• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Uncertainty Analysis on Electric Power Consumption

    2021-12-11 13:32:30OakyoungHanandJaehyounKim
    Computers Materials&Continua 2021年8期

    Oakyoung Han and Jaehyoun Kim

    1University College,Sungkyunkwan University,Seoul,03063,Korea

    2Department of Computer Education,Sungkyunkwan University,Seoul,03063,Korea

    Abstract:The analysis of large time-series datasets has profoundly enhanced our abilityto make accurate predictions in many fields.However,unpredictable phenomena, such as extreme weather events or the novel coronavirus 2019(COVID-19)outbreak,can greatly limit the ability of time-series analyses to establish reliable patterns.The present work addresses this issue by applying uncertainty analysis using a probability distribution function, and applies the proposed scheme within a preliminary study involving the prediction of power consumption for a single hotel in Seoul, South Korea based on an analysis of 53,567 data items collected by the Korea Electric Power Corporation using robotic process automation.We first apply Facebook Prophet for conducting time-series analysis.The results demonstrate that the COVID-19 outbreak seriously compromised the reliability of the time-series analysis.Then,machine learning models are developed in the TensorFlow framework for conducting uncertainty analysis based on modeled relationships between electric power consumption and outdoor temperature.The benefits of the proposed uncertainty analysis for predicting the electricity consumption of the hotel building are demonstrated by comparing the results obtained when considering no uncertainty, aleatory uncertainty, epistemic uncertainty, and mixed aleatory and epistemic uncertainty.The minimum and maximum ranges of predicted electricity consumption are obtained when using mixed uncertainty.Accordingly,the application of uncertainty analysis using a probability distribution function greatly improved the predictive power of the analysis compared to time-series analysis.

    Keywords: Machine learning; predictive modeling; time-series analysis;uncertainty analysis; COVID-19

    1 Introduction

    Prediction is a statement regarding what can be expected to occur in the future.Therefore, it suffers from uncertainty, and probabilistic and statistical tools involving big data, data science, and machine learning are necessary components of any scientific approach seeking to formalize the prediction process [1-7].Despite the complexity of the process, accurate predictions are essential for supporting a wide range of human activities.For example, predictive modeling applied to the coronavirus 2019 (COVID-19) outbreak can facilitate better patient care, such as by predicting intensive care unit requirements, evaluating patient survival potentials, and analyzing patient trajectories during treatment [8].

    Time-series analysis is an essential aspect of the prediction process because many prediction problems have a time component.This process based on time-series analysis typically seeks to predict the future values of observed time-series data using a multivariate regression model with estimated and expected regression parameters [9].A variety of models exist.The best-known class of models is autoregressive moving average (ARMA) and autoregressive integrated moving average (ARIMA) models for single time-series data.Multivariate ARIMA models and vector auto-regression models are also popular.However, a comparative study demonstrated that the Facebook Prophet algorithm has better prediction results than ARIMA [10].Facebook Prophet is an open-source library that fits non-linear trends for time-series data having yearly, weekly, and daily seasonality, and also includes the impacts of non-seasonal events such as holidays.

    Unfortunately, unpredictable phenomena, such as extreme weather events or the COVID-19 outbreak, can greatly limit the ability of time-series analyses to establish reliable patterns.This is because the same information can produce different outputs from the same model owing to the presence of uncertainty.However, introducing uncertainty into deterministic models is difficult.

    Machine learning techniques and deep learning algorithms can make predictions by learning the inherent patterns within data, and therefore present new approaches to prediction by modeling relationships between variables in a deep and layered hierarchy.For example, long short-term memory has generated considerable attention, with applications in many disciplines [11-19].These characteristics make machine learning an ideal solution to prediction problems that involve big datasets, large numbers of predictors, and different types and sources of data, including free-text notes [20-28].Predictive modeling is classified mainly into theoretical modeling based on causality and the reduced-form approach based on correlation.However, the lack of any discernible causality in many prediction processes, and the increasing abundance of data and computational capability have facilitated the wide use of the reduced-form approach in predictive modeling research.In any case, predictive modeling requires a good understanding of the data and objective of the proposed application for data preprocessing, model generation, and evaluation [29].

