• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Using Semantic Web Technologies to Improve the Extract Transform Load Model

    2021-12-11 13:32:48AmenaMahmoudMahmoudShamsElzekiandNancyAwadallahAwad
    Computers Materials&Continua 2021年8期

    Amena Mahmoud,Mahmoud Y.Shams,O.M.Elzeki and Nancy Awadallah Awad

    1Department of Computer Science,Kafrelshiekh University,Kafrelshiekh,Egypt

    2Department of Machine Learning,Kafrelsheikh University,Kafrelshiekh,Egypt

    3Department of Computer Science,Mansoura University,Mansoura,Egypt

    4Department of Computer and Information Systems,Sadat Academy for Management Sciences,Cairo,Egypt

    Abstract:Semantic Web (SW) provides new opportunities for the study and applicationof big data,massive ranges of data sets in varied formats from multiple sources.Related studies focus on potential SW technologies for resolving big data problems, such as structurally and semantically heterogeneous data that result from the variety of data formats (structured, semi-structured,numeric,unstructured text data,email,video,audio,stock ticker).SW offers information semantically both for people and machines to retain the vast volume of data and provide a meaningful output of unstructured data.In the current research, we implement a new semantic Extract Transform Load(ETL) model that uses SW technologies for aggregating, integrating, and representing data as linked data.First, geospatial data resources are aggregated from the internet,and then a semantic ETL model is used to store the aggregated data in a semantic model after converting it to Resource Description Framework(RDF)format for successful integration and representation.The principal contribution of this research is the synthesis,aggregation,and semantic representation of geospatial data to solve problems.A case study of city data is used to illustrate the semantic ETL model’s functionalities.The results show that the proposed model solves the structural and semantic heterogeneity problems in diverse data sources for successful data aggregation,integration,and representation.

    Keywords:Semantic web; big data;ETL model; linked data;geospatial data

    1 Introduction

    Big Data consists of data from billions to trillions of millions of persons, all from various sources (e.g., Web, customer contact center, social media, mobile data, sales, etc.).Usually, the material is loosely structured and is frequently outdated and unavailable.Big Data is transforming science, engineering, medicine, healthcare, finance, business, and ultimately society itself.Huge volumes of data for strategic economic gain, public policy, and new insight into a wide variety of technologies are available (including healthcare, biomedicine, energy, smart cities, genomics,transportation, etc.).Most of this knowledge, however, is inaccessible to users because we need technologies and resources to discover, transform, interpret, and visualize data to make it consumable for decision-making [1,2].

    Due to the variety of data that includes different formats such as structured, semi-structured,and unstructured data, it is difficult to be processed using traditional databases and software techniques.Therefore, efficient technology and tools are needed to process data to be consumable for decision-making especially that most of them are inaccessible to users, as shown in Fig.1 [2].

    Figure 1:Processing data using traditional techniques

    Nevertheless, meaningful data integration in a schema-less, and complex big data world of databases is a big open challenge.Big data challenges are not only in storing and managing this variety of data but also extracting and analyzing consistent information from it.Researchers are working on creating a common conceptual model for the integrated data [3].The method of publishing and linking structured data on the web is called Linked Data [4].This data is machinereadable, its meaning is explicitly defined, it is linked to other external data sets, and it can be linked to from other data sets as well [5].

    Extract-Transform-Load (ETL) procedure is one of the most popular techniques in data integration.It covers the process of loading data from the source system to the data warehouse.This process consists of three consecutive stages:extracting, transforming, and loading, as shown in Fig.2.

    Figure 2:Traditional ETL model

    To accurately exploit web data, a system needs to be capable to read the exact semantic meaning of web-published information.An acknowledged way to publish machine-readable information is to use Semantic web (SW) technologies.The purpose of SW technologies is to fix a common vocabulary and a set of interpretation constraints (inferring rules) to semantically express metadata over web information and allow doing some reasoning on it.More specifically, SW presents human knowledge through structured collections of information and sets of inference rules [6,7].

    By using the SW formats, web resources can be enriched with annotations and other markups capturing the semantic metadata of resources.The first motivator of SW is data integration,which is a significant bottleneck in many IT applications.Current solutions to this problem are mostly ad hoc each time, a specific mapping is made between the data models (schemas) of the data sources involved.In addition to that, if the data sources’semantics were described in a machine-interpretable way, the mappings could be constructed at least semi-automatically.The second motivator is more intelligent support for end-users.If the computer programs can infer consequences of information on the web, they can give better support in finding information,selecting information sources, personalizing information, combining information from different sources, and so on.

    Unlike the documentation of semantics, the approaches to the complex description of ETL problems are presented in the field of graphic modeling, however their scope of application is essentially limited, and the resulting benefits from the application are not high.

