• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Convolutional Bi-LSTM Based Human Gait Recognition Using Video Sequences

    2021-12-11 13:32:44JavariaAminMuhammadAlmasAnjumMuhammadSharifSeifedineKadryYunyoungNamandShuiHuaWang
    Computers Materials&Continua 2021年8期

    Javaria Amin,Muhammad Almas Anjum,Muhammad Sharif,Seifedine Kadry,Yunyoung Nam and ShuiHua Wang

    1University of Wah,Wah Cantt,47040,Pakistan

    2National University of Technology(NUTECH),Islamabad,44000,Pakistan

    3COMSATS University Islamabad,Wah Campus,Wah Cantt,Pakistan

    4Faculty of Applied Computing and Technology,Noroff University College,Kristiansand,Norway

    5Department of Computer Science and Engineering,Soonchunhyang University,Asan,31538,Korea

    6Department of Mathematics,University of Leicester,Leicester,UK

    Abstract:Recognition of human gait is a difficult assignment, particularly for unobtrusive surveillance in a video and human identification from a large distance.Therefore,a method is proposed for the classification and recognition of different types of human gait.The proposed approach is consisting of two phases.In phase I, the new model is proposed named convolutional bidirectional long short-term memory (Conv-BiLSTM)to classify the video frames of human gait.In this model, features are derived through convolutional neural network (CNN) named ResNet-18 and supplied as an input to the LSTM model that provided more distinguishable temporal information.In phase II, the YOLOv2-squeezeNet model is designed, where deep features are extricated using the fireconcat-02 layer and fed/passed to the tinyYOLOv2 model for recognized/localized the human gaits with predicted scores.The proposed method achieved up to 90%correct prediction scores on CASIA-A,CASIA-B,and the CASIA-C benchmark datasets.The proposed method achieved better/improved prediction scores as compared to the recent existing works.

    Keywords:Bi-LSTM; YOLOv2; open neural network; resNet-18; gait;squeezeNet

    1 Introduction

    Gait biometric represents a person walking styles and more powerful as compared to other biometrics [1] i.e., iris, palmprint, face, and fingerprint [2], etc.Therefore, it can be utilized for person identification from a long-distance [3].Human gait with different styles is illustrated in Fig.1.Gait recognition methodologies have attained more attention in the last two decades in realtime applications such as forensic identification, video surveillance, and crime investigation [4].In literature, some research works proposed improved feature vectors to discriminate the gait patterns based on the motion [5-7].The recognition of human body parts in motion is achieving more attention from researchers [8].However, it is a more challenging and difficult task to accurately track each part of the human body [9].The appearance-based gait recognition methodologies commonly utilized human silhouettes as input.

    Figure 1:Human gait with different actions at 90° (a) normal (b) human with a bag (c) human wearing a coat (d) woman (e) man

    These approaches might obtain maximum recognition scores when there is less variation in consecutive frames.When the variation increased in the consecutive frames, the performance of these algorithms decreased in real-time applications [10].

    The gait features are drastically changed in case of different variations i.e., illumination, view,clothing, and carrying [11].Model-based features are utilized to track the human body parts and movement [12-14].The main contribution of the presented approach is based on feature vectors that are extracted from LSTM and ResNet-18 model.The extracted feature vectors contain more prominent discriminative information to classify the different types of human gaits based on fully connected and softmax layers.Furthermore, in phase II classified images are recognized using a proposed modified YOLOv2-ONNX model, which consists of 20 layers that are configured by applying the open neural network (ONNX) model and SqueezeNet architecture as the basenetwork of the tinyYOLOv2 model.The best recognition results are achieved by extracting deep features using the fireconcat-02 layer to the squeezeNet architecture and further fed as an input to the YOLOv2 model.The proposed method accurately recognizes the different kinds of human gaits.

    2 Related Work

    Several machine learning approaches are used in the literature for human gait recognition(HGR) [15].For HGR, features play a vital role to extract the discriminant information.Modified Local Optimal Oriented Pattern (MLOOP) features are extracted for HGR, and selected best features from MLOOP features vector [16].The histogram oriented gradient (HOG) with Harlick features are combined for HGR and tested on the CASIA (A-B) datasets [17].The Gabor wavelet features are extracted from the input images in different orientations [18] for HGR.The method performance is computed on CASIA (A and B) datasets [19].The multi-scale LBP and Gabor features are extracted and selected the best features by spectra discriminant analysis-based regression method [20-22].Principle component analysis (PCA) along with gait energy image(GEI) feature vectors are utilized for human identification [23].However, it is difficult to recognize the variations in frames such as clothing, angle, and view [24].To improve the recognition results,the fusion of structural gait profile and the energy shifted image is performed [25].The deep features are extracted [26] using pre-trained AlexNet and VGG-19 and fused using skewness &entropy.The informative features are selected by the FEcS method for HGR.The method is evaluated on CASIA A, B, and C datasets [27].The gait flow image & Gaussian image features are extracted to create a features vector and fed to the extended neural network classifier for HGR [28,29].The stacked progressive work autoencoders (SPAE) model is employed for gait recognition at different angles and views, in which some temporal information is missing [30].GaitSet is applied for the extraction of invariant features for action recognition.The componentbased frequency features are extracted for the identification of human actions [31].The temporal features among the frame might obtain improved results as compared with the GEI [32].However,classifying the cross-clothing and cross-carrying conditions is still a difficult activity due to changes in human shape and appearance [33].Feng et al.[34] extracted the heat map from the joint of the human body in an RGB input image instead of utilizing a binary silhouette.The extracted heat maps are supplied further to the LSTM model for temporal feature extraction.Recently, the skeleton and joints of the body are also utilized for the recognition of person identification [35].It is observed that gait recognition with higher accuracy is still a challenging task [36].

