• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Data-Semantic-Conflict-Based Multi-Truth Discovery Algorithm for a Programming Site

    2021-12-11 13:32:42HaitaoXuHaiwangZhangQianqianLiTaoQinandZhenZhang
    Computers Materials&Continua 2021年8期

    Haitao Xu,Haiwang Zhang,Qianqian Li,Tao Qinand Zhen Zhang

    1University of Science and Technology Beijing,Beijing,100083,China

    2National Computer Network Emergency Response Technical Team/Coordination Center of China,Beijing,100000,China

    3Audio Analytic,2 Quayside,Cambridge,UK

    Abstract:With the extensive application of software collaborative development technology, the processing of code data generated in programming scenes has become a research hotspot.In the collaborative programming process,different users can submit code in a distributed way.The consistency of code grammar can be achieved by syntax constraints.However,when different users work on the same code in semantic development programming practices,the development factors of different users will inevitably lead to the problem of data semantic conflict.In this paper,the characteristics of code segment data in a programming scene are considered.The code sequence can be obtained by disassembling the code segment using lexical analysis technology.Combined with a traditional solution of a data conflict problem,the code sequence can be taken as the declared value object in the data conflict resolution problem.Through the similarity analysis of code sequence objects, the concept of the deviation degree between the declared value object and the truth value object is proposed.A multi-truth discovery algorithm, called the multiple truth discovery algorithm based on deviation(MTDD),is proposed.The basic methods,such as Conflict Resolution on Heterogeneous Data,Voting-K,and MTRuths_Greedy,are compared to verify the performance and precision of the proposed MTDD algorithm.

    Keywords: Data semantic conflict; multi-truth discovery; programming site

    1 Introduction

    With the increase in complexity and scale in software development, a conflict between high demand and low efficiency arises.The application of real-time collaborative programming technology and various collaborative programming technologies can enable multiple users to develop and upload software based on their respective collaborative sites [1], which greatly improves the efficiency of software development.However, the programming habits and design ideas of different users are inconsistent, which will inevitably lead to conflicts in data syntax and semantics at a programming site [2-4].How to find the best code from the conflicting code has become an urgent need for real-time collaborative programming technology.The problem can be called the “truth discovery problem” in the programming scene.

    In this paper, the data semantic conflict problem of multiple users in the programming scene in the function realization of the same code segment is mainly studied.Fig.1 is taken as an example, in which the implementation of the stacking function in the data structure, in the case of standardized naming of variables, methods, and interfaces in the program, is considered.The program segments submitted by different users have certain differences in code standardization,code robustness, and functional realization, which can be manifested in different recurrences of the functional core code, such as the top pointer self-increment operation in this scenario.The program segments submitted by different users are very different.Based on this, it should be weighed, and the excellent programmers are chosen to submit the high-quality program segment as the standard result.Therefore, the research works focusing on this problem can be considered to be those obtaining high-quality core function codes through truth discovery technology.One must first divide the program segments through lexical analysis technology to obtain the code sequences.Then, the code is treated as an object, and the sequence of the code segment is the object with multiple possible sets of truth values, based on the truth value discovery algorithm.Finally, the truth value discovery results in the problem are determined as a set of high-quality core code sequences.

    Figure 1:Code semantic conflict scenarios in a programming scene

    Recently, numerous research works have appeared that are focused on the truth discovery technology of the data cleaning field in both industry and academia [5-9].Yin et al.[5] proposed the concept of truth discovery when considering the quality of joint data sources and the object truth value.Dong et al.[6] considered the copy relationships between data sources and proposed a Bayesian method for determining the dependence relationship.Kao et al.[7] considered the authoritative factors of the data source and the reliability of the joint data source.Then, the accuracy of the data source was optimized by using different probability voting methods.Galland et al.[8] considered the difficulty of object judgment and optimized the definition of the data source credibility.Blanco et al.[9] optimized the quality evaluation problem considering the weight of the data source.Zhao et al.[10] proposed the multi-truth discovery problem, which was based on the probability graph model combining the quality of the data source and the credibility of the declared value, to construct an optimization problem model.Regarding the multi-truth discovery problem, Wang et al.[11] considered the mapping relationships between the data source and value set to construct a multi-truth discovery problem model.Ma et al.[12] proposed an optimization model and a greedy algorithm.Among the above truth discovery algorithms, the calculation models proposed in [5-9] are all aimed at the single truth model and are not suitable for multiple truth discovery problems.In the field of multi-truth discovery research, the algorithm proposed in [10] was based on the assumption that the dataset obeys the beta distribution, and the multiple truth value discovery algorithm was proposed based on optimization.Although the MTRuths algorithm in [12] was proposed to deal with the multi-truth discovery problem based on optimization, the problem model must consider the support between the declared values [13-15].