    Figure 3:Semantic ETL model

    Currently, we are moving from the era of “data on the web” to the era of “web of data(linked data).” Linked Data (LD) is introduced as a step in transforming the web into a global database.The term LD refers to a group of best practices for publishing and interlinking data on the web [8,9].Creating LD requires having data available on the web in a standard, reachable,and manageable format.Besides, the relationships among data are required [10], as shown in Fig.3.LD depends on some SW technologies and Hypertext Transfer Protocol (HTTP) to publish structured data on the web and to connect data from different data sources to allow data in one data source to be linked to data in another data source effectively [11,12].SW contains design principles for sharing machine-readable interlinked data on the web.These links for different datasets make them clearly understood not only for humans but for machines as well.

    LD facilitates data integration and navigation through complex data owing to the standards to which it adheres.Guidelines allow easy upgrades and extensions to data models.Besides,representation under a set of global principles also increases data quality.Moreover, the database of semantic graphs representing LD creates semantic links between varied sources and disparate formats [13,14].

    2 Related Work

    Most of the technical difficulties that typically appear when dealing with big data integration results from a variety of data formats, including structured and semantic.Many existing studies depend on SW and metadata.Semantic technologies have been added recently to the ETL process to alleviate these problems.

    Srividya et al.[15] designed a semantic ETL process using ontologies to capture the semantics of a domain model and resolve semantic heterogeneity.This model assumes that the data resources’ type is the only relational database.Huang et al.[1] automatically extracted data from different marine data resources and transformed them into unified schemas relying on an applied database to integrate it semantically.Sonia et al.[16] and Lihong et al.[17] produced a semantic ETL process for integrating and publishing structured data from various sources as LD by inserting a semantic model and instances into a transforming layer using the OWL, RDF, and SPARQL technologies.Mahmoud et al.[18] enhanced the ETL definitions by allowing semantic transforming of semi-automatic, inter-attributes through the identification of data source schemes and semantic grouping of attribute values.

    Mei et al.[19] introduced a semantic approach for extracting, linking, and integrating geospatial data from several structured data sources.It also solves the individuals’redundancy problem facing data integration.The basic idea of this model is to use ontologies to convert extracted data from different sources to RDF format followed by linking similar entities in the generated RDF files using the linking algorithm.The next step is to use SPARQL queries to eliminate data redundancy and combine complementary properties for integration using an integration algorithm.Isabel et al.[20] developed a technique for solving the redundancy problems between individuals in data integration using SW technologies.

    Boury et al.[21] and Saradha et al.[22] discussed the mapping between data schemas in which the mapping process between column names is adjusted manually.Jadhao et al.[23] proposed and implemented a new model to aggregate online educational data sources from the internet and mobile networks using such semantic techniques as ontologies and metadata to enhance the aggregation results.Ying et al.[24] built a combined data lake using semantic technologies within architecture for aggregating data from numerous sources.

    Kang et al.developed a semantic big data model that reduces the context for semantically storing data in line with a map.However, the inclusion of data from existing database structures has not been facilitated by this model.In science, semantic models for data aggregation, convergence, and representation are still uncommon and face many obstacles, such as semantic and structural heterogeneity.Here, we suggest using some semantic strategies to resolve these issues and improve the aggregation, integration, and representation of big data [25,26].

    3 A Case Study

    A case study of city data is used to explain the new workflow features.Internet contains numerous data services, such as MapCruzin group [27], Data.gov [28], United States Census [29],OST/SEK Map group [30], USCitiesList.org [31], and Gaslamp media [32].Data are stored in these resources in different formats such asshape_file,comma-separated values(CSV), andDBF date filedata.TheOST/SEC GIs map groupdata resource provides data such ascountry_fip,ST,LON,LAT, STATE,name, andPROG_DISC, whiledata.govprovidescountry,countryfips,longitude,latitude,PopPlLat,PopPlLong,state, andstate_fip.United States CensusprovidescountryFP,name,Aland, andAwater.Besides,country,name,longitude,latitude,land area,water area,zip_codes, andarea codeare provided inUSCitiesList.org.The last data resource fromGaslamp mediacontainszip_code,longitude,latitude,city, andstate.

    Tab.1 represents the semantic heterogeneity in these sources.However, these data will be more useful if it is represented and stored in a semantic model after integrating it semantically and then removing data duplications.Some data in these resources are the same but are referred to use different names such as (city, name), (Aland, land area), (Awater, water area), (country_fip,countryFP, countryfips), (LON, longitude), and (LAT, latitude).This incompatibility causes many problems in data integration and hence the generic geospatial ontology is applied to transform this data into RDF format for easily integrating using Jena and SPARQL query.The following step is to represent these data and to store them semantically in the semantic big data model.

    Table 1:Semantic heterogeneity from diverse databases

    4 Proposed Approach

    The first approach proposed collecting geospatial data services by the geospatial ontology seen in Fig.4.The suggested semantic model of ETL, shown in Fig.5, aims to aggregate various geospatial data services from the network semantically and combine the derived resource data semantically to store it as a geospatial semantic big data model.Next, metadata is combined over the internet using geospatial data resources from various resources, as shown in Fig.6.Then, the three steps of the ETL are performed.

