into a training dataset and a testing dataset at a 4:1 ratio.The training dataset is used to conduct parameters adjustment of the model, and the test dataset is used to evaluate the model performance.The G.723.1 (6.3 kbit/s) and G.729 codecs are used to evaluate the performance of the proposed method.

    Both the training and testing stages were executed on a GeForce GTX 2080 graphical processing unit with 11 Gb of graphics memory.PyTorch was used to help implement the model and algorithm.In addition, in the process of training the neural network, Adam was used as the optimizer with a learning rate of 1×10?4, and the cross-entropy chosen as the loss function.The maximal training epoch was 200, and the batch size in the training process was 16.

    As mentioned above, three main categories of steganography methods exist for AbS-LPC low-bit-rate compressed speech.To comprehensively test the performance of the proposed model,a representative method [15,17,24] was chosen for each steganography category.For simplicity, the chosen methods are denoted “ACL” [15], “CNV” [17], and “HYF” [24].It should be noted that the ACL and HYF methods are designed for the G.723.1 standard, and the CNV method was used for steganography under the G.729 standard; All three methods were used for steganography under the G.723.1 standard.

    To the best of our knowledge, no general method has been designed for the detection of steganographies in cross-standard AbS-LPC low-bit-rate compressed speech.The MFCC-based steganalysis method [33] can, in theory, detect any type of steganography based on the decoded audio/speech data.In this sense, this method is believed to be general as well.Besides, Hu et al.[34] proposed a SFFN-based general steganalysis method for specialized coding standards.In the present paper, these methods are used as comparison algorithms with which to evaluate the proposed method.

    The embedding rate is defined as the ratio of the number of embedded bits to the total embedding capacity.Experiments on the three steganography methods for the G.723.1 standard were conducted under five different embedding rates (20%-100%).The experimental results are shown in Tab.1.For ACL, the detection accuracy of the MFCC method is only 51.58% when the embedding rate is 20%, slightly better than a random guess.As a comparison, the detection accuracy of the proposed method is 98.96%, far exceeding that of the MFCC method.However,the detection accuracy of SFFN achieves 99.54%, 0.58% higher than the proposed method.When the embedding rate is 40% or above, both SFFN and the proposed method have a detection accuracy of 100%.For HYF and CNV, when the embedding rate is 20%, the detection accuracies of the proposed method are 35.73% and 37.26% higher, respectively, than that of MFCC.By contrast, the detection accuracies of SFFN are 8.48% and 12% higher than that of MFCC,respectively.When the embedding rate is 80% or above, SFFN can achieve detection accuracies greater than 95%, while the proposed method can achieve the same accuracy when the embedding rate is only 20%.

    Table 1:Detection accuracies of 10 s of speech with different embedding rates for G.723.1 standard.Results in bold are for the proposed method

    Since the ACL and HYF methods are designed for the G.723.1 standard, the CNV method is used for steganography under the G.729 standard.Experiments on the CNV method were conducted under five different embedding rates (20%-100%).The experimental results are shown in Tab.2, from which it can be seen that the proposed method performs better than MFCC and SFFN at all embedding rates.When the embedding rate is 20%, the detection accuracies of the proposed method are 32.73% higher than that of MFCC and 6.74% higher than that of SFFN.When the embedding rate is 80% or above, SFFN can achieve detection accuracies greater than 99%, while the proposed method can achieve the same accuracy when the embedding rate is only 40%.

    Table 2:Detection accuracies of 10 s of speech with different embedding rates for G.729 standard.Results in bold are for the proposed method

    In summary, the proposed method achieves the best results at all embedding rates under the G.723.1 and G.729 standards, except for a 20% embedding rate and ACL steganography under the G.723.1 standard, which is 0.58% lower than that of SFFN.The experimental results indicate that the proposed steganalysis method can be effective for detecting steganographies in cross-standard low-bit-rate compressed speech.

    4 Conclusions

    In this paper, a common method for detecting steganographies in cross-standard low-bit-rate compressed speech based on intermediate feature representation is proposed.To detect multiple coding standards at the same time, the code element (CE) matrices corresponding tomcoding standards are first concatenated to obtain a synthetic CE matrix.Then, one-hot coding is utilized to convert this matrix into a form that is easy to use by a neural network.Inspired by the ideas in natural language processing, dictionaries are built for each CE by transforming them into intermediate features to achieve more compact representations.These features are inputted into the resulting steganalysis network to obtain the final classification result.Experimental results indicate the superiority in accuracy and performance of the proposed method.