    3 Proposed Methodology

    The proposed model contains two phases; robust feature extraction and classification is a challenging task for human gait recognition.Therefore, in phase I, the Conv-BiLSTM model is developed, in which deep features are extracted from the localized images using Resnet-18 and supplied to the LSTM network to classify the different types of human gaits.In phase II,input images are passed to the proposed YOLOv2-Squeeze model, which extracts deep from the fireconcat-02 layer of the squeeze-Net model and is supplied as an input to the tinyYOLOv2 model for localization/recognition of the different types of human gaits.The proposed model steps are displayed in Fig.2.

    Figure 2:General proposed approach steps

    3.1 Proposed Conv-BiLSTM Model for Classification of the Localized Images

    The video frames are classified using the proposed Conv-BiLSTM model, in which deep features are extracted from the input frames by the CNN model such as Resnet18.Next, the sequence structures are restored and output is reshaped into sequence vectors using the unfolding sequence layer.After that, resultant vector sequences are created using BiLSTM and output layers.Finally, assembled both networks into a single network.

    3.2 Convolutional Neural Network

    The convolutional layers extract the feature vectors from the localized images.These feature vectors are used as the input of the activations function on the last pooling layer of the Resnet18 model as shown in Fig.3.In the training phase, the model creates padding due to a large sequence of frames which has a negative impact on the accuracy of the gait classification.

    Figure 3:Feature vectors extraction using Resnet-18 model

    To overcome this problem, the classification results are improved by removing the sequences with more than 600-time steps with class labels.The bar length of the histogram represents the selected sequences in Fig.4.

    Figure 4:Visualization of the training data sequences

    3.3 Bidirectional Long Short-Term Memory(BiLSTM)Model

    The modified BiLSTM model is used for the classification of human gaits, in which LSTM layers are used for more efficient temporal feature learning.The selection of hyperparameters for model training is done after the extensive experiment as given in Tab.1.

    Table 1:Experiment for parameter selection for model training

    Tab.1, shows the experiment of the parameter’s selection, where 2000 hidden Units, 16 batch size is used for the further experiment because increase/decrease the HU obtained accuracy is decreased.The Hyperparameters of the BiLSTM model are stated in Tab.2.

    Table 2:Selected hyperparameters of BiLSTM

    The model specification is as:Sequence input (1024 dimensions), LSTM layers (2000 hidden units (HU)), 50% dropout, fully connected layers, softmax, and a classification layer.The activation functions of the proposed BiLSTM model are mentioned in Tab.3.

    Table 3:BiLSTM layers with corresponding activations

    The LSTM [37] cell has four gates, i.e., input, forget, output gate, and cell candidate.In the LSTM block, three weights are learnable, i.e., input f, recurrent weightsRW, and bias b.The matrices of the learnable weights are expressed mathematically as:

    The cell state ctat the time step (t) is written as:

    where ⊙denotes Hadamard product.The hidden state htis represented as:

    In the LSTM model, based on time steps, feature vectors are computed through LSTM layers and supplied to the next block.Thenth block output is used for the class label prediction, in which HU follows the fully connected, softmax, and the output layers.

    3.4 Concatenation of CNN and LSTM Models

    In the proposed model, LSTM layers are concatenated with CNN layers, in which frames are transformed into a sequence of vectors to classify the human gaits.Fig.5, shows the steps of the assembled network.

    Figure 5:Proposed Conv-BiLSTM model

    In Fig.5, input sequences are passed to the convolutional layers, where features are extracted by convolutional operators.The convolutional layers follow the sequence folding layer.The sequence unfolding layer is followed by the flatten layer in which the structure of the sequences is restored and output is reshaped into a vector.The gait classification is performed using the output of BiLSTM followed by fully connected and softmax layers.