    In conclusion, most of the existing research works are not suitable for the problem of data conflict problems in the programming field.The current research on the multi-truth discovery technology only considers the reliability of the data source and that of the declared value, in which the factor of the support of the declared value is not considered.In fact, different users have different code ages, and the quality of the submitted code is hierarchical.In addition, the programming habits of different users would also lead to differences in code length and fragments.Therefore, the support of the declared value is a factor that cannot be ignored in the multi-truth discovery.In this paper, an attempt is made to solve the problem of multi-truth discovery in a programming scene considering the support of the declared value.The main contributions of this paper are the following.

    (1) The characteristics of multi-source code data are combined to construct a multi-truth discovery problem model, and the corresponding optimization problems are proposed.

    (2) The deviation degree between the claims based on the support of the claim and the quality of the data source is defined, and the convergence rate of the function is optimized.

    The rest of this paper is organized as follows.In Section 2, the multi-truth discovery problems are proposed.Experiments and results are presented in Section 3.Conclusions are presented in Section 4.

    2 Multi-Truth Discovery

    2.1 Notions and Notations

    First, the relevant definitions involved in the multi-truth discovery problem are defined.

    Definition 1:Claim.The description value of a certain entity attribute from different data sources.

    Definition 2:Data source quality.The authority of the data source; the higher the quality of the data source, the closer the claim is to the truth.

    Definition 3:Claim deviation.A measure of the degree of deviation between the claim and the truth.

    Definition 4:Claim support.When one claim is true, the probability that the other claim is true.

    Definition 5:Multi-truth discovery.A process of finding multiple truth sets of entity objects from datasets provided by multiple data sources.

    All notations used in this paper are listed in Tab.1.

    Table 1:Notation

    2.2 Problem Definition

    The problem of multi-truth discovery through the definition of the multi-truth situation can be formulated as follows:

    The objective function is the weighted sum of the deviation between the declared value of the data source and the standard true value.When the deviation between the obtained true value and standard value of the conflicting dataset reaches the minimum, the obtained truth vector is closest to the standard true value.

    In the process of truth discovery, it is generally assumed that if the quality of the data source is high, the probability that the provided claim is true would be high [16].Then, the quality of the data source providing the claim would be high.In fact, under normal circumstances, the claims provided by multiple data sources are as close as possible to the truth.Based on the existing Conflict Resolution on Heterogeneous Data (CRH) algorithm, the support between heterogeneous claims in the multi-truth problem is considered, and the weighted sum of the deviation of the claims is minimized to find the truth of the entity description.

    2.2.1 Data Source Quality

    If the similarity distance between the claim of the object provided by a data source and the truth is high, the quality of the data source would be low.Otherwise, one can have a higher quality of the data source.The following formula is used to calculate the data source quality:

    It can be found that the weight of the data source is inversely proportional to the distance between the claim and the truth, the value of which can be calculated by the above logarithmic function.

    2.2.2 Deviation

    (a) Loss function

    In the multi-truth discovery problem for a programming site, first, the data characteristics of the code block are considered, and then the loss function is determined.The declaration values of the data source are collected, and the difference in the length of the declaration values provided by different data sources is considered.A formula is then defined to calculate the offset distance as follows:

    (b) Claim support

    In the process of collaborative programming, the code data submitted by different users are different in code quantity and quality.Then, it is necessary to use the asymmetric support calculation method to calculate the support of the declaration value in the multi-truth case, as given in the following equation:

    (c) Claim deviation

    In the collaborative programming environment, it is necessary to combine the claim support and loss function to calculate the deviation, and the formula is given as follows:

    2.3 Multi-Truth Discovery

    Assuming that the concept of high cohesion and low coupling is strictly followed in the process of software collaborative programming, the different code segments are independent of each other.Then, the objective function corresponding to each object can be converted as follows:

    In the multi-truth discovery problem, the quality of the data source is determined by the deviation of the claim provided by it.The degree of support between the claims in the definition of the degree of deviation is fixed.Then, the key to solve the optimization model is to refer to the truth.In this paper, the strategy of reference truth selection is based on the enumeration method.When the possible set of objects exceeds a certain threshold, the enumeration method will not meet the needs of real-time truth discovery.Therefore, in the iterative process, the declared value that minimizes the value is selected as the reference true value for subsequent iterations.