    Predictive modeling efforts must address two kinds of uncertainty, including aleatory and epistemic uncertainty, where aleatory uncertainty represents the inherent uncertainty in a completely random process, and epistemic uncertainty derives from ignorance or a lack complete information regarding the behavior of a process [30].Many deep learning methods, including Bayesian and non-Bayesian methods, have been proposed to quantify predictive uncertainty.Here,Bayesian inference makes predictions using prior knowledge, and a probabilistic programming language based on this can express a model’s randomness.Python, which supports a probabilistic programming language (PPL), is open-source, and it can generate scalable and efficient Bayesian machine learning models.This makes PPL ideal for modeling uncertainty.However, while a largescale benchmark study of existing state-of-the-art deep learning strategies applied to classification problems and an investigation of the effect of dataset shift on accuracy and calibration has been conducted [31], no rigorous large-scale empirical comparison has yet been applied to these methods.Self-supervised learning represents another method by which model robustness to uncertainty can be improved.The predictive performance of this method exceeds the performance of fully supervised methods because it enhances out-of-distribution detection on difficult, near-distribution outliers [32].

    The above discussion indicates that a probabilistic approach can transcend the limitations of time-series analysis, while contributing to the robustness of predictive models to uncertainty.The present work addresses this issue by applying uncertainty analysis using a probability distribution function, and applies the proposed scheme within a preliminary study involving the prediction of power consumption for a single hotel in Seoul, South Korea.This application of uncertainty analysis is quite topical because both increasing population and economic growth worldwide have greatly increased the share of the total energy consumption taken by commercial space, such that its prediction is increasingly important for the purpose of reducing energy consumption [33-36].Moreover, data-driven approaches are the most advanced methods employed for electric energy consumption prediction (EECP) applications, which have been applied as a deep learning approach to intelligent power management systems, and plays an important role in national energy development policy [37-39].

    First, time-series analysis is conducted based on 53,567 data items recorded from March 1,2019 to September 8, 2020 for the hotel building over 558 days on the Korea Electric Power Corporation (KEPCO) website, which records electricity usage every 15 min using robotic process automation (RPA).We apply Facebook Prophet for the time-series analysis, and the results clearly demonstrate that that the COVID-19 outbreak seriously compromised the reliability of the timeseries analysis.

    We then develop machine learning models in the TensorFlow framework for conducting uncertainty analyses based on modeled relationships between electric power consumption and outdoor temperature.We begin with a simple linear regression model, as the most basic machine learning algorithm, for predicting the electric power consumption of the hotel building with respect to outdoor temperature.In such a model, the value of one variable varies in proportion to that of another.Obtaining improved prediction requires a representation of the variation inherent to the underlying process, which is aleatory uncertainty.The remaining uncertainty in the prediction process involves known unknowns, which represents epistemic uncertainty due to a lack of knowledge [40].A final method of uncertainty analysis involves the case of both known and unknown unknowns, which is mixed aleatory and epistemic uncertainty.The benefits of the proposed uncertainty analysis for predicting electric power consumption are demonstrated by comparing the results obtained when considering no uncertainty (i.e., the linear regression model),aleatory uncertainty, epistemic uncertainty, and mixed aleatory and epistemic uncertainty.The results indicate that the electricity consumption of the hotel cannot be precisely predicted using the linear regression model because the model ignores uncertainty.In contrast, the minimum and maximum ranges of the predicted power consumption are obtained when using mixed uncertainty.

    2 Time-series Analysis

    The electric power consumption data of the hotel building collected over the 558 days from March 1, 2019 to September 8, 2020 is presented as black dots in Fig.1.

    The prediction results of the electric power consumption obtained by Prophet from March 1,2020 September 1, 2020 are given by the blue line, while the sky blue area corresponds to the upper and lower limits of the predictions.The data points circled in red and dark blue respectively represent the days with the highest and lowest electricity consumption in 2019 and 2020.The differences between the two highest points and the two lowest points are marked by red and dark blue dotted lines, respectively.Power consumption is seen to have decreased significantly after March 1, 2020 with the advent of the COVID-19 outbreak.This represents a change that could not be predicted.Accordingly, time-series analysis can no longer support predictive modeling.

    Figure 1:Predictive modeling of hotel electric power consumption for the year 2020

    The Facebook Prophet time-series analysis decomposition results are presented in Fig.2,which include the overall trend, and weekly, yearly, and daily variations.Here, the trend results represent the declining electric power demand observed in Fig.1, which provided predictions that differed from the actual electric power usage.Accordingly, a general time-series analysis is not suitable under these conditions.Nevertheless, the weekly, yearly, and daily variations represent meaningful results.According to the weekly prediction in Fig.2, electricity consumption on Tuesday and Friday is high, and it is relatively low on Thursday.The yearly analysis in Fig.2 correctly predicts heat-related power consumption in August.

    3 Methodology

    3.1 Dataset

    Daily recorded outdoor temperature data were used in conjunction with the electric power consumption data presented in Fig.2.The quantile statistics of daily electricity consumption are listed in Tab.1.We note that the maximum value is nearly twice the minimum.