    3.5 Localization of Human Gait UsingYOLOv2-SqueezeNet Model

    YOLOv2 is fast and effective as compared with recurrent neural network (RCNN) and SSD detectors.Therefore, in this research, YOLOv2-SqueezeNet model is suggested for different types of human gait localization such as female, male, fast walk, slow walk, walk with the bag, normal,and wearing as shown in Fig.6.

    Figure 6:YOLOv2-SqueezeNet model for localization

    Fig.6, shows proposed YOLOv2-SqueezeNet model, where features are extracted from fireconcat-02 layer of the SqueezeNet model and passed as an input to the pre-train YOLOv2 detector.The proposed model more accurately localized the required regions with class labels.

    The model consists of the 20 layers in which 01 input image, 04 convolutional, 04 ReLU, 01 depth concatenation, 01 max-pooling, of the squeezeNet model, and 02 YOLOv2 convolutional,02 YOLOv2 batch-normalization, 02 YOLOv2ReLU, 01 YOLOv2 transforms, and 01 YOLOv2-output of the YOLOv2 model.The activation functions of the YOLOv2-SqueezeNet model are shown in Tab.4.Tab.5, presents the training hyperparameters.

    Table 4:Layer wise activations of YOLOv2-SqueezeNet model

    Table 5:Hyperparameters of YOLOv2-SqueezeNet model

    Tab.5 presents the hyperparameters that are selected to configure the proposed model for human gait classification, in which mini-batch size is selected 14, 1000 epochs are used for model training because greater than equal to the 1000 epochs model results are consistent.

    4 Experimental Setup

    Gait recognition is a great challenge due to complex recognition patterns that have been utilized in different fields such as machine learning, robotics, studying, biomedical, visual surveillance,and forensic.Therefore, intelligent recognition and the digital security group designed CASIA(A, B & C) datasets in the national pattern recognition laboratory [38-44].

    The presented study is implemented on Matlab 2020RA Toolbox using a Core-i7 desktop Computer with a 740 K Nvidia Graphic Card.0.5 hold out validation is used for model training.The description of the number of training and testing images are mentioned in Tab.6.

    Table 6:Description of training and testing number images in the corresponding datasets

    4.1 Results and Discussion

    In the developed framework, implement two experiments for the analysis of the proposed approach performance.The first experiment is performed to compute the performance of the YOLOv2-ONNX model and the second experiment is performed for classification results.

    4.2 Experiment#01

    In this experiment, extracted feature vectors using the Conv-BiLSTM model are passed to the softmax layer for the classification of different types of human gaits such as female/male, bag,wearing, normal, and fast walk, slow walk, normal walk classes of the CASIA-A, CASIA-B and CASIA-C datasets respectively.Fig.7, represents the proposed approach performance.

    Figure 7:Training/testing results with respective loss rate (a) CASIA-A (b) CASIA-B (c) CASIA-C(blue line shows training, red shows loss rate, and dotted black line represent validation accuracy)

    In Fig.7, the proposed model achieved 1.00 validation accuracy (VA) on CASIA-A and CASIA-C datasets, while it achieved 0.96 VA on the CASIA-B dataset.

    The classification outcomes are stated in the Tabs.7-9.

    Tab.7, shows experimental results on CASIA-A dataset proposed method achieves 1.00 CPR on two classes of female/male.

    Table 7:Proposed method results for human gaits recognition on different datasets using CASIA-A dataset

    Tab.8, CASIA-B dataset is considered for performance evaluation, where three classes such as Bag, wearing, and normal are involved.The method achieved 0.92 CPR in bag class, 1.00 CPR on wearing, and 0.88 CPR in the normal class.

    Table 8:Proposed method results for human gaits recognition on different datasets using the CASIA-B dataset

    The evaluation results in Tab.9 shows that, the proposed method achieved 1.00 CPR on the classes of CASIA-C dataset.The outcomes in Tabs.7-9, depicts that the proposed model obtained a 1.00 correct recognition rate (CPR).The recognition outcomes on the CASIA-B dataset are 0.92 CPR on humans with the bag, 1.00 CPR on wearing class, and 0.88 CPR on a normal class.The predicted labels of human gait recognition are shown in Fig.8.The proposed approach comparison is mentioned in Tab.10.

    Table 9:Proposed method results for human gaits recognition on different datasets using the CASIA-C dataset

    Figure 8:Predicted labels on benchmark datasets

    Table 10:Proposed approach results compared with recent approaches

    Six recent states of the art approaches are considered for performance evaluation based on some benchmark datasets.In the comparison scenario, the experimental setup is also discussed for existing work with proposed work.Wang et al.[45] used an ensemble learning method for human gait classification on CASIA-A & CASIA-B datasets and achieved results are 0.95 and 0.92 CPR respectively.Wang et al.[46] utilized the LSTM model to learn the sequential patterns of the input images and achieved 0.95 CPR on the CASIA-B dataset.The results in Tab.11, are compared with the latest methodologies which show the proposed approach performance is superior.The proposed model results are better because of strongest feature vectors are obtained using the Conv-BiLSTM model for the classification of different types of human gaits with maximum CPR and also provided good results on a limited range of the input videos.