    The first phase is extracting data from the aggregated geospatial resources.These extracted data are different from each other and have different schemas.Hence, they have no semantic meaning, and their structures are different.We use SW technologies in the second phase to align and link this data.

    Figure 4:The geospatial ontology used for aggregation of heterogeneous services

    The principal purpose of the second phase is to prepare the extracted data and transform it into the RDF format for linking.This consists of five procedures.The first procedure is data preparation which contains some typical transformation activities for preparing the data.This includes such activities as normalizing data, removing duplicates, checking for integrity violations,filtering, sorting, grouping, and dividing data according to format.Additionally, it transforms data to RDF format (structured, semi-structured, or unstructured).The RDF generation, shown in Fig.7 for structured and semi-structured data, is based on the standardized geospatial ontology shown in Fig.8.The derived data are then converted to RDF format.

    The RDF generation algorithm used for this transformation is as follows:

    Trans-Data-to-RDF algorithm 1 Input:src1: Geospatial CSV file,2 src2: Geospatial Ontology file 3 Output:real: alignmentmeasure_value // matching value between entities in src1and src2 files,4 RDF data file generation 5 Variables:6 file:CSV_File // read the CSV data 7 string:RDF_className // class name of the generated RDF data 8 array:Column_Listing // list for storing all columns name 9 string:column_name // string store column name in the input CSV file 10 string:column_data // string store every value of the CSV data

    11 object:csvModel // model to hold the RDF data which generated from the Geospatial CSV input file 12 object:geospatial_ontology // model to hold the Geospatial Ontology file 13 object:dataPropertys // object from DatatypeProperty class 14 object:csvIndividual // object for creating individuals 15 string:property // string to get the data property name from the Colomn_Listing 16 object:First_ontology // object from JENAOntology 17 object:Second_ontology // object from JENAOntology 18 object:alignmentmeasure // for creating the alignment process between First_ontology and Second_ontology 19 int:counter // initial value equal 0 20 string: entity1//hold the data properties name of the First_ontology in each cell 21 string: entity2//hold the data properties name of the Second_ontology in each cell 22 Processing:23 Begin:24 // First Stage:25 //First Step:Read Geospatial CSV file 26 CSV_File ←src1 27 //Second Step:Convert data in CSV into RDF format 28 RDF class name = src1 name 29 // create the data properties from columns name 30 For all column_names in src1 {31 column_name ←column value 32 DatatypeProperty dataPropertys =33 csvModel.createDatatypeProperty(column_name);34 Coloumn_Listing.add(column_name); }35 // set every row data as a new individual 36 while (! End-of-file(src1))37 { column_data ←column value 38 Individual csvIndividual = cvsClass.createIndividual ();39 String property = Coloumn_Listing.get (counter++);40 csvIndividual.addProperty(csvModel.getDatatypeProperty(property),41 column_data); }42 OntModel geospatial_ontology ←read src2 43 //Using“Alignment API”to calculate similarities 44 JENAOntology First_ontology = new JENAOntologyFactory().newOntology(csvModel,true);45 46 JENAOntology Second_ontology = new JENAOntologyFactory().newOntology(geospatial_ontology, true);47 //Aligning data properties between two ontologies 48 AlignmentProcess alignmentmeasure=new SMOANameAlignment();49 alignmentmeasure.init (First_ontology, Second_ontology); // takes the source and target 50 ontology to alignment 51 alignmentmeasure.align (First_ontology.getdataproperties(), Second_ontology.Countryclass.

    52 getdataproperties());53 For all cells c in alignmentmeasure 54 {55 alignmentmeasure_value = cell.getStrength();//get measre value 56 entity1=cell.getObject1().toString();//get data property name of First_ontology 57 entity2=cell.getObject2().toString();//get data property name of Second_ontology 58 If (alignmentmeasure_value > 0.5)59 {60 entity1.value ←entity2.value;61 }62 }63 // Second Stage 64 Save First_ontology as RDF format in an XML file 65 66 67 68 END

    Figure 5:Semantic ETL model

    Figure 6:Geospatial data resources aggregation

    Figure 7:RDF file generation from data files of structured and semi-structured data

    Using the API 4.0 [33,34] alignment, this algorithm transforms the CSV data file into an RDF file by the default geospatial ontology used.Thus, structured, and semi-structured data files(such as XML, EXCEL, and JSON) are translated into CSV data files before the RDF generation algorithm is applied.Structuring analysis is used to remove the noisy components and generate metadata information, followed by a data mining operation consisting of two procedures, linguistic and semantic analysis as shown in Fig.9.

    Figure 8:Generic geospatial ontology

    The linguistic analysis method involves two steps.Firstly, phrase splitting which includes a speech tagger section, morphological examination, a JAPE transducer, and a root gazetteer.The JAPE transducer implements specific laws centered on regular expressions over the annotated corpus.It is the responsibility of the onto root gazetteer to take domain ontology as an input to construct an annotated corpus with the geospatial entities.The second step is the semantic analysis that is used to catch the hidden relationships between the annotated entities in the textual details.The output of the linguistic analysis is used as the input to the system of semantic analysis, which uses fundamental semantic rules adapted from [34] to extract the relationships from unstructured textual data.