    3.2 Normalization

    The electricity consumption data cannot be applied directly to a probability distribution function generated with respect to temperature without normalization.Therefore, we normalize the power consumption data as follows:

    The normalized electricity consumption dataset employed for model training is plotted as the variableyon a scale of 0 to 1 with respect to the temperatureT(°C) in Fig.3.

    Figure 2:Facebook Prophet time-series analysis decomposition

    Table 1:Quantile statistics of daily electricity consumption (unit:kW)

    Figure 3:Normalized observed electricity consumption data with respect to temperature T

    3.3 Prediction Methods

    The four prediction methods are illustrated in Fig.4.The mixed model was obtained by integrating the respective models accounting for aleatory and epistemic uncertainties, and the data distribution is modeled by adding a variation analysis layer to the previous model.

    Figure 4:Prediction methods

    The machine learning models were developed using TensorFlow probability (TFP) layers to manage the uncertainty inherent in regression predictions, and probabilistic layers in TFP with the Keras application programming interface (API), which is a high-level API for TensorFlow, to build the other models on that simple foundation.

    The output of the linear regression model is a normal distribution with constant variance.The output of the second prediction model is a normal distribution whose mean and variance depend on the input.For the third prediction method, the posterior and prior were trained using the Keras layer, and the model was built by inference.For the last prediction method, the model was created and inferred.Then, several ensemble means and ensemble standard derivations were applied to obtain plots for various prediction lines indicative of the prediction results.

    4 Results

    4.1 No Uncertainty

    The single line in Fig.5 represents the overall trend of the predicted mean, and therefore does not account for uncertainty.

    Figure 5:Overall trend of the predicted mean of the distribution

    4.2 Aleatory Uncertainty

    The results obtained by the supervised learning method accounting for aleatory uncertainty are presented in Fig.6.Here, the overall trend in the predicted mean is plotted along with the standard deviation of the distribution.After training, the model provides meaningful predictions regarding the variability ofyas a function ofT, making it possible to produce a range of predictions indicative of aleatory uncertainty, rather than a simple line indicative of only the predicted mean value.

    4.3 Epistemic Uncertainty

    The results of the unsupervised learning method accounting for epistemic uncertainty are presented in Fig.7.Here, the 20 red lines in the figure represent 20 guesses by the unsupervised model regarding the linear relationship betweenyandT, which are different each time because the generated model resamples the data according to weighting imposed by the posterior distribution.Hence, we have presented 20 predictions to understand how the weighting imposed by the nobreakposterior distribution affects the final prediction.The epistemic uncertainty is reflected in the different slopes of the lines, which represent an increasing uncertainty inywith increasingT.Accordingly, accurate predictions are quite difficult to obtain without introducing prior knowledge.

    Figure 6:Variation inherent to the underlying prediction process

    Figure 7:Ensemble means with overall mean for representing epistemic uncertainty

    4.4 Mixed Aleatory and Epistemic Uncertainty

    The results of the mixed supervised and unsupervised learning method that accounts for both aleatory and epistemic uncertainties are presented in Figs.8 and 9, which represent the results obtained with three sample means and four sample means, respectively.The plots of the figures on the left sides present predictions based on the slopes of the observed data over differentx-axis data ranges, and the plots of the figures on the right sides reflect the application of the minimum and maximum values of the observed data.

    Figure 8:Ensemble models applying the variability of y as a function of x with three sample means

    Figure 9:Ensemble models applying the variability of y as a function of x with four sample means

    These results confirm the limitations of the simple linear regression analysis.Moreover, it can be seen that the results in Figs.8 and 9 represent less uncertainty over that presented in Fig.6 for the model considering only aleatory uncertainty and that presented in Fig.8 for the model considering only epistemic uncertainty because they cover the wider area.

    5 Conclusion

    The present study demonstrated that a probabilistic approach can transcend the limitations of time-series analysis by applying uncertainty analysis using a probability distribution function to the prediction of power consumption for a single hotel in Seoul, South Korea.The results confirmed that the time-series analysis was insufficiently reliable due to uncertainty, such as the COVID-19 outbreak that could not be predicted.The application of models accounting for aleatory uncertainty, epistemic uncertainty, and both aleatory and epistemic uncertainties demonstrated that electricity consumption can be predicted within a specific range according to the outdoor temperature.The results further demonstrated that probabilistic programming languages such as TensorFlow probability can provide a framework for accounting for aleatory and epistemic uncertainties, and can hasten the solution of complex probabilistic models.The output of algorithms trained on historical data can be applied to new data to make further predictions.This technology facilitates the analysis of big data, enabling the application of related research to real life and not just theoretical data.