    Table 11:Localization results

    4.3 Experiment#02

    The proposed YOLOv2-ONNX model is validated on CASIA-A, CASIA-B, and CASIA-C in terms of mean average precision (mAP) as mentioned in Tab.11.The localization outcome according to the respective class labels is graphically depicted in Fig.9.Tab.11, shows the proposed approach obtained mAP of 1.00, 0.91, and 1.00 on different classes such as Bag, wearing,and normal of the CASIA-B dataset respectively.

    Figure 9:Localization results in term of mAP and IoU (a) CASIA-C (b) CASIA-B (c) CASIA-A(d) IoU

    On different classes of the CASIA-C dataset i.e., fast walk, slow walk, and normal walk achieved mAP is 1.00, 070, and 0.95 respectively, where on the CASIA-A dataset attained mAP is 1.00 and 0.822 on female and male classes respectively.The proposed method more precisely localizes the different types of human gaits as illustrated in Figs.10-12.

    Fig.10 shows, maximum achieved predicted scores of 0.979 on bag class, 0.986 on normal class, and 0.928 on wearing class.

    Figs.10-12 reveals that the suggested approach, the obtained higher predicted scores are 0.948 on the fast walk, 0.972 on female class, 0.955 on slow walk class, and 0.978 on male class.

    Figure 10:Gait localization (a, d and g) original gait images (b, e and h) gait labels (c, f and i)prediction scores

    Figure 11:Gait localization (a, d) original gait images (b, e) gait labels (c, f) prediction scores

    Figure 12:Gait localization (a, d) original gait images (b, e) gait labels (c, f) prediction scores

    5 Conclusions

    Due to differences in the multiple viewpoints of human gaits, the HGR is a difficult activity.Therefore, in this study tinyYOLOv2-SqueezeNet model is developed that more accurately localized the different types of human gaits.The proposed method achieved mAP of 1.00, 0.91, and 1.00 on Bag, wearing, and normal classes of CASIA-B dataset respectively.Whereas 1.00, 0.70,and 0.95 mAP on the fast walk, slow walk, and normal walk of CASIA-C dataset respectively.Similarly, 1.00 and 0.82 mAP on female and male classes of the CASIA-A dataset respectively.Furthermore, this research investigates a features extraction model based on Conv-BiLSTM that more accurately classifies human gaits.The experimentation is performed on CASIA-A, B, and C datasets.The model achieves 1.00 CPR to classify human with coat wearing.0.92 CPR on a human with bag class and 0.87 CPR in a normal class.The overall CPR including three classes (wearing, bag, and normal) achieved 0.91.The 1.00 CPR achieved on CASIA-A as well as CASIA-C datasets on all classes such as female, male, human with a slow walk, human with a fast walk, human with the bag.The computed results proved that a combination of CNN and BiLSTM provides the highest recognition rate as compared with individual CNN or the LSTM models.The proposed method performance is dependent on a selected number of features; however, some useful features may be ignored.Moreover, video sequences in a low-quality resolution that affect recognition accuracy.