    The final procedure is gathering the geospatial data for the semantic model.The data linking algorithm is used in this procedure to link RDF data files semantically before merging them to address the problem of semantic heterogeneity.Next, the linkage and integration algorithm are used to compare and avoid the redundancy of entities before the integration process, accompanied by merging all data from RDF files into a single file.Finally, the semantic model for storing integrated geospatial data semantically using the technique is built-in.The generated semantic model is stored in the data warehouse in the last phase of the semantic ETL model.

    Figure 9:RDF file generation from unstructured data files, adapted from [34]

    5 Discussion of Experiment

    5.1 Experimental Setup

    Specific SW technologies are used to implement the proposed approach, as follows:

    1.Uniform Resource Identifier:Defining and finding properties such as the default web pages,offering a baseline to represent the characters used in most languages of the world, and to classify resources [34].

    That was the last day I ever saw my first love. Now 4 years later, here I am in CANADA. I have guy in my life now, whom I am deeply love with after Mamun. I never lose him.

    2.RDF:Internet data-sharing model, which defines the metadata of websites and ensures interoperability between applications.This facilitates the data merging of various schemes and allows the mixing, exposure, and sharing of structured and semi-structured data across different applications [35].

    3.SPARQL:The RDF query language and protocol used to query, retrieve, and process RDF-format data [36].

    4.OWL:An SW language built on top of RDF.Written in XML, it represents things, classes of things, and links between items of knowledge of things [37].

    5.Alignment API:Offers abstractions for ontology, alignment, and correspondence network notes, as well as coercive building blocks such as matches, evaluators, renderers,and parsers.

    6.XML (eXtensible Markup Format):An extensible format that enables users to construct their document identifiers.Provides the syntax of the material structure inside documents [38].

    7.Program Eclipse.

    8.Protégé “ontology editor”:This is an open-source editor for the construction of ontology domain models and knowledge-based applications [39].

    5.2 Results

    Table 2:Matching attributes between ontology and data in source

    Table 3:Matching attributes between ontology and data in source

    Table 4:Matching attributes between ontology and data in source

    Table 5:Matching attributes between ontology and data in source

    The CSV data are used and translated into the RDF data file using the proposed RDF generation algorithm.If the used data is unstructured, the SPARQL query extracts the attributes from its RDF file, and then the proposed linking algorithm is applied to match the attributes and is translated into RDF format to validate the algorithm.Fig.10 shows a case to illustrate this procedure.

    Figure 10:Example of matched attributes

    The next stage is to align the attributes extracted in from both the constructed ontology and the data, as in Fig.10.Since the attributes “name, city,” “l(fā)on, longitude,” and “l(fā)at, latitude”correspond to the same details, they have matched attributes.This suggests that the issues of textual and structural variability have been solved and that the data services are combined and semantically processed.

    Table 6:Comparison between existing semantic models and the proposed model

    The emphasis for large-scale data studies is primarily on quantity, speed, and variety.SW technology was not introduced for such data.The pace and volume of SW developments remain major challenges.The semantic heterogeneity issue created by the variety of big data is overcome in the proposed model.Machine performance shows which components of the input systems have been implemented effectively.Tab.6 lists the differences between the existing models and the proposed model.

    Confidence in the relationship between characteristics of the alignment supplier is enhanced by the magnitude of the greater interest (measurement meaning:Float between 0.0 and 1.0).Various communications systems for the API are described in [39].