    Funding Statement:This work is supported partly by Hainan Provincial Natural Science Foundation of China under Grant No.618QN309, partly by the Important Science & Technology Project of Hainan Province under Grant Nos.ZDKJ201807 and ZDKJ2020010, partly by the Scientific Research Foundation Project of Haikou Laboratory, Institute of Acoustics, Chinese Academy of Sciences, and partly by the IACAS Young Elite Researcher Project (QNYC201829 and QNYC201747).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    波多野结衣巨乳人妻| 国产真实乱freesex| 国产91av在线免费观看| 久久精品国产亚洲av涩爱 | 非洲黑人性xxxx精品又粗又长| 丝袜喷水一区| 亚洲欧美精品自产自拍| 美女黄网站色视频| 能在线免费看毛片的网站| 晚上一个人看的免费电影| 午夜视频国产福利| 久久热精品热| 少妇的逼好多水| 最近手机中文字幕大全| 九九爱精品视频在线观看| 91狼人影院| 悠悠久久av| 美女黄网站色视频| 久久久久网色| 99热精品在线国产| 久久热精品热| 乱人视频在线观看| 免费看av在线观看网站| 久久久久久久久中文| 国产免费一级a男人的天堂| 国产精品一及| 毛片女人毛片| 国产色爽女视频免费观看| av福利片在线观看| 男女做爰动态图高潮gif福利片| 一个人免费在线观看电影| 一级黄片播放器| 国产激情偷乱视频一区二区| 久久精品人妻少妇| 欧美一区二区国产精品久久精品| 国产美女午夜福利| 国产精品一二三区在线看| 亚洲丝袜综合中文字幕| 又粗又爽又猛毛片免费看| 变态另类丝袜制服| 能在线免费观看的黄片| 久久久久久久久中文| 大型黄色视频在线免费观看| 97超视频在线观看视频| 国产精品嫩草影院av在线观看| 一本精品99久久精品77| 全区人妻精品视频| 欧美精品国产亚洲| 好男人在线观看高清免费视频| 乱码一卡2卡4卡精品| .国产精品久久| 久久国产乱子免费精品| 成人午夜高清在线视频| 日韩欧美国产在线观看| 你懂的网址亚洲精品在线观看 | 国产成人a∨麻豆精品| 91精品国产九色| 免费看光身美女| 国产 一区精品| 青青草视频在线视频观看| 久久久久性生活片| 91精品一卡2卡3卡4卡| 久久精品人妻少妇| 狠狠狠狠99中文字幕| 国产一级毛片在线| 国产精品乱码一区二三区的特点| 亚洲欧洲国产日韩| 国产精华一区二区三区| 国产精品野战在线观看| 亚洲欧美精品专区久久| 亚洲五月天丁香| 亚洲久久久久久中文字幕| 欧美激情久久久久久爽电影| av免费在线看不卡| 麻豆成人午夜福利视频| 国产在线男女| 美女大奶头视频| 亚洲欧美日韩卡通动漫| 久久久a久久爽久久v久久| 日本黄色视频三级网站网址| 又粗又硬又长又爽又黄的视频 | 在线观看66精品国产| 久久精品国产亚洲av香蕉五月| 国产成人a∨麻豆精品| 久久精品国产鲁丝片午夜精品| 国产精品1区2区在线观看.