    Algorithm 1:Multiple truth discovery algorithm based on deviation (MTDD)Input: A=An,mN M n=1 m=1, S={Sn}Nn=1, P={Pm}Mm=1.Output:Set of object truth T={Tm}Mm=1.1.Initializes the data source quality Wn(0),n=1,2,...,N;2.For each An,m do 3.To calculate supAn,m,Ai,maccording to formula (4);4.end for 5.do 6.Obtain a possible set of truth values through the greedy algorithm;7.for each Pm do 8.for each An,m do 9.To calculate φ An,maccording to formula (5);10.end for 11.To calculate ψ(m) according to formula (6);12.end for 13.Returns the claim that minimizes ψ(m) as Tm 14.end if 15.For each Sn ∈S do 16.To calculate wn according to formula (2);17.end for 18.until Convergence 19.return T={Tm}Mm=1

    3 Experiments

    In this section, the proposed method is compared with the existing multi-truth methods from the following three aspects [17].

    ? Precision:Ratio of the truth set returned by the algorithm to the standard set:

    ? Recall rate:Ratio of correct truth values in the standard set to truth values returned by the algorithm:

    ? F-score:Harmonic average of the precision and recall rate:

    whereTis the standard truth value set andtis the predicted truth value set.

    3.1 Experimental Setup

    3.1.1 Baselines

    ? Voting-K:For the multi-truth case, Voting-K selects the declared value as the true value when the voting proportion exceeds the K value.

    ? CRH:For the multi-truth case, the CRH algorithm is an algorithm based on the probability distribution.

    ? MTRuths_Greedy:The MTRuths algorithm is a truth discovery algorithm calculated through greedy.

    ? MTDD:A multi-truth discovery based on the deviation degree; see Section 2 for details.

    3.1.2 Datasets

    BOOK:Taking the data characteristics in the programming site into account, the BOOK dataset [2] is used as the experimental dataset.In the BOOK dataset, each object contains the book title, ISBN, author list, and data source.After cleaning the dataset, a dataset containing 877 book websites, 1,254 books, and 24,221 author name records is obtained.Each author is used as a declared value object, and the author name record is used as a multi-truth set.The truth set provided in the literature is used as the standard set, with the cleaned book author dataset as the test set.

    MOVIE:The collected data of 2,000 movies are used as a dataset, sourced from 10 different video sites, including Tencent Video, iQiyi Video, and Douban.the MOVIE dataset contains 23,968 different director names and 11,365 movie entities.The dataset is processed in the same way as the BOOK dataset, and the processed dataset is used as the test set, and 100 sample instances are randomly selected and labeled as the standard set.

    3.1.3 Environment

    All the experiments are implemented in an environment with a Intel?Core?i5-7300HQ CPU@2.50 GHz processor, with 12 GB of RAM running the Windows 10 operating system.All methods in this paper are implemented in Python, with Python 3.6 as the development environment and MySQL 5.6.42 as the database.

    3.2 Effectiveness

    3.2.1 Accuracy Assessment

    For the multi-truth problem, the corresponding adjustments are made to the baseline methods.For the Voting-K method, the threshold K is set, and all attribute values in which the voting proportion exceeds the K value are considered the true values.In this experiment, the precision,recall rate, and F1-score of Voting-K, MTRuths_Greedy, CRH, and MTDD are compared for the virtual dataset.The analysis results are shown in Tab.2.

    Fig.2 shows that the Voting algorithm judges the true value according to the proportion of data sources, which provide the declared value of the object.As K increases, its accuracy rate increases and the recall rate decreases.The CRH and MTRuths_Greedy algorithms have better F1 scores.Among them, the CRH algorithm solves the multi-truth problem based on the probability distribution of the declared value, which is greatly affected by the distribution of the declared value in the dataset.The MTRuths_Greedy algorithm uses a weighted voting method to calculate the probability of the initial declared value and solves the optimal truth set by the greedy algorithm.However, it is easy for the results to fall into the local optimum, which would cause the algorithm to terminate prematurely and obtain incomplete results.Different from these methods, the proposed MTDD algorithm considers the long-tail characteristics of conflicting data in a multi-source environment, uses an asymmetric distance measurement function, and introduces support between declared values to define deviation variables.The proposed algorithm is not easily affected by the local optima.The misleading of low-quality data sources has a high accuracy and recall rate.

    Table 2:Accuracy for the BOOK dataset

    Figure 2:Accuracy for the BOOK and MOVIE datasets

    3.2.2 Efficiency Evaluation

    The algorithm time of the Voting-50%, MTRuths_Greedy, CRH, and MTDD algorithms was compared under the same dataset scale, as given in Tab.3.