    6 Conclusion

    This study presents a new ETL semantic model that allows for combining, associating, incorporating, and characterizing geospatial data using semantic technology from numerous geospatial resources on the internet.Geospatial data services are first aggregated semantically, and then the three steps of the ETL are combined, viewed, and processed as LD.Besides, we addressed problems of systemic and semantic heterogeneity before the integration cycle.SW technology solves the big data variety problem, but not the quantity problem.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    超碰97精品在线观看| 26uuu在线亚洲综合色| 777米奇影视久久| 欧美日韩视频高清一区二区三区二| 老司机亚洲免费影院| 中文字幕制服av| 两个人免费观看高清视频| 大陆偷拍与自拍| 99香蕉大伊视频| av一本久久久久| 咕卡用的链子| 高清在线视频一区二区三区| av有码第一页| 亚洲欧洲国产日韩| 免费观看性生交大片5| 亚洲精品成人av观看孕妇| 国产色婷婷99| 在线天堂最新版资源| 汤姆久久久久久久影院中文字幕| 黄片无遮挡物在线观看| 欧美日韩亚洲高清精品| 嫩草影院入口| 国产精品久久久久久av不卡| av免费在线看不卡| 在线观看三级黄色| 免费人妻精品一区二区三区视频| 久久女婷五月综合色啪小说| 高清在线视频一区二区三区| 国产日韩欧美亚洲二区| 成人二区视频| 咕卡用的链子| 国产人伦9x9x在线观看 | 亚洲综合色惰| 亚洲欧美精品自产自拍| 国产白丝娇喘喷水9色精品| 乱人伦中国视频| 国产日韩欧美视频二区| 一级a爱视频在线免费观看| 久久午夜福利片| 在线观看美女被高潮喷水网站| 精品一区在线观看国产| 国产一区二区三区av在线| 国产成人精品在线电影| 看免费成人av毛片| 美女中出高潮动态图| 国产在线一区二区三区精| 亚洲欧美成人综合另类久久久| 亚洲色图 男人天堂 中文字幕| 99精国产麻豆久久婷婷| 亚洲欧美精品自产自拍| 熟女电影av网| 高清视频免费观看一区二区| 久久久国产欧美日韩av| 久久国产精品男人的天堂亚洲| 亚洲精品一二三| 成人午夜精彩视频在线观看| 国产成人av激情在线播放| 午夜福利一区二区在线看| 校园人妻丝袜中文字幕| 男女下面插进去视频免费观看| 日韩一区二区三区影片| 国产成人91sexporn| 国产野战对白在线观看| 制服人妻中文乱码| 高清av免费在线| 日韩三级伦理在线观看| www.精华液| 黑人欧美特级aaaaaa片| 日韩免费高清中文字幕av| 妹子高潮喷水视频| 一个人免费看片子| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 一二三四在线观看免费中文在| 亚洲成人一二三区av| 久久精品熟女亚洲av麻豆精品| 亚洲精品美女久久av网站| 永久网站在线| 26uuu在线亚洲综合色| 成人18禁高潮啪啪吃奶动态图| 国产精品嫩草影院av在线观看| 在线亚洲精品国产二区图片欧美| 岛国毛片在线播放| 中文精品一卡2卡3卡4更新| 曰老女人黄片| 国产成人一区二区在线| 亚洲欧洲国产日韩| 色婷婷久久久亚洲欧美| 黄片小视频在线播放| 只有这里有精品99| 亚洲成人手机| 免费少妇av软件| 日本-黄色视频高清免费观看| 如日韩欧美国产精品一区二区三区| 日韩三级伦理在线观看| 人妻人人澡人人爽人人| 18禁观看日本| av.