| 亚洲美女视频黄频| 亚洲av免费高清在线观看| 精品久久久噜噜| 身体一侧抽搐| 欧美性感艳星| 欧洲精品卡2卡3卡4卡5卡区| 不卡一级毛片| 亚洲最大成人av| 美女高潮的动态| 特级一级黄色大片| 菩萨蛮人人尽说江南好唐韦庄 | 国产美女午夜福利| 在线播放无遮挡| 自拍偷自拍亚洲精品老妇| 欧美一区二区亚洲| 尤物成人国产欧美一区二区三区| 日韩欧美 国产精品| 九色成人免费人妻av| 能在线免费观看的黄片| 九草在线视频观看| av免费在线看不卡| 麻豆乱淫一区二区| 亚洲色图av天堂| avwww免费| 久久午夜福利片| 亚洲第一电影网av| 国产高潮美女av| 亚洲国产欧美在线一区| 午夜福利在线观看吧| 国产乱人偷精品视频| 97超碰精品成人国产| ponron亚洲| 99九九线精品视频在线观看视频| 色尼玛亚洲综合影院| 熟女电影av网| 国产一区二区亚洲精品在线观看| 91精品国产九色| av福利片在线观看| 亚洲国产欧美人成| 免费看日本二区| 亚洲av二区三区四区| 国产精品,欧美在线| 在现免费观看毛片| 亚洲性久久影院| 男女下面进入的视频免费午夜| 日韩高清综合在线| 中文字幕av在线有码专区| 亚洲自拍偷在线| 少妇猛男粗大的猛烈进出视频 | 久久久久久久午夜电影| 精品日产1卡2卡| 黄色配什么色好看| 久久人人精品亚洲av| 亚洲国产精品sss在线观看| 色综合色国产| av天堂中文字幕网| 色噜噜av男人的天堂激情| 综合色av麻豆| 性插视频无遮挡在线免费观看| 麻豆精品久久久久久蜜桃| 免费人成在线观看视频色| 久久这里有精品视频免费| 国产爱豆传媒在线观看| 天堂√8在线中文| 一边摸一边抽搐一进一小说| 免费在线观看成人毛片| 中文字幕久久专区| 亚洲成人av在线免费| 少妇人妻一区二区三区视频| 国产一区二区三区在线臀色熟女| 好男人在线观看高清免费视频| 中文字幕人妻熟人妻熟丝袜美| 日韩,欧美,国产一区二区三区 | 99久久久亚洲精品蜜臀av| 国产精品国产三级国产av玫瑰| 性插视频无遮挡在线免费观看| 国产精品蜜桃在线观看 | 日韩中字成人| 99九九线精品视频在线观看视频| 天天躁日日操中文字幕| a级毛色黄片| 欧美激情国产日韩精品一区| 国产极品天堂在线| 少妇裸体淫交视频免费看高清| 国产单亲对白刺激| 大香蕉久久网| 亚洲欧美成人综合另类久久久 | 亚洲人与动物交配视频| 美女被艹到高潮喷水动态| 一进一出抽搐gif免费好疼| 国产黄a三级三级三级人| 久久精品夜色国产| 欧美人与善性xxx| 久久99精品国语久久久| 男女边吃奶边做爰视频| 最近2019中文字幕mv第一页| 日韩在线高清观看一区二区三区| 国产老妇女一区| 成人三级黄色视频| 欧美一区二区国产精品久久精品| 性色avwww在线观看| 国产v大片淫在线免费观看| 啦啦啦韩国在线观看视频| 欧美日韩综合久久久久久| 哪个播放器可以免费观看大片| 欧美性猛交黑人性爽| 春色校园在线视频观看| 欧美极品一区二区三区四区| 在线播放无遮挡| 国产三级中文精品| 国产精品一及| 一边摸一边抽搐一进一小说| 内地一区二区视频在线| 国产毛片a区久久久久| av国产免费在线观看| 亚洲欧美日韩卡通动漫| 18+在线观看网站| 日韩欧美一区二区三区在线观看| 国产精品伦人一区二区| 免费观看在线日韩| 亚洲av熟女| 丝袜喷水一区| 少妇被粗大猛烈的视频| 在线免费十八禁| 久久久久久久久久成人| 国产精品日韩av在线免费观看| 欧美3d第一页| 国产精品一区二区性色av| av在线天堂中文字幕| 内地一区二区视频在线| 欧美+亚洲+日韩+国产| 美女内射精品一级片tv| 麻豆成人av视频| 亚洲av免费在线观看| 夜夜夜夜夜久久久久| 欧美三级亚洲精品| 亚洲七黄色美女视频| 天堂网av新在线| 少妇人妻一区二区三区视频| 一本一本综合久久| 亚洲av二区三区四区| 国产视频首页在线观看| 国产探花在线观看一区二区| 国产精品,欧美在线| 女人被狂操c到高潮| 久久精品91蜜桃| 亚洲av第一区精品v没综合| 亚洲在线观看片| 国产一区二区在线观看日韩| 国产精品一二三区在线看| 精品熟女少妇av免费看| 99久久无色码亚洲精品果冻| 亚洲在久久综合| 少妇的逼好多水| 亚洲不卡免费看| 国产极品天堂在线| 国产精品一区www在线观看| 成人高潮视频无遮挡免费网站| 变态另类丝袜制服| 又黄又爽又刺激的免费视频.