    Funding Statement:This research was supported by the Korea Institute for Advancement of Technology (KIAT) Grant funded by the Korea Government (MOTIE) (P0012724, The Competency,Development Program for Industry Specialist) and the Soonchunhyang University Research Fund.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    99国产精品免费福利视频| 国产日韩一区二区三区精品不卡| 大香蕉97超碰在线| 亚洲美女搞黄在线观看| 伦精品一区二区三区| 国产成人精品久久久久久| 成人黄色视频免费在线看| 久久久国产一区二区| 国产在视频线精品| 99久久人妻综合| 亚洲成av片中文字幕在线观看 | 亚洲人成77777在线视频| 如日韩欧美国产精品一区二区三区| 久久人人爽人人爽人人片va| 国产 精品1| 一级爰片在线观看| 免费观看在线日韩| 日日撸夜夜添| 又黄又粗又硬又大视频| 亚洲国产精品999| 亚洲一码二码三码区别大吗| 免费久久久久久久精品成人欧美视频 | 麻豆乱淫一区二区| 日韩电影二区| 日韩av不卡免费在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 国产免费一区二区三区四区乱码| 日韩一区二区三区影片| 亚洲精华国产精华液的使用体验| 久久99精品国语久久久| 国产精品女同一区二区软件| 久久99热6这里只有精品| 国产精品国产av在线观看| 日本黄大片高清| 一本—道久久a久久精品蜜桃钙片| 国产精品久久久久久av不卡| av黄色大香蕉| 久久久久久久久久人人人人人人| 亚洲av.av天堂| 亚洲国产最新在线播放| 欧美精品高潮呻吟av久久| 国产av精品麻豆| 亚洲欧洲国产日韩| 日韩欧美精品免费久久| 亚洲av在线观看美女高潮| 国产精品.久久久| 中文欧美无线码| 免费大片18禁| 中文字幕亚洲精品专区| 亚洲中文av在线| 日本午夜av视频| 黄色怎么调成土黄色| 国产69精品久久久久777片| 97超碰精品成人国产| 视频在线观看一区二区三区| 天堂8中文在线网| a级毛色黄片| kizo精华| 日韩中字成人| 9191精品国产免费久久| 国产又爽黄色视频| 亚洲激情五月婷婷啪啪| 国产高清国产精品国产三级| 欧美 日韩 精品 国产| 精品人妻熟女毛片av久久网站| 亚洲美女黄色视频免费看| 色视频在线一区二区三区| 婷婷色av中文字幕| 黄色一级大片看看| 免费不卡的大黄色大毛片视频在线观看| 最后的刺客免费高清国语| 精品人妻一区二区三区麻豆| 亚洲av欧美aⅴ国产| 极品人妻少妇av视频| 男女边吃奶边做爰视频| 国产 精品1| 国产午夜精品一二区理论片| 国产 一区精品| 日韩成人av中文字幕在线观看| 欧美 日韩 精品 国产| av有码第一页| 亚洲国产av影院在线观看| 欧美日韩国产mv在线观看视频| 伊人久久国产一区二区| 在线看a的网站| 久久久国产一区二区| 熟女人妻精品中文字幕| 捣出白浆h1v1| 精品人妻偷拍中文字幕| 色视频在线一区二区三区| 晚上一个人看的免费电影| 黄色配什么色好看| 亚洲欧美成人综合另类久久久| 亚洲高清免费不卡视频| 亚洲国产看品久久| av在线观看视频网站免费| 国产精品女同一区二区软件| 高清在线视频一区二区三区| 狠狠婷婷综合久久久久久88av| 国产一区亚洲一区在线观看| 麻豆乱淫一区二区| 亚洲av电影在线进入| 亚洲综合色惰| 51国产日韩欧美| 亚洲性久久影院| 最黄视频免费看| 美女福利国产在线| 日韩电影二区| 国产一区二区在线观看日韩| 99久久精品国产国产毛片| 国产又爽黄色视频| 超色免费av| av在线播放精品| 亚洲av在线观看美女高潮| av.