    As shown in Fig.3, the Voting algorithm uses a voting mechanism to select the truth value,which does not require iteration and has the least time complexity.It can be seen that the runtime of the Voting algorithm is the shortest.MTRuths_Greedy uses the greedy algorithm for truth selection, with a lower time complexity and shorter runtime.The proposed MTDD algorithm adopts the enumeration method to select the true value, which has the highest time complexity and a relatively long runtime.

    The convergence conditions of the algorithms are the following:the quality vector cosine similarity of the data source is obtained from the second iteration, which is used to measure the change in the results of the second iteration.If the similarity is higher, the change would be smaller.When the change reaches a certain threshold, the iteration stops.

    Table 3:Runtime

    Figure 3:Runtime

    It can be seen from Fig.4 that the proposed MTDD algorithm converges quickly for both datasets; that is, the convergence condition can be satisfied after five iterations.

    Figure 4:Convergence rate of iterations

    4 Conclusions

    In the process of software online collaborative development, several challenges must be solved that are brought about by the large-scale code data of a programming site.The code data submitted by different users will have semantic inconsistencies; that is, data semantic conflicts.According to the data characteristics of the code segment, the problem is defined as a multi-truth discovery problem.The MTDD algorithm is then proposed to convert the multi-truth discovery problem into an optimization problem.The truth value set obtained should minimize the weighted deviation from different object sets.The support between different declared values and data is considered in the process of calculating the truth value.The optimal solution of the truth value is obtained through an optimized method.This method is slightly better than the existing multi-truth discovery methods in terms of accuracy and has good performance in convergence.