    Acknowledgement:The authors thank Dr.Joonsoo Jeong at Hansung University for his helpful advice.The authors are also grateful to the reviewers.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors have no conflicts of interest to declare regarding the present study.

    亚洲欧美精品综合久久99| 亚洲av二区三区四区| 免费看日本二区| 69人妻影院| 久久人人精品亚洲av| 精品少妇黑人巨大在线播放 | 亚洲欧美日韩卡通动漫| 亚洲精品成人久久久久久| 精品少妇黑人巨大在线播放 | 春色校园在线视频观看| 黑人高潮一二区| 国产极品精品免费视频能看的| 天堂网av新在线| 国产精品嫩草影院av在线观看| 在线免费观看的www视频| 久久久久久九九精品二区国产| 精品国内亚洲2022精品成人| 亚洲欧美中文字幕日韩二区| 麻豆国产97在线/欧美| 神马国产精品三级电影在线观看| 尾随美女入室| 久久精品国产99精品国产亚洲性色| 校园人妻丝袜中文字幕| 黄片wwwwww| 国内精品美女久久久久久| 少妇的逼水好多| 精品日产1卡2卡| 亚洲va在线va天堂va国产| 久久久久久久午夜电影| 只有这里有精品99| 尾随美女入室| 又爽又黄a免费视频| 可以在线观看的亚洲视频| 国产高清有码在线观看视频| 亚洲av男天堂| av在线观看视频网站免费| 网址你懂的国产日韩在线| 美女被艹到高潮喷水动态| 国产精品伦人一区二区| 男插女下体视频免费在线播放| 我要搜黄色片| 久久精品国产清高在天天线| 国产午夜精品久久久久久一区二区三区| 夫妻性生交免费视频一级片| 成人美女网站在线观看视频| 免费看日本二区| 国产亚洲精品久久久com| av在线天堂中文字幕| 高清日韩中文字幕在线| 日韩人妻高清精品专区| 成年版毛片免费区| 国产伦精品一区二区三区四那| 亚洲精品456在线播放app| 久久国内精品自在自线图片| 欧美一区二区亚洲| 99在线人妻在线中文字幕| 精华霜和精华液先用哪个| ponron亚洲| 岛国毛片在线播放| 国产高清视频在线观看网站| 国产女主播在线喷水免费视频网站 | 校园春色视频在线观看| 国产黄色视频一区二区在线观看 | 国产成人福利小说| 91aial.com中文字幕在线观看| 小说图片视频综合网站| 在线播放无遮挡| 别揉我奶头 嗯啊视频| 国产成人aa在线观看| 久久韩国三级中文字幕| 青春草亚洲视频在线观看| 美女国产视频在线观看| 日产精品乱码卡一卡2卡三| 国产精品久久久久久久电影| 精品少妇黑人巨大在线播放 | 晚上一个人看的免费电影| 美女cb高潮喷水在线观看| 在线观看美女被高潮喷水网站| 亚洲熟妇中文字幕五十中出| 日本色播在线视频| 国产免费一级a男人的天堂| 免费看光身美女| 午夜免费男女啪啪视频观看| 内地一区二区视频在线| 国产亚洲欧美98| 老司机影院成人| 国模一区二区三区四区视频| 国产一区二区三区在线臀色熟女| 色吧在线观看| 黄片wwwwww| 免费观看a级毛片全部| 日韩av不卡免费在线播放| 亚洲成人av在线免费| 国产精品不卡视频一区二区| 欧美一级a爱片免费观看看| 如何舔出高潮| 夜夜夜夜夜久久久久| 1024手机看黄色片| 一边摸一边抽搐一进一小说| 日本免费a在线| 丰满乱子伦码专区| 欧美精品国产亚洲| 热99在线观看视频| 国产 一区精品| 欧美又色又爽又黄视频| 全区人妻精品视频| 三级男女做爰猛烈吃奶摸视频| 亚洲,欧美,日韩| 亚洲成av人片在线播放无| 亚洲av成人精品一区久久| 精品久久久久久久久久久久久| 欧洲精品卡2卡3卡4卡5卡区| 欧美+日韩+精品| 两个人的视频大全免费| 久久欧美精品欧美久久欧美| 91av网一区二区| 97人妻精品一区二区三区麻豆| 日韩一本色道免费dvd| 