在线天堂| 午夜久久久在线观看| 51国产日韩欧美| 国产成人一区二区在线| 极品人妻少妇av视频| 国产精品熟女久久久久浪| 午夜福利乱码中文字幕| 99热国产这里只有精品6| 18禁在线无遮挡免费观看视频| 在线观看人妻少妇| 男女边摸边吃奶| 人人澡人人妻人| 亚洲国产成人一精品久久久| 在线天堂最新版资源| 啦啦啦在线观看免费高清www| 国产成人aa在线观看| 亚洲性久久影院| 搡女人真爽免费视频火全软件| 日韩欧美精品免费久久| 男女无遮挡免费网站观看| 亚洲一区二区三区欧美精品| 视频中文字幕在线观看| 老女人水多毛片| 亚洲一码二码三码区别大吗| av在线播放精品| 国产亚洲精品第一综合不卡 | 亚洲精品成人av观看孕妇| 欧美老熟妇乱子伦牲交| 日日撸夜夜添| 亚洲成人一二三区av| 亚洲经典国产精华液单| 日韩av免费高清视频| 久久精品久久久久久久性| 女性生殖器流出的白浆| 男女边吃奶边做爰视频| 久热久热在线精品观看| 肉色欧美久久久久久久蜜桃| 久久午夜综合久久蜜桃| 高清在线视频一区二区三区| 亚洲精品,欧美精品| 黄色毛片三级朝国网站| 欧美国产精品va在线观看不卡| 日本欧美视频一区| 18在线观看网站| 国产av国产精品国产| av黄色大香蕉| 如日韩欧美国产精品一区二区三区| 丝袜美足系列| 久久毛片免费看一区二区三区| 哪个播放器可以免费观看大片| 亚洲色图综合在线观看| 在线观看免费视频网站a站| 国产精品偷伦视频观看了| 少妇猛男粗大的猛烈进出视频| 欧美精品高潮呻吟av久久| 国产极品天堂在线| 春色校园在线视频观看| 欧美+日韩+精品| 极品人妻少妇av视频| 亚洲av免费高清在线观看| 久久精品aⅴ一区二区三区四区 | 日本黄大片高清| 97在线视频观看| 久久99热6这里只有精品| av有码第一页| 国产精品三级大全| 亚洲美女搞黄在线观看| 成人毛片60女人毛片免费| 午夜久久久在线观看| 免费看av在线观看网站| 久久国产精品大桥未久av| 国产成人91sexporn| 美女福利国产在线| 2021少妇久久久久久久久久久| 少妇人妻 视频| 亚洲av电影在线观看一区二区三区| 国产精品久久久久久久久免| 人体艺术视频欧美日本| 一级a做视频免费观看| 国产精品一二三区在线看| videosex国产| 国产欧美另类精品又又久久亚洲欧美| 午夜激情av网站| 欧美+日韩+精品| av片东京热男人的天堂| 男人爽女人下面视频在线观看| 国产毛片在线视频| 成人国产麻豆网| 欧美 亚洲 国产 日韩一| 欧美变态另类bdsm刘玥| av免费观看日本| 亚洲综合精品二区| 国产又色又爽无遮挡免| 美女主播在线视频| 亚洲欧美清纯卡通| 男人添女人高潮全过程视频| 亚洲成人av在线免费| 草草在线视频免费看| 免费大片18禁| 韩国精品一区二区三区 | 久久人人爽人人爽人人片va| 久久午夜福利片| 精品人妻在线不人妻| 一级片免费观看大全| 九色成人免费人妻av| a级毛片黄视频| 天天影视国产精品| 免费观看在线日韩| 国产男人的电影天堂91| 9热在线视频观看99| 捣出白浆h1v1| 免费不卡的大黄色大毛片视频在线观看| 9191精品国产免费久久| 国产精品嫩草影院av在线观看| 亚洲三级黄色毛片| 成年美女黄网站色视频大全免费| 桃花免费在线播放| 国产精品嫩草影院av在线观看| 一区二区日韩欧美中文字幕 | 啦啦啦在线观看免费高清www| 成年人午夜在线观看视频| 国产淫语在线视频| 日本色播在线视频| 午夜91福利影院| 香蕉精品网在线| 精品国产露脸久久av麻豆| 成人国产av品久久久| 亚洲欧美精品自产自拍| 大码成人一级视频| 天堂俺去俺来也www色官网| 亚洲中文av在线| 亚洲伊人久久精品综合| 嫩草影院入口| 国产无遮挡羞羞视频在线观看| 亚洲成av片中文字幕在线观看 | 97超碰精品成人国产| 两性夫妻黄色片 | 精品人妻在线不人妻| 亚洲激情五月婷婷啪啪| 久久久国产一区二区| 免费日韩欧美在线观看| 99久久人妻综合| 国产精品一区二区在线观看99| 中文字幕人妻熟女乱码| av在线播放精品| 亚洲精品国产av蜜桃| 亚洲性久久影院| 一区二区三区精品91| 两个人看的免费小视频| 国产老妇伦熟女老妇高清| 国产xxxxx性猛交| 精品国产一区二区三区久久久樱花| 日韩不卡一区二区三区视频在线| 久久精品久久精品一区二区三区| 超碰97精品在线观看| 80岁老熟妇乱子伦牲交| 插逼视频在线观看| 亚洲色图 男人天堂 中文字幕 | 亚洲情色 制服丝袜| 一级黄片播放器| 国产色婷婷99| 亚洲欧美精品自产自拍| 免费在线观看黄色视频的| 亚洲精品国产色婷婷电影| 精品一区二区三区视频在线| 亚洲精品国产av蜜桃| 亚洲国产日韩一区二区| 亚洲欧美一区二区三区黑人 | 欧美xxⅹ黑人| 亚洲美女视频黄频| 在线观看免费高清a一片| 三上悠亚av全集在线观看| 国产精品不卡视频一区二区| 免费女性裸体啪啪无遮挡网站| av福利片在线| 久久99热这里只频精品6学生| 国产精品一二三区在线看| 国产毛片在线视频| 黄片无遮挡物在线观看| 视频中文字幕在线观看| 黄色视频在线播放观看不卡| 