    Funding Statement:This work is supported by the National Key R&D Program of China (No.2018YFB1003905) and the National Natural Science Foundation of China under Grant (No.61971032), Fundamental Research Funds for the Central Universities (No.FRF-TP-18-008A3).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    在线观看免费日韩欧美大片| a级片在线免费高清观看视频| 97精品久久久久久久久久精品| 99九九在线精品视频| 9色porny在线观看| 精品一区二区三区av网在线观看 | 我的亚洲天堂| 狂野欧美激情性xxxx| av免费观看日本| 婷婷色麻豆天堂久久| 国产男女超爽视频在线观看| 在线精品无人区一区二区三| 国产成人系列免费观看| 纯流量卡能插随身wifi吗| 久久久久国产精品人妻一区二区| 欧美 亚洲 国产 日韩一| 久久青草综合色| av一本久久久久| 狂野欧美激情性xxxx| 免费不卡黄色视频| 免费不卡黄色视频| av免费观看日本| 青草久久国产| 男女边摸边吃奶| 久久精品国产亚洲av高清一级| videosex国产| 在线天堂中文资源库| 亚洲成av片中文字幕在线观看| 欧美激情 高清一区二区三区| 成年动漫av网址| 免费黄频网站在线观看国产| 国产日韩欧美亚洲二区| 亚洲av在线观看美女高潮| 晚上一个人看的免费电影| 麻豆精品久久久久久蜜桃| 99热全是精品| 成年人午夜在线观看视频| 老司机影院成人| 最近手机中文字幕大全| 99久久99久久久精品蜜桃| 卡戴珊不雅视频在线播放| 久久热在线av| 亚洲情色 制服丝袜| 亚洲精品国产一区二区精华液| 国产男人的电影天堂91| 日本猛色少妇xxxxx猛交久久| 最近最新中文字幕免费大全7| 中文字幕人妻熟女乱码| 大香蕉久久成人网| 男人操女人黄网站| 少妇被粗大猛烈的视频| 香蕉国产在线看| 91aial.com中文字幕在线观看| 色精品久久人妻99蜜桃| 亚洲精品视频女| 亚洲国产欧美一区二区综合| 男女免费视频国产| 男女边摸边吃奶| 青草久久国产| 国产极品粉嫩免费观看在线| 国产一区二区在线观看av| 亚洲av福利一区| 一本—道久久a久久精品蜜桃钙片| 国产97色在线日韩免费| 欧美日韩亚洲国产一区二区在线观看 | 久久国产精品大桥未久av| 大陆偷拍与自拍| 免费高清在线观看日韩| 国产熟女欧美一区二区| av.在线天堂| 精品免费久久久久久久清纯 | 亚洲欧美一区二区三区久久| 午夜免费鲁丝| 日韩成人av中文字幕在线观看| 久久青草综合色| 亚洲精品av麻豆狂野| 亚洲成人手机| 丰满少妇做爰视频| 9热在线视频观看99| 一二三四在线观看免费中文在| 老司机亚洲免费影院| 色婷婷久久久亚洲欧美| 色婷婷av一区二区三区视频| 欧美日韩一级在线毛片| 国产 一区精品| 91aial.com中文字幕在线观看| 精品久久久久久电影网| 少妇的丰满在线观看| 久久久国产一区二区| 亚洲欧洲日产国产| www.熟女人妻精品国产| av一本久久久久| 精品午夜福利在线看| 熟女少妇亚洲综合色aaa.| 自拍欧美九色日韩亚洲蝌蚪91| 国产亚洲最大av| 欧美久久黑人一区二区| xxxhd国产人妻xxx| 精品少妇内射三级| 丰满少妇做爰视频| 欧美日韩av久久| 蜜桃国产av成人99| 久久久久久人人人人人| 99久久人妻综合| 国产精品久久久av美女十八| 在线观看免费视频网站a站| 99re6热这里在线精品视频| 国产一区二区三区综合在线观看| 欧美日韩综合久久久久久| 波野结衣二区三区在线| 中文字幕另类日韩欧美亚洲嫩草| 老鸭窝网址在线观看| 别揉我奶头~嗯~啊~动态视频 | 国产乱人偷精品视频| 国产深夜福利视频在线观看| 人人妻,人人澡人人爽秒播 | 9191精品国产免费久久| 国产精品嫩草影院av在线观看| 久久久久网色| 日韩 亚洲 欧美在线| 亚洲精品在线美女| 自线自在国产av| 美女中出高潮动态图| 啦啦啦 在线观看视频| 精品国产乱码久久久久久男人| 国产成人精品久久二区二区91 | 欧美久久黑人一区二区| 好男人视频免费观看在线| 色播在线永久视频| 777久久人妻少妇嫩草av网站| 另类精品久久| 丝瓜视频免费看黄片| 午夜福利乱码中文字幕| 99re6热这里在线精品视频| 天天添夜夜摸| av在线观看视频网站免费| 