在线天堂| av又黄又爽大尺度在线免费看| 热99国产精品久久久久久7| 秋霞伦理黄片| 男人操女人黄网站| 午夜福利影视在线免费观看| 国产色婷婷99| 亚洲色图 男人天堂 中文字幕| 亚洲色图综合在线观看| av在线老鸭窝| 伊人亚洲综合成人网| 夫妻午夜视频| 丝袜在线中文字幕| 一级毛片黄色毛片免费观看视频| 亚洲国产av新网站| 9热在线视频观看99| 国产又色又爽无遮挡免| 免费在线观看黄色视频的| 色播在线永久视频| 巨乳人妻的诱惑在线观看| 满18在线观看网站| 久久精品久久精品一区二区三区| 久久精品国产鲁丝片午夜精品| 免费观看在线日韩| 午夜久久久在线观看| 日韩一区二区三区影片| 叶爱在线成人免费视频播放| av又黄又爽大尺度在线免费看| 九色亚洲精品在线播放| 日本黄色日本黄色录像| 又粗又硬又长又爽又黄的视频| 一二三四在线观看免费中文在| 亚洲,欧美,日韩| 国产欧美日韩综合在线一区二区| 久久精品国产综合久久久| 日本欧美视频一区| 久久久亚洲精品成人影院| av一本久久久久| 亚洲国产欧美日韩在线播放| 大陆偷拍与自拍| 2018国产大陆天天弄谢| 国产精品一二三区在线看| 黄色配什么色好看| 久久久国产一区二区| 日韩一区二区三区影片| av.在线天堂| 国产亚洲午夜精品一区二区久久| 三级国产精品片| 在线天堂中文资源库| 国产一区二区在线观看av| 亚洲精品日本国产第一区| 欧美老熟妇乱子伦牲交| 日韩制服骚丝袜av| 欧美成人午夜精品| 免费观看av网站的网址| 黄片播放在线免费| 亚洲图色成人| 视频在线观看一区二区三区| 校园人妻丝袜中文字幕| 一区福利在线观看| 国产国语露脸激情在线看| 夜夜骑夜夜射夜夜干| 少妇的逼水好多| 欧美日韩视频精品一区| 超碰成人久久| 国产精品二区激情视频| 国产精品无大码| 成人影院久久| 亚洲av在线观看美女高潮| 1024香蕉在线观看| 一区在线观看完整版| 一区二区三区乱码不卡18| 少妇的逼水好多| 免费在线观看黄色视频的| 免费日韩欧美在线观看| 女人久久www免费人成看片| 一本—道久久a久久精品蜜桃钙片| 午夜激情av网站| 十八禁网站网址无遮挡| 日韩av免费高清视频| 久久久久久免费高清国产稀缺| 波野结衣二区三区在线| 中国国产av一级| 国产深夜福利视频在线观看| 国产女主播在线喷水免费视频网站| 久久午夜综合久久蜜桃| 国产精品麻豆人妻色哟哟久久| 欧美日韩成人在线一区二区| 9191精品国产免费久久| 国产不卡av网站在线观看| 久久久久精品久久久久真实原创| 免费日韩欧美在线观看| 在线精品无人区一区二区三| 久久久久久伊人网av| 97人妻天天添夜夜摸| 捣出白浆h1v1| 男女边吃奶边做爰视频| 精品人妻一区二区三区麻豆| 天天躁夜夜躁狠狠久久av| 国产成人免费无遮挡视频| 国产日韩欧美在线精品| 日本wwww免费看| 高清欧美精品videossex| 国产又色又爽无遮挡免| av又黄又爽大尺度在线免费看| 亚洲精品在线美女| 精品福利永久在线观看| 亚洲精品av麻豆狂野| 欧美在线黄色| 精品一区二区三区四区五区乱码 | 亚洲综合色网址| 亚洲成人一二三区av| 日本-黄色视频高清免费观看| 欧美日韩视频高清一区二区三区二| 在线观看人妻少妇| 丝袜人妻中文字幕| 国语对白做爰xxxⅹ性视频网站| 久久久欧美国产精品| 色婷婷av一区二区三区视频| 侵犯人妻中文字幕一二三四区| 国产成人精品福利久久| 亚洲欧洲精品一区二区精品久久久 | 欧美国产精品一级二级三级| 男人舔女人的私密视频| 久久久亚洲精品成人影院| 天美传媒精品一区二区| 秋霞伦理黄片| 女人精品久久久久毛片| 三上悠亚av全集在线观看| 最近最新中文字幕大全免费视频 | 亚洲欧洲精品一区二区精品久久久 | 国产亚洲一区二区精品| 亚洲av欧美aⅴ国产| 在线观看免费高清a一片| 午夜福利乱码中文字幕| 国产一区亚洲一区在线观看| 另类精品久久| 亚洲av国产av综合av卡| 人妻人人澡人人爽人人| 90打野战视频偷拍视频| 日本爱情动作片www.在线观看| 巨乳人妻的诱惑在线观看| 久久精品国产自在天天线| 亚洲欧美中文字幕日韩二区| 国产精品.久久久| 欧美精品av麻豆av| 精品一品国产午夜福利视频| 国产欧美日韩综合在线一区二区| 亚洲五月色婷婷综合| 熟女电影av网| 色播在线永久视频| 精品酒店卫生间| 丰满乱子伦码专区| 日韩精品免费视频一区二区三区| 久久这里只有精品19| 青春草国产在线视频| 你懂的网址亚洲精品在线观看| 9色porny在线观看| 亚洲视频免费观看视频| 大码成人一级视频| 久久久久久人妻| 超色免费av| 在现免费观看毛片| 欧美日韩一区二区视频在线观看视频在线| 色播在线永久视频| 亚洲中文av在线| 男女高潮啪啪啪动态图| 精品一区二区三卡| 精品久久蜜臀av无| 少妇精品久久久久久久| 七月丁香在线播放| 久久人人97超碰香蕉20202| 18在线观看网站| 老司机亚洲免费影院| 亚洲经典国产精华液单| 91在线精品国自产拍蜜月| 午夜福利乱码中文字幕| 啦啦啦在线观看免费高清www| 久久久久久久国产电影| 91国产中文字幕| 欧美日韩av久久| 免费高清在线观看日韩| 久久国产亚洲av麻豆专区| 国产不卡av网站在线观看| 亚洲av福利一区| 九九爱精品视频在线观看| 久久精品亚洲av国产电影网| 