高清毛片免费看| 日本黄色日本黄色录像| 亚洲精品视频女| 欧美精品av麻豆av| 国产精品久久久久久精品电影小说| 精品一品国产午夜福利视频| 纵有疾风起免费观看全集完整版| 亚洲综合色惰| 久久韩国三级中文字幕| 欧美成人精品欧美一级黄| 国产一区二区激情短视频 | 99久久精品国产国产毛片| 天天躁夜夜躁狠狠躁躁| 国产欧美亚洲国产| 菩萨蛮人人尽说江南好唐韦庄| 久久精品国产综合久久久 | 色婷婷av一区二区三区视频| 9191精品国产免费久久| 欧美精品高潮呻吟av久久| 边亲边吃奶的免费视频| 国产成人精品婷婷| 下体分泌物呈黄色| 80岁老熟妇乱子伦牲交| 这个男人来自地球电影免费观看 | 久久毛片免费看一区二区三区| 欧美精品人与动牲交sv欧美| 激情五月婷婷亚洲| 99热这里只有是精品在线观看| 少妇被粗大的猛进出69影院 | 男女国产视频网站| a级毛色黄片| 欧美激情极品国产一区二区三区 | 一级黄片播放器| kizo精华| 亚洲天堂av无毛| 精品国产国语对白av| 十八禁高潮呻吟视频| 亚洲中文av在线| 亚洲综合色惰| 日韩免费高清中文字幕av| 精品亚洲成国产av| 国产精品久久久久久久电影| av免费在线看不卡| 丰满少妇做爰视频| 国产乱人偷精品视频| 99视频精品全部免费 在线| 少妇的丰满在线观看| 国产黄色视频一区二区在线观看| 97人妻天天添夜夜摸| 久久狼人影院| 22中文网久久字幕| 美女xxoo啪啪120秒动态图| 免费看av在线观看网站| 免费av不卡在线播放| 免费观看a级毛片全部| 狂野欧美激情性xxxx在线观看| 国产69精品久久久久777片| 欧美激情国产日韩精品一区| 看非洲黑人一级黄片| 9191精品国产免费久久| 日韩视频在线欧美| av国产精品久久久久影院| 久久97久久精品| av在线app专区| 亚洲av欧美aⅴ国产| 成人18禁高潮啪啪吃奶动态图| 另类精品久久| 九草在线视频观看| 日韩精品有码人妻一区| 性色avwww在线观看| 少妇精品久久久久久久| 欧美精品人与动牲交sv欧美| 欧美日韩视频高清一区二区三区二| 妹子高潮喷水视频| 欧美激情极品国产一区二区三区 | 一二三四中文在线观看免费高清| 高清在线视频一区二区三区| 免费观看在线日韩| 一级a做视频免费观看| 亚洲欧美日韩另类电影网站| 在线精品无人区一区二区三| 91aial.com中文字幕在线观看| 啦啦啦中文免费视频观看日本| 三上悠亚av全集在线观看| 亚洲成人av在线免费| 又粗又硬又长又爽又黄的视频| 人妻系列 视频| 女人久久www免费人成看片| 视频区图区小说| 性色avwww在线观看| 午夜影院在线不卡| 中文天堂在线官网| 人人澡人人妻人| 18禁观看日本| 日本免费在线观看一区| 午夜久久久在线观看| 国产精品国产三级国产专区5o| 人妻一区二区av| 欧美日韩视频精品一区| 亚洲高清免费不卡视频| 日本91视频免费播放| 中文天堂在线官网| 日日爽夜夜爽网站| 一个人免费看片子| 亚洲激情五月婷婷啪啪| 亚洲国产精品一区三区| 一二三四在线观看免费中文在 | 久久女婷五月综合色啪小说| 日本猛色少妇xxxxx猛交久久| 久久精品久久久久久久性| 精品国产露脸久久av麻豆| 午夜久久久在线观看| 久久久精品区二区三区| 精品人妻熟女毛片av久久网站| 国产极品粉嫩免费观看在线| 五月天丁香电影| 日韩成人伦理影院| 精品国产乱码久久久久久小说| 热99国产精品久久久久久7| 在线天堂中文资源库| 建设人人有责人人尽责人人享有的| 51国产日韩欧美| 国产探花极品一区二区| 亚洲国产精品专区欧美| 久久久久网色| 在线天堂中文资源库| 欧美精品国产亚洲| 婷婷成人精品国产| 永久免费av网站大全| 国产精品女同一区二区软件| 伊人久久国产一区二区| 中文字幕人妻熟女乱码| 久久人人爽人人片av| 最近最新中文字幕大全免费视频 | 欧美xxxx性猛交bbbb| 久久精品人人爽人人爽视色| 一级毛片 在线播放| 国产精品国产三级国产专区5o| 亚洲人成77777在线视频| 久久人人爽人人爽人人片va| 久久人人97超碰香蕉20202| 免费观看a级毛片全部| 日韩一区二区三区影片| 精品人妻偷拍中文字幕| a级毛片黄视频| 欧美xxⅹ黑人| 一本大道久久a久久精品| 免费av不卡在线播放| 久久韩国三级中文字幕| 大香蕉久久网| 久久青草综合色| 91成人精品电影| 国产成人一区二区在线| √禁漫天堂资源中文www| 欧美97在线视频| 精品午夜福利在线看| 亚洲国产毛片av蜜桃av| 国产国语露脸激情在线看| 天堂俺去俺来也www色官网| 