亚洲美女视频黄频| 国产亚洲最大av| 丝袜美足系列| 最近的中文字幕免费完整| 热re99久久精品国产66热6| 亚洲成人免费av在线播放| 亚洲精品一二三| 免费高清在线观看日韩| 电影成人av| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲av成人精品一二三区| 免费久久久久久久精品成人欧美视频| 丰满迷人的少妇在线观看| 午夜福利视频精品| 老司机亚洲免费影院| 日韩中文字幕欧美一区二区 | 蜜桃国产av成人99| videos熟女内射| 国产一卡二卡三卡精品 | 欧美日韩福利视频一区二区| 七月丁香在线播放| svipshipincom国产片| 青青草视频在线视频观看| av不卡在线播放| 亚洲精品日本国产第一区| 国产精品一二三区在线看| 自线自在国产av| 成人午夜精彩视频在线观看| 免费高清在线观看日韩| 国产极品天堂在线| 美女主播在线视频| 啦啦啦在线观看免费高清www| 久久久久久久精品精品| 国产精品熟女久久久久浪| 自线自在国产av| 国产精品久久久人人做人人爽| 欧美激情极品国产一区二区三区| 天堂中文最新版在线下载| 国产精品偷伦视频观看了| 色综合欧美亚洲国产小说| 一二三四中文在线观看免费高清| 最近手机中文字幕大全| 亚洲精品在线美女| 日本欧美视频一区| 欧美黄色片欧美黄色片| videosex国产| 亚洲av国产av综合av卡| 亚洲成国产人片在线观看| 久久久久久久久免费视频了| 精品国产乱码久久久久久小说| 国产成人欧美在线观看 | 欧美最新免费一区二区三区| 亚洲国产av影院在线观看| 国产精品嫩草影院av在线观看| 免费高清在线观看视频在线观看| 国产欧美日韩综合在线一区二区| 国产精品欧美亚洲77777| 日日摸夜夜添夜夜爱| 青春草国产在线视频| 国产xxxxx性猛交| 人人妻人人澡人人爽人人夜夜| av免费观看日本| 欧美国产精品一级二级三级| netflix在线观看网站| 亚洲三区欧美一区| 国产免费又黄又爽又色| 国产精品一区二区在线观看99| 国产女主播在线喷水免费视频网站| 久久精品久久久久久噜噜老黄| 国产亚洲午夜精品一区二区久久| 中文字幕av电影在线播放| 亚洲五月色婷婷综合| 国产亚洲av片在线观看秒播厂| 国产探花极品一区二区| 十八禁人妻一区二区| 日韩中文字幕视频在线看片| 丁香六月欧美| 日韩 亚洲 欧美在线| 精品一区二区三卡| 久久国产精品大桥未久av| 亚洲色图 男人天堂 中文字幕| 熟女少妇亚洲综合色aaa.| 一本久久精品| 中文字幕制服av| 免费在线观看完整版高清| 亚洲精品视频女| 免费久久久久久久精品成人欧美视频| 亚洲精品日本国产第一区| 新久久久久国产一级毛片| 中文字幕人妻丝袜一区二区 | 免费日韩欧美在线观看| 女人被躁到高潮嗷嗷叫费观| 亚洲精品美女久久久久99蜜臀 | 日韩大码丰满熟妇| 久久久久视频综合| 午夜91福利影院| 亚洲av成人不卡在线观看播放网 | 国产免费一区二区三区四区乱码| 老汉色∧v一级毛片| 欧美激情 高清一区二区三区| 1024视频免费在线观看| 亚洲精品乱久久久久久| 王馨瑶露胸无遮挡在线观看| 丰满饥渴人妻一区二区三| h视频一区二区三区| 黑丝袜美女国产一区| 美女主播在线视频| 欧美久久黑人一区二区| 男人爽女人下面视频在线观看| 丝瓜视频免费看黄片| 国产成人一区二区在线| 国产精品 国内视频| 精品久久蜜臀av无| 丁香六月欧美| 亚洲av综合色区一区| 两个人免费观看高清视频| 久久人妻熟女aⅴ| 亚洲国产av影院在线观看| av国产精品久久久久影院| 亚洲三区欧美一区| 午夜免费观看性视频| 国产免费福利视频在线观看| 亚洲伊人久久精品综合| 国产高清国产精品国产三级| 国产精品熟女久久久久浪| 97在线人人人人妻| 久久精品国产亚洲av涩爱| 91国产中文字幕| 欧美日韩精品网址| 精品亚洲乱码少妇综合久久| 国产成人精品在线电影| 亚洲一卡2卡3卡4卡5卡精品中文| 久久热在线av| 亚洲欧美激情在线| 秋霞伦理黄片| 亚洲av日韩在线播放| 十分钟在线观看高清视频www| 卡戴珊不雅视频在线播放| 亚洲国产成人一精品久久久| 不卡视频在线观看欧美| 久久99精品国语久久久| 国产亚洲最大av| 成年人午夜在线观看视频| 亚洲少妇的诱惑av| 女性生殖器流出的白浆| 在线观看免费午夜福利视频| 日本爱情动作片www.