| 亚洲av中文av极速乱| 97热精品久久久久久| 国产亚洲精品av在线| 亚州av有码| 特大巨黑吊av在线直播| 国产午夜精品久久久久久一区二区三区| 男人的好看免费观看在线视频| 不卡视频在线观看欧美| 一级二级三级毛片免费看| 成人美女网站在线观看视频| 久久精品久久久久久噜噜老黄 | 日韩大尺度精品在线看网址| 色综合亚洲欧美另类图片| 成人鲁丝片一二三区免费| 91久久精品电影网| 免费观看的影片在线观看| 久久精品国产亚洲av涩爱 | 日韩,欧美,国产一区二区三区 | 少妇熟女欧美另类| 欧美精品一区二区大全| 男人的好看免费观看在线视频| 看免费成人av毛片| 偷拍熟女少妇极品色| 99精品在免费线老司机午夜| 丰满人妻一区二区三区视频av| 国产精品蜜桃在线观看 | 日本欧美国产在线视频| 成人亚洲欧美一区二区av| 免费看美女性在线毛片视频| 日韩在线高清观看一区二区三区| 欧美一区二区国产精品久久精品| 99热精品在线国产| 长腿黑丝高跟| 天堂网av新在线| 精品一区二区免费观看| 欧洲精品卡2卡3卡4卡5卡区| 少妇被粗大猛烈的视频| 极品教师在线视频| 91av网一区二区| 简卡轻食公司| 女同久久另类99精品国产91| 欧美成人a在线观看| 亚洲精华国产精华液的使用体验 | 中文字幕av在线有码专区| 深夜精品福利| 精品人妻一区二区三区麻豆| 久久99热这里只有精品18| 国产v大片淫在线免费观看| 此物有八面人人有两片| 99在线视频只有这里精品首页| 成年版毛片免费区| 卡戴珊不雅视频在线播放| 麻豆成人av视频| 久久久精品94久久精品| 可以在线观看毛片的网站| 97超视频在线观看视频| av在线老鸭窝| 美女黄网站色视频| 真实男女啪啪啪动态图| 日韩欧美三级三区| 男女那种视频在线观看| 亚洲av免费在线观看| 国产91av在线免费观看| 日韩精品有码人妻一区| 午夜福利成人在线免费观看| 欧美bdsm另类| 亚洲久久久久久中文字幕| 日本色播在线视频| 啦啦啦啦在线视频资源| 日韩欧美精品v在线| 秋霞在线观看毛片| 日产精品乱码卡一卡2卡三| 国产精品一区www在线观看| 亚洲欧美精品自产自拍| 亚洲欧美清纯卡通| 国产精品,欧美在线| 免费黄网站久久成人精品| 欧美日韩在线观看h| 国产精品一区www在线观看| 国产精品久久久久久久电影| 99riav亚洲国产免费| 伦精品一区二区三区| 中文字幕熟女人妻在线| 国产精品人妻久久久久久| 国产一区二区激情短视频| 亚洲天堂国产精品一区在线| 在线免费观看的www视频| 九九爱精品视频在线观看| 日韩中字成人| 欧美高清性xxxxhd video| 精品久久久久久久久亚洲| 女人被狂操c到高潮| 久久99精品国语久久久| 免费看av在线观看网站| 亚洲成人中文字幕在线播放| 一卡2卡三卡四卡精品乱码亚洲| 日本色播在线视频| 成人亚洲精品av一区二区| 亚洲国产精品sss在线观看| 欧美丝袜亚洲另类| 边亲边吃奶的免费视频| 99久久精品国产国产毛片| 波野结衣二区三区在线| 午夜福利在线观看吧| 波野结衣二区三区在线| 99riav亚洲国产免费| 成人亚洲欧美一区二区av| 精品久久久久久久末码| 全区人妻精品视频| 亚洲欧美日韩高清专用| 日本免费一区二区三区高清不卡| 美女 人体艺术 gogo| 男女啪啪激烈高潮av片| 国产日本99.