国产精品嫩草影院av在线观看| 欧美最新免费一区二区三区| 免费观看性生交大片5| 热99久久久久精品小说推荐| 自拍欧美九色日韩亚洲蝌蚪91| 女人被躁到高潮嗷嗷叫费观| av在线观看视频网站免费| 亚洲一区中文字幕在线| 最近最新中文字幕大全免费视频 | 久久97久久精品| 1024香蕉在线观看| 久久ye,这里只有精品| 天天影视国产精品| 一本色道久久久久久精品综合| 成年av动漫网址| 午夜av观看不卡| 少妇熟女欧美另类| 丝袜人妻中文字幕| 一边摸一边做爽爽视频免费| 亚洲一码二码三码区别大吗| 国产免费一区二区三区四区乱码| www.av在线官网国产| 精品第一国产精品| 国产成人一区二区在线| 黄片播放在线免费| 中文字幕人妻丝袜一区二区 | 一区二区三区激情视频| 超色免费av| 一级a爱视频在线免费观看| 大话2 男鬼变身卡| 欧美 亚洲 国产 日韩一| videosex国产| 少妇猛男粗大的猛烈进出视频| 欧美人与善性xxx| 国产精品一区二区在线不卡| 国产精品香港三级国产av潘金莲 | 视频区图区小说| 在线观看www视频免费| 日韩人妻精品一区2区三区| 久久国内精品自在自线图片| 大陆偷拍与自拍| 精品少妇内射三级| 黑丝袜美女国产一区| 精品少妇内射三级| 亚洲成人av在线免费| 啦啦啦在线免费观看视频4| 亚洲人成77777在线视频| 国产成人av激情在线播放| 国产精品不卡视频一区二区| 国产亚洲最大av| 久久狼人影院| 777米奇影视久久| 亚洲国产毛片av蜜桃av| 国产男人的电影天堂91| 欧美在线黄色| 午夜久久久在线观看| 精品国产一区二区三区四区第35| 日韩大片免费观看网站| 波多野结衣av一区二区av| 七月丁香在线播放| 亚洲欧美色中文字幕在线| 成人国语在线视频| 国产成人精品一,二区| 色吧在线观看| 国产免费又黄又爽又色| 国产成人精品婷婷| 国产淫语在线视频| 男女边吃奶边做爰视频| 亚洲精华国产精华液的使用体验| 成人影院久久| 高清视频免费观看一区二区| 人人澡人人妻人| 熟女av电影| 国产人伦9x9x在线观看 | 国产成人免费无遮挡视频| 免费大片黄手机在线观看| 人人妻人人添人人爽欧美一区卜| 国产精品二区激情视频| 日日摸夜夜添夜夜爱| 日本黄色日本黄色录像| 91精品伊人久久大香线蕉| 美女高潮到喷水免费观看| 免费观看性生交大片5| 日韩,欧美,国产一区二区三区| 黑人欧美特级aaaaaa片| 亚洲国产av新网站| 男人舔女人的私密视频| 最近中文字幕2019免费版| 亚洲综合色网址| 欧美 日韩 精品 国产| 人成视频在线观看免费观看| 久久99热这里只频精品6学生| videos熟女内射| 黄片无遮挡物在线观看| 老司机亚洲免费影院| 免费大片黄手机在线观看| 国产精品 欧美亚洲| 欧美成人精品欧美一级黄| 国产成人精品久久二区二区91 | 亚洲精品,欧美精品| 亚洲四区av| 国产一区二区激情短视频 | 欧美成人精品欧美一级黄| 日本午夜av视频| 女人被躁到高潮嗷嗷叫费观| 免费播放大片免费观看视频在线观看| 新久久久久国产一级毛片| 成人国语在线视频| 一区福利在线观看| 青春草亚洲视频在线观看| 宅男免费午夜| 黄色怎么调成土黄色| 九草在线视频观看| 亚洲国产欧美网| 美女脱内裤让男人舔精品视频| 亚洲欧美清纯卡通| 久久久久久久久久久久大奶| 少妇熟女欧美另类| 婷婷色综合大香蕉| 极品少妇高潮喷水抽搐| 成年女人毛片免费观看观看9 | 亚洲国产精品成人久久小说| 男女边摸边吃奶| 日韩一区二区三区影片| 最黄视频免费看| 国产爽快片一区二区三区| 亚洲欧美成人综合另类久久久| 日日啪夜夜爽| 亚洲av福利一区| 一区二区日韩欧美中文字幕| 91久久精品国产一区二区三区| 国产伦理片在线播放av一区| 综合色丁香网| 久久国产精品大桥未久av| 高清欧美精品videossex| 天天操日日干夜夜撸| 水蜜桃什么品种好| 街头女战士在线观看网站| 在线亚洲精品国产二区图片欧美| 少妇人妻久久综合中文| 精品视频人人做人人爽| 亚洲情色 制服丝袜| 黄色一级大片看看| 午夜福利影视在线免费观看| 边亲边吃奶的免费视频| 99热全是精品| 久久精品国产自在天天线| 十八禁高潮呻吟视频| 可以免费在线观看a视频的电影网站 | 99热全是精品| 26uuu在线亚洲综合色| av在线app专区| av网站在线播放免费| 午夜免费男女啪啪视频观看| 在线观看美女被高潮喷水网站| 五月开心婷婷网| 亚洲国产最新在线播放| 人人妻人人澡人人爽人人夜夜| 午夜免费鲁丝| 午夜福利在线免费观看网站| 午夜老司机福利剧场| 成人毛片60女人毛片免费| 欧美日韩av久久| 黄频高清免费视频| 久久精品国产综合久久久| 成年美女黄网站色视频大全免费| 老司机亚洲免费影院| 