亚洲av中文av极速乱| 国产精品久久久久成人av| 国产熟女欧美一区二区| 一二三四中文在线观看免费高清| 亚洲,欧美,日韩| 制服人妻中文乱码| 18+在线观看网站| 黑人猛操日本美女一级片| 男女无遮挡免费网站观看| 中文精品一卡2卡3卡4更新| 免费黄频网站在线观看国产| 五月玫瑰六月丁香| 在线观看国产h片| 日韩电影二区| 亚洲国产av新网站| 伊人久久国产一区二区| 最新中文字幕久久久久| 美女视频免费永久观看网站| 男女边摸边吃奶| 最近2019中文字幕mv第一页| 男的添女的下面高潮视频| 熟女人妻精品中文字幕| 男女边摸边吃奶| 建设人人有责人人尽责人人享有的| 成人手机av| 建设人人有责人人尽责人人享有的| 国产极品天堂在线| 51国产日韩欧美| 亚洲精品视频女| 久久精品夜色国产| 午夜福利网站1000一区二区三区| 咕卡用的链子| 九九在线视频观看精品| 久久99热这里只频精品6学生| 人人妻人人爽人人添夜夜欢视频| 久久综合国产亚洲精品| 一区二区日韩欧美中文字幕 | av天堂久久9| kizo精华| 免费不卡的大黄色大毛片视频在线观看| 韩国高清视频一区二区三区| 91aial.com中文字幕在线观看| 亚洲国产精品成人久久小说| 国产一区有黄有色的免费视频| 国产一区亚洲一区在线观看| 一个人免费看片子| 如日韩欧美国产精品一区二区三区| 韩国高清视频一区二区三区| 日本与韩国留学比较| 在线观看www视频免费| 国产极品天堂在线| 久久精品久久久久久久性| 69精品国产乱码久久久| 成年av动漫网址| 日韩制服骚丝袜av| 黑人巨大精品欧美一区二区蜜桃 | 国产成人欧美| 成人黄色视频免费在线看| 超碰97精品在线观看| 国产熟女午夜一区二区三区| 久久久久久久国产电影| 久久精品久久久久久噜噜老黄| 亚洲美女搞黄在线观看| 观看av在线不卡| 内地一区二区视频在线| 精品国产一区二区久久| 精品亚洲成a人片在线观看| 一级毛片 在线播放| 日本91视频免费播放| 在线观看三级黄色| 久热这里只有精品99| 伦理电影免费视频| 99re6热这里在线精品视频| 久久国产亚洲av麻豆专区| 90打野战视频偷拍视频| 婷婷色综合www| 成人毛片a级毛片在线播放| 在线 av 中文字幕| 制服丝袜香蕉在线| 侵犯人妻中文字幕一二三四区| 免费久久久久久久精品成人欧美视频 | 欧美3d第一页| 日本午夜av视频| 韩国精品一区二区三区 | 极品少妇高潮喷水抽搐| 18禁裸乳无遮挡动漫免费视频| 久久狼人影院| 97在线视频观看| 亚洲精品一二三| 日本爱情动作片www.在线观看| 少妇高潮的动态图| 久久精品国产综合久久久 | 亚洲欧美清纯卡通| 日本-黄色视频高清免费观看| 亚洲国产色片| 超色免费av| 国产一级毛片在线| 日本午夜av视频| 男人舔女人的私密视频| av片东京热男人的天堂| 免费人成在线观看视频色| 丰满迷人的少妇在线观看| 久久精品人人爽人人爽视色| 在现免费观看毛片| 亚洲av国产av综合av卡| 久久久久久久国产电影| 亚洲一级一片aⅴ在线观看| 国产色婷婷99| 两个人看的免费小视频| 久久久精品免费免费高清| 久久综合国产亚洲精品| 国产免费现黄频在线看| 久久国内精品自在自线图片| 亚洲精品aⅴ在线观看| 另类精品久久| av片东京热男人的天堂| 亚洲国产看品久久| 黑人欧美特级aaaaaa片| 精品酒店卫生间| 国内精品宾馆在线| 欧美日韩成人在线一区二区| 三上悠亚av全集在线观看| 精品久久蜜臀av无| 久久毛片免费看一区二区三区| 日韩成人av中文字幕在线观看| 九九在线视频观看精品| 狂野欧美激情性bbbbbb| 午夜av观看不卡| 日韩制服丝袜自拍偷拍| 精品午夜福利在线看| a级片在线免费高清观看视频| 男女高潮啪啪啪动态图| 九草在线视频观看| 久久国内精品自在自线图片| 男女边摸边吃奶| 久热久热在线精品观看| 成人国语在线视频| 国产av一区二区精品久久| 9色porny在线观看| 国产在线免费精品| av电影中文网址| 日韩一本色道免费dvd| 女人被躁到高潮嗷嗷叫费观| 精品久久久久久电影网| 在线观看免费视频网站a站| 亚洲色图综合在线观看| 亚洲欧美精品自产自拍| 三级国产精品片| 免费播放大片免费观看视频在线观看| tube8黄色片| 9色porny在线观看| 大陆偷拍与自拍| a 毛片基地| 69精品国产乱码久久久| 国产亚洲精品第一综合不卡 | 一级爰片在线观看| 成人影院久久| 黄色配什么色好看| 色婷婷久久久亚洲欧美| 91aial.com中文字幕在线观看| 亚洲少妇的诱惑av|