免费观看| 午夜福利在线在线| 又爽又黄无遮挡网站| 日韩欧美精品v在线| 干丝袜人妻中文字幕| 亚洲真实伦在线观看| a级毛色黄片| 久久99精品国语久久久| 免费看日本二区| 免费观看a级毛片全部| 久久精品国产99精品国产亚洲性色| 最好的美女福利视频网| 国产一级毛片在线| 成人国产麻豆网| 亚洲图色成人| 97超视频在线观看视频| 免费人成在线观看视频色| 国产成人福利小说| 波多野结衣巨乳人妻| 淫秽高清视频在线观看| 91精品一卡2卡3卡4卡| 深爱激情五月婷婷| www.av在线官网国产| 欧美在线一区亚洲| 波野结衣二区三区在线| 99久久精品国产国产毛片| 亚洲中文字幕一区二区三区有码在线看| 久久午夜亚洲精品久久| 日韩av不卡免费在线播放| 精品无人区乱码1区二区| 亚洲精品日韩在线中文字幕 | 一区福利在线观看| 老师上课跳d突然被开到最大视频| 国产精品免费一区二区三区在线| 天堂网av新在线| 变态另类丝袜制服| 97超碰精品成人国产| 久久综合国产亚洲精品| 国产精品.久久久| 卡戴珊不雅视频在线播放| 国产精品一区二区在线观看99 | 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久99精品国语久久久| 亚洲欧美精品综合久久99| 男人舔女人下体高潮全视频| 老师上课跳d突然被开到最大视频| 美女黄网站色视频| 国产精品野战在线观看| 欧美一区二区亚洲| 白带黄色成豆腐渣| 性色avwww在线观看| 国产一级毛片七仙女欲春2| 国产精品久久久久久精品电影小说 | 国产高潮美女av| 欧美xxxx性猛交bbbb| 一进一出抽搐gif免费好疼| 一级毛片我不卡| 两性午夜刺激爽爽歪歪视频在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产成人a∨麻豆精品| 91狼人影院| 国产精品爽爽va在线观看网站| 直男gayav资源| 日本与韩国留学比较| 国产69精品久久久久777片| 亚洲成人精品中文字幕电影| 亚洲不卡免费看| 久久中文看片网| 久久久精品大字幕| 噜噜噜噜噜久久久久久91| 一个人看视频在线观看www免费| 欧美激情在线99| 成人亚洲欧美一区二区av| 国内精品宾馆在线| 亚洲精品日韩在线中文字幕 | 免费电影在线观看免费观看| 国产精品野战在线观看| 校园人妻丝袜中文字幕| 婷婷精品国产亚洲av| 禁无遮挡网站| 大型黄色视频在线免费观看| 国产精品久久久久久久久免| 草草在线视频免费看| 亚洲天堂国产精品一区在线| 男女边吃奶边做爰视频| 国产探花极品一区二区| 国产精品久久视频播放| 色哟哟哟哟哟哟| 热99re8久久精品国产| 精品人妻视频免费看| 99热这里只有精品一区| 国产男人的电影天堂91| 亚洲av成人精品一区久久| 一区福利在线观看| 免费看av在线观看网站| 在线观看av片永久免费下载| 最近手机中文字幕大全| 亚洲色图av天堂| 综合色丁香网| 免费av观看视频| 日韩欧美三级三区| 内地一区二区视频在线| 联通29元200g的流量卡| 国产精品久久久久久精品电影| 国产精品蜜桃在线观看 | 一级毛片久久久久久久久女| 免费av观看视频| 亚洲精品国产成人久久av| 99久久精品一区二区三区| 黑人高潮一二区| 男女那种视频在线观看| 国产视频首页在线观看| 亚洲色图av天堂| 99久国产av精品国产电影| 久久欧美精品欧美久久欧美| 蜜桃久久精品国产亚洲av| 精品午夜福利在线看| 91精品一卡2卡3卡4卡| 亚洲国产精品成人综合色| 国产极品精品免费视频能看的| 国产中年淑女户外野战色| 亚洲乱码一区二区免费版| 亚洲图色成人| 久久久久久国产a免费观看| 特级一级黄色大片| 美女内射精品一级片tv| 