在线观看| 国产精品久久久久久精品古装| 午夜福利乱码中文字幕| 亚洲第一区二区三区不卡| 99热网站在线观看| 午夜福利视频精品| 男人舔女人的私密视频| 亚洲人成77777在线视频| 人人妻人人澡人人看| 国产成人a∨麻豆精品| 极品少妇高潮喷水抽搐| 成人亚洲精品一区在线观看| 操美女的视频在线观看| 欧美在线黄色| 亚洲av电影在线进入| 桃花免费在线播放| 欧美日韩国产mv在线观看视频| 新久久久久国产一级毛片| 一级毛片黄色毛片免费观看视频| 亚洲精品乱久久久久久| 老司机深夜福利视频在线观看 | 各种免费的搞黄视频| av国产久精品久网站免费入址| 国产日韩欧美亚洲二区| 欧美激情高清一区二区三区 | 18禁观看日本| 黄色视频不卡| 精品一区二区三区四区五区乱码 | 国产成人免费观看mmmm| 国语对白做爰xxxⅹ性视频网站| 在线观看一区二区三区激情| 欧美最新免费一区二区三区| 十分钟在线观看高清视频www| 色婷婷久久久亚洲欧美| 久久精品熟女亚洲av麻豆精品| 久久免费观看电影| 精品第一国产精品| 丝袜在线中文字幕| 波野结衣二区三区在线| 成人国产av品久久久| 我的亚洲天堂| 欧美成人精品欧美一级黄| 亚洲精品美女久久av网站| 日韩精品有码人妻一区| 人妻人人澡人人爽人人| 亚洲国产看品久久| 母亲3免费完整高清在线观看| 国产日韩一区二区三区精品不卡| 韩国av在线不卡| 亚洲久久久国产精品| 性少妇av在线| 国产精品熟女久久久久浪| 在线观看免费视频网站a站| 1024视频免费在线观看| 欧美另类一区| 晚上一个人看的免费电影| 90打野战视频偷拍视频| 十分钟在线观看高清视频www| 下体分泌物呈黄色| 91精品三级在线观看| 一级毛片 在线播放| 日韩免费高清中文字幕av| 亚洲国产看品久久| 1024视频免费在线观看| 午夜免费鲁丝| 韩国精品一区二区三区| 夫妻性生交免费视频一级片| 狂野欧美激情性xxxx| 久久人人爽人人片av| 一本一本久久a久久精品综合妖精| 一区二区三区精品91| 国精品久久久久久国模美| 伊人久久国产一区二区| 国产有黄有色有爽视频| 国产成人欧美在线观看 | 亚洲精品自拍成人| 2018国产大陆天天弄谢| 亚洲欧美一区二区三区国产| 亚洲久久久国产精品| 人人妻人人澡人人看| 欧美人与性动交α欧美软件| 少妇被粗大的猛进出69影院| 真人一进一出gif抽搐免费| 丁香六月欧美| 99国产极品粉嫩在线观看| 亚洲黑人精品在线| 黄片播放在线免费| 老司机靠b影院| 最近最新中文字幕大全免费视频| 天堂影院成人在线观看| 日本免费一区二区三区高清不卡 | 看免费av毛片| 亚洲全国av大片| 免费观看人在逋| 高清在线国产一区| 91字幕亚洲| 国产高清有码在线观看视频 | 欧美精品亚洲一区二区| 他把我摸到了高潮在线观看| 亚洲人成电影免费在线| 欧美乱色亚洲激情| 久久天堂一区二区三区四区| 在线观看免费午夜福利视频| 老司机深夜福利视频在线观看| 午夜免费观看网址| 久99久视频精品免费| 国产免费男女视频| 国产欧美日韩一区二区三| 99精品久久久久人妻精品| 亚洲最大成人中文| 他把我摸到了高潮在线观看| 国产国语露脸激情在线看| 欧美精品啪啪一区二区三区| 亚洲男人天堂网一区| 精品无人区乱码1区二区| 激情在线观看视频在线高清| 88av欧美| 女人被狂操c到高潮| 国产视频一区二区在线看| 亚洲中文av在线| 人妻久久中文字幕网| 夜夜看夜夜爽夜夜摸| 黄色视频,在线免费观看| 最新美女视频免费是黄的| 久久久久亚洲av毛片大全| 亚洲精华国产精华精| 亚洲色图综合在线观看| 午夜福利欧美成人| 男人操女人黄网站| 一本大道久久a久久精品| 精品人妻在线不人妻| 精品欧美国产一区二区三| 久久精品亚洲精品国产色婷小说| 亚洲激情在线av| 亚洲成a人片在线一区二区| 精品一区二区三区视频在线观看免费| 亚洲人成77777在线视频| 亚洲男人的天堂狠狠| 国产高清视频在线播放一区| 搡老妇女老女人老熟妇| 最新美女视频免费是黄的| 欧美日本亚洲视频在线播放| 久久久久国内视频| 热re99久久国产66热| 亚洲片人在线观看| 国产精品日韩av在线免费观看 | 亚洲熟女毛片儿| 国产精品爽爽va在线观看网站 | 国产成人精品久久二区二区91| 最近最新中文字幕大全电影3 | 一级毛片精品| 国产又爽黄色视频| 日韩高清综合在线| 亚洲av成人一区二区三| 男女做爰动态图高潮gif福利片 | 午夜成年电影在线免费观看| 丝袜在线中文字幕| 大型av网站在线播放| 看片在线看免费视频| 黄色女人牲交| 很黄的视频免费| 日本黄色视频三级网站网址| 久久人妻福利社区极品人妻图片| 两个人看的免费小视频| 乱人伦中国视频| 欧美成人一区二区免费高清观看 | 精品卡一卡二卡四卡免费| 在线永久观看黄色视频| 大型av网站在线播放| 久久久国产成人免费| 色婷婷久久久亚洲欧美| 男女床上黄色一级片免费看| 