美女脱内裤让男人舔精品视频| 国产成人免费无遮挡视频| 一级毛片黄色毛片免费观看视频| 九色亚洲精品在线播放| 哪个播放器可以免费观看大片| 久久精品国产亚洲av天美| 亚洲一级一片aⅴ在线观看| 我要看黄色一级片免费的| 看十八女毛片水多多多| 99久国产av精品国产电影| 日韩av在线免费看完整版不卡| 亚洲成人一二三区av| 日韩制服骚丝袜av| 秋霞伦理黄片| 亚洲色图综合在线观看| 天堂中文最新版在线下载| 在线免费观看不下载黄p国产| 国产一区二区三区av在线| 亚洲av在线观看美女高潮| 午夜激情久久久久久久| 亚洲久久久国产精品| 大片免费播放器 马上看| 天堂中文最新版在线下载| 免费av中文字幕在线| 伦精品一区二区三区| 亚洲国产欧美网| 亚洲国产精品一区二区三区在线| 麻豆精品久久久久久蜜桃| 视频区图区小说| 国产免费又黄又爽又色| 青青草视频在线视频观看| 久久国产精品大桥未久av| 人妻少妇偷人精品九色| av福利片在线| 美女午夜性视频免费| 9色porny在线观看| av有码第一页| 国产片特级美女逼逼视频| 只有这里有精品99| 涩涩av久久男人的天堂| av天堂久久9| 90打野战视频偷拍视频| 777久久人妻少妇嫩草av网站| 欧美精品一区二区免费开放| 亚洲少妇的诱惑av| 成人影院久久| 色94色欧美一区二区| 久久国内精品自在自线图片| 国产精品成人在线| 高清在线视频一区二区三区| 亚洲一级一片aⅴ在线观看| 国产不卡av网站在线观看| 久久韩国三级中文字幕| 久久久久久久久久久久大奶| 婷婷色av中文字幕| 国产一区亚洲一区在线观看| 亚洲成av片中文字幕在线观看 | 国产成人一区二区在线| 久久午夜福利片| 日韩av不卡免费在线播放| 免费看av在线观看网站| 久久久久视频综合| 日韩在线高清观看一区二区三区| 国产成人a∨麻豆精品| 亚洲av欧美aⅴ国产| 久久久久久久大尺度免费视频| 亚洲成国产人片在线观看| h视频一区二区三区| 日本爱情动作片www.在线观看| 日本-黄色视频高清免费观看| 久久精品久久久久久久性| 最近最新中文字幕免费大全7| 欧美老熟妇乱子伦牲交| 美国免费a级毛片| 国产极品天堂在线| 国产在线一区二区三区精| 激情五月婷婷亚洲| 久久久久久久久久久免费av| 一二三四在线观看免费中文在| 少妇人妻 视频| 在线观看免费视频网站a站| 久久 成人 亚洲| 永久免费av网站大全| 欧美日韩亚洲高清精品| 日本猛色少妇xxxxx猛交久久| 国产成人精品福利久久| 水蜜桃什么品种好| 精品一区二区三区四区五区乱码 | 激情视频va一区二区三区| 中国三级夫妇交换| 午夜福利,免费看| 久久国内精品自在自线图片| 亚洲天堂av无毛| 午夜影院在线不卡| 人人妻人人添人人爽欧美一区卜| 男女免费视频国产| 欧美 日韩 精品 国产| 国产亚洲欧美精品永久| 精品酒店卫生间| 最近2019中文字幕mv第一页| 亚洲欧洲国产日韩| 国产不卡av网站在线观看| 天天躁日日躁夜夜躁夜夜| 国产黄频视频在线观看| 亚洲第一av免费看| 国产成人免费无遮挡视频| 日韩一本色道免费dvd| 亚洲国产精品国产精品| 黑人欧美特级aaaaaa片| 男女免费视频国产| 熟妇人妻不卡中文字幕| 久久ye,这里只有精品| 国产av码专区亚洲av| 亚洲成人一二三区av| av网站在线播放免费| 五月开心婷婷网| 精品少妇一区二区三区视频日本电影 | av网站免费在线观看视频| 免费黄网站久久成人精品| www.熟女人妻精品国产| 香蕉丝袜av| 国产精品久久久久久久久免| 午夜久久久在线观看| 亚洲人成77777在线视频| 一区二区三区激情视频| 自拍欧美九色日韩亚洲蝌蚪91| 国产一区二区激情短视频 | 亚洲欧美成人综合另类久久久| 久久久欧美国产精品| 亚洲欧美清纯卡通| 欧美日韩精品成人综合77777| 人妻 亚洲 视频| 亚洲婷婷狠狠爱综合网| 欧美精品一区二区免费开放| 日韩电影二区| videossex国产| 国产黄频视频在线观看| 男人添女人高潮全过程视频| 精品少妇内射三级| 久久精品亚洲av国产电影网| 精品一区二区三卡| 久久午夜福利片| 午夜av观看不卡| 人妻 亚洲 视频| 春色校园在线视频观看| 最黄视频免费看| 国产成人午夜福利电影在线观看| 超碰成人久久| 亚洲欧美成人综合另类久久久| 尾随美女入室| 亚洲欧美中文字幕日韩二区| 亚洲综合色惰| 看免费成人av毛片| 少妇熟女欧美另类| 777米奇影视久久| 国产精品一区二区在线观看99| 免费看av在线观看网站| √禁漫天堂资源中文www| 亚洲成人av在线免费| 香蕉精品网在线| 国产人伦9x9x在线观看 | 超碰97精品在线观看| 多毛熟女@视频| 狠狠婷婷综合久久久久久88av| 欧美日韩亚洲高清精品|