在线观看av片永久免费下载| 国产v大片淫在线免费观看| 国产精品福利在线免费观看| 秋霞在线观看毛片| 久久精品国产自在天天线| 男女那种视频在线观看| 国产高清视频在线观看网站| 啦啦啦观看免费观看视频高清| 色哟哟·www| 成人永久免费在线观看视频| 欧美日韩乱码在线| 99视频精品全部免费 在线| 麻豆成人午夜福利视频| 免费观看a级毛片全部| 真实男女啪啪啪动态图| 一级二级三级毛片免费看| av天堂中文字幕网| 狂野欧美白嫩少妇大欣赏| 国产不卡一卡二| 精品久久久久久久久久久久久| 国产精品国产三级国产av玫瑰| 亚洲精华国产精华液的使用体验 | 日本-黄色视频高清免费观看| 久久精品国产亚洲网站| 婷婷六月久久综合丁香| 精品久久久噜噜| 偷拍熟女少妇极品色| 日本成人三级电影网站| 国产黄色视频一区二区在线观看 | 亚洲av第一区精品v没综合| 高清午夜精品一区二区三区 | 91aial.com中文字幕在线观看| 级片在线观看| 久久精品综合一区二区三区| 九草在线视频观看| 国产真实乱freesex| 91av网一区二区| 成人美女网站在线观看视频| 久久综合国产亚洲精品| 熟女电影av网| 亚洲一区高清亚洲精品| 我的女老师完整版在线观看| 日韩在线高清观看一区二区三区| 国模一区二区三区四区视频| 又粗又爽又猛毛片免费看| 亚洲av不卡在线观看| 亚洲18禁久久av| 亚洲,欧美,日韩| 18禁裸乳无遮挡免费网站照片| 在线观看av片永久免费下载| 亚洲av电影不卡..在线观看| 色哟哟·www| 国产白丝娇喘喷水9色精品| av女优亚洲男人天堂| 哪个播放器可以免费观看大片| 真实男女啪啪啪动态图| 一个人免费在线观看电影| 九九在线视频观看精品| 麻豆av噜噜一区二区三区| 国产精品一及| 欧美+日韩+精品| 日本欧美国产在线视频| 国产一区二区三区av在线 | 免费看美女性在线毛片视频| 网址你懂的国产日韩在线| 毛片女人毛片| 亚洲国产精品sss在线观看| 久久人妻av系列| 深爱激情五月婷婷| 亚洲国产高清在线一区二区三| 干丝袜人妻中文字幕| 亚洲国产欧美在线一区| 亚洲最大成人中文| 人妻少妇偷人精品九色| 99久久精品热视频| 国产精品人妻久久久久久| 亚洲五月天丁香| 一区二区三区高清视频在线| 成人亚洲精品av一区二区| 国产精品日韩av在线免费观看| 三级经典国产精品| 日韩一区二区三区影片| 深夜精品福利| 国产成人freesex在线| 简卡轻食公司| www.色视频.com| 91精品一卡2卡3卡4卡| 男人的好看免费观看在线视频| 少妇人妻一区二区三区视频| 精品久久久噜噜| 少妇猛男粗大的猛烈进出视频 | 老司机福利观看| 99在线人妻在线中文字幕| 国产毛片a区久久久久| 午夜激情欧美在线| www.色视频.com| 日日摸夜夜添夜夜添av毛片| 久久午夜亚洲精品久久| 在线观看一区二区三区| 欧美高清成人免费视频www| 99久久精品国产国产毛片| 3wmmmm亚洲av在线观看| 99热精品在线国产| 精品久久久久久久末码| 亚洲自拍偷在线| 国产精品电影一区二区三区| 国产精品久久视频播放| 国产精品无大码| 美女被艹到高潮喷水动态| 中国美女看黄片| 日本与韩国留学比较| 青春草视频在线免费观看| 美女内射精品一级片tv| 黄片无遮挡物在线观看| 国内精品久久久久精免费| 日日摸夜夜添夜夜爱| 国产极品天堂在线| 又黄又爽又刺激的免费视频.| 99国产精品一区二区蜜桃av| 国产极品天堂在线| 黄色欧美视频在线观看| 美女内射精品一级片tv| 国产精品福利在线免费观看| 欧美潮喷喷水| 插阴视频在线观看视频| 18禁黄网站禁片免费观看直播| 99久久精品一区二区三区| 高清毛片免费观看视频网站| eeuss影院久久| 国产成人午夜福利电影在线观看|