午夜久久久在线观看| 涩涩av久久男人的天堂| 男人操女人黄网站| 老熟妇乱子伦视频在线观看| 亚洲狠狠婷婷综合久久图片| xxx96com| 久热这里只有精品99| av片东京热男人的天堂| 欧美亚洲日本最大视频资源| 人成视频在线观看免费观看| 亚洲av片天天在线观看| 99国产精品免费福利视频| 午夜久久久在线观看| 人人妻人人澡欧美一区二区 | 又黄又爽又免费观看的视频| 久久久久久大精品| 久久人人爽av亚洲精品天堂| 丁香欧美五月| 欧美色欧美亚洲另类二区 | 大香蕉久久成人网| 国产精品国产高清国产av| 国产一区二区在线av高清观看| 最近最新中文字幕大全电影3 | 黄色成人免费大全| 免费女性裸体啪啪无遮挡网站| 免费观看精品视频网站| 国产蜜桃级精品一区二区三区| 性欧美人与动物交配| 亚洲 国产 在线| 丝袜人妻中文字幕| www日本在线高清视频| 欧美激情极品国产一区二区三区| 久久影院123| 一区二区日韩欧美中文字幕| 成人国语在线视频| 老熟妇仑乱视频hdxx| 亚洲五月婷婷丁香| 久久国产精品影院| 国产成人精品久久二区二区91| 韩国av一区二区三区四区| 亚洲av日韩精品久久久久久密| 看免费av毛片| 日韩欧美一区二区三区在线观看| 久久久久久亚洲精品国产蜜桃av| 久久久久久人人人人人| 大香蕉久久成人网| 日韩精品中文字幕看吧| 极品教师在线免费播放| 黄色毛片三级朝国网站| 91麻豆精品激情在线观看国产| 校园春色视频在线观看| 亚洲美女黄片视频| 国产成人一区二区三区免费视频网站| 亚洲三区欧美一区| av超薄肉色丝袜交足视频| 欧美日韩瑟瑟在线播放| 国产精品av久久久久免费| 9191精品国产免费久久| videosex国产| 脱女人内裤的视频| 岛国视频午夜一区免费看| 亚洲欧洲精品一区二区精品久久久| 男人舔女人下体高潮全视频| 老司机福利观看| 国产又爽黄色视频| 成人国语在线视频| 午夜影院日韩av| 免费在线观看亚洲国产| 日本五十路高清| 三级毛片av免费| 男人舔女人的私密视频| 在线观看日韩欧美| 麻豆久久精品国产亚洲av| 久久九九热精品免费| 国产一级毛片七仙女欲春2 | 欧美日韩福利视频一区二区| 午夜视频精品福利| 69精品国产乱码久久久| 丝袜在线中文字幕| 麻豆国产av国片精品| 亚洲精品中文字幕在线视频| 青草久久国产| 老汉色∧v一级毛片| 波多野结衣一区麻豆| 亚洲精品在线美女| 两性夫妻黄色片| 麻豆成人av在线观看| 久久精品成人免费网站| 亚洲专区国产一区二区| 一级片免费观看大全| 一二三四在线观看免费中文在| 免费人成视频x8x8入口观看| 一边摸一边抽搐一进一出视频| 老鸭窝网址在线观看| 亚洲精品一卡2卡三卡4卡5卡| 一级,二级,三级黄色视频| 女同久久另类99精品国产91| a在线观看视频网站| 夜夜看夜夜爽夜夜摸| 一本久久中文字幕| 国产午夜福利久久久久久| 后天国语完整版免费观看| 不卡一级毛片| 一区在线观看完整版| 久久久久久人人人人人| 久久久精品国产亚洲av高清涩受| 乱人伦中国视频| 首页视频小说图片口味搜索| 国产又爽黄色视频| 亚洲avbb在线观看| 久久精品aⅴ一区二区三区四区| 国产精品 欧美亚洲| 亚洲成人国产一区在线观看| 国产在线精品亚洲第一网站| 亚洲激情在线av| 国产精品一区二区免费欧美| 久久精品影院6| 免费观看精品视频网站| 久久久久久国产a免费观看| 韩国av一区二区三区四区| 欧美黑人精品巨大| 色尼玛亚洲综合影院| 国产av一区二区精品久久| 伦理电影免费视频| 欧美激情 高清一区二区三区| 黑人欧美特级aaaaaa片| 午夜福利,免费看| 脱女人内裤的视频| 国产一区二区激情短视频| 国产99久久九九免费精品| 国产一区二区在线av高清观看| 国产99久久九九免费精品| 亚洲中文av在线| 国产亚洲精品综合一区在线观看 | 国产成人精品久久二区二区免费| 女性生殖器流出的白浆| 波多野结衣巨乳人妻| 俄罗斯特黄特色一大片| 又黄又粗又硬又大视频| 亚洲七黄色美女视频| 老司机在亚洲福利影院| 久久精品成人免费网站| 亚洲中文字幕一区二区三区有码在线看 | 男女床上黄色一级片免费看| 欧美最黄视频在线播放免费| 国产亚洲欧美在线一区二区| 咕卡用的链子| 久久久久久久精品吃奶| 亚洲熟女毛片儿| 久99久视频精品免费| 国产男靠女视频免费网站| 99久久综合精品五月天人人| 精品人妻在线不人妻| 正在播放国产对白刺激| 人人妻人人爽人人添夜夜欢视频| 欧美一级a爱片免费观看看 | 9191精品国产免费久久| 免费看美女性在线毛片视频| 色老头精品视频在线观看| 亚洲五月天丁香| 精品国产亚洲在线|