日日撸夜夜添| 一个人观看的视频www高清免费观看| 国模一区二区三区四区视频| 久久久久网色| 亚洲一区高清亚洲精品| 亚洲国产精品久久男人天堂| 在线国产一区二区在线| 免费av观看视频| 欧美高清成人免费视频www| 成人午夜精彩视频在线观看| 可以在线观看毛片的网站| 精品久久久久久久久久免费视频| 九九在线视频观看精品| 色综合亚洲欧美另类图片| 美女内射精品一级片tv| 亚洲五月天丁香| 在现免费观看毛片| 亚洲av免费高清在线观看| 99国产精品一区二区蜜桃av| 色综合站精品国产| 九色成人免费人妻av| 波多野结衣高清作品| 我的女老师完整版在线观看| 日韩欧美一区二区三区在线观看| 搡女人真爽免费视频火全软件| 日韩中字成人| eeuss影院久久| 少妇丰满av| 久久精品国产清高在天天线| 麻豆国产97在线/欧美| 国产淫片久久久久久久久| 老司机福利观看| 欧美成人免费av一区二区三区| 性欧美人与动物交配| 免费观看在线日韩| 天天躁夜夜躁狠狠久久av| 精品人妻偷拍中文字幕| 国产高潮美女av| 成年女人看的毛片在线观看| 在线天堂最新版资源| 亚洲第一区二区三区不卡| 夜夜看夜夜爽夜夜摸| 国产午夜福利久久久久久| 高清午夜精品一区二区三区 | 国产高清不卡午夜福利| 变态另类成人亚洲欧美熟女| 欧美最新免费一区二区三区| 黄色日韩在线| 欧美最新免费一区二区三区| 国产亚洲精品久久久久久毛片| 欧美日韩综合久久久久久| 亚洲人成网站在线播放欧美日韩| 国产极品精品免费视频能看的| 永久网站在线| 国产精品综合久久久久久久免费| 国产爱豆传媒在线观看| 国产三级中文精品| 日韩欧美精品v在线| 亚洲国产精品sss在线观看| 亚洲自拍偷在线| 亚洲成人中文字幕在线播放| 欧美bdsm另类| 久久久成人免费电影| 亚洲欧美成人综合另类久久久 | 久久热精品热| 日本与韩国留学比较| www日本黄色视频网| 最新中文字幕久久久久| 菩萨蛮人人尽说江南好唐韦庄 | 午夜视频国产福利| 日韩在线高清观看一区二区三区| 搞女人的毛片| h日本视频在线播放| 国产亚洲精品久久久久久毛片| 两个人的视频大全免费| 日产精品乱码卡一卡2卡三| 国产 一区精品| 国产蜜桃级精品一区二区三区| 久久中文看片网| 99热只有精品国产| 97超视频在线观看视频| 一边亲一边摸免费视频| 欧美性猛交黑人性爽| 少妇裸体淫交视频免费看高清| 岛国在线免费视频观看| 国模一区二区三区四区视频| 在现免费观看毛片| 三级毛片av免费| 国产一级毛片在线| 中文字幕人妻熟人妻熟丝袜美| 国产成人a区在线观看| 精品久久久久久久人妻蜜臀av| 欧美日韩国产亚洲二区| 黄色配什么色好看| 亚洲电影在线观看av| 又粗又爽又猛毛片免费看| 亚洲欧美日韩无卡精品| 99热网站在线观看| 中文精品一卡2卡3卡4更新| 激情 狠狠 欧美| 欧美在线一区亚洲| 久久久色成人| 干丝袜人妻中文字幕| 高清毛片免费看| 亚洲av成人精品一区久久| 日韩欧美在线乱码| 婷婷亚洲欧美| 寂寞人妻少妇视频99o| 欧美日本亚洲视频在线播放| 丰满的人妻完整版| 国产精品三级大全| 亚洲av熟女| 亚洲av免费高清在线观看| 国产在视频线在精品| 午夜老司机福利剧场| 在线免费十八禁| 女人被狂操c到高潮| 色尼玛亚洲综合影院| 日韩大尺度精品在线看网址| 尾随美女入室| 夫妻性生交免费视频一级片| 成人毛片60女人毛片免费| 日本与韩国留学比较| 日韩制服骚丝袜av| 精品久久国产蜜桃| 国产黄片视频在线免费观看| 亚洲va在线va天堂va国产| 欧美xxxx性猛交bbbb| 中文字幕制服av| 国产在线精品亚洲第一网站| 18+在线观看网站| 国产黄片美女视频| 我的老师免费观看完整版| 久久99蜜桃精品久久| 99热网站在线观看| 九九热线精品视视频播放| 免费搜索国产男女视频| 22中文网久久字幕| 国产精品久久久久久亚洲av鲁大| 色噜噜av男人的天堂激情| 精品一区二区免费观看| 村上凉子中文字幕在线| 久久国产乱子免费精品| 日韩精品青青久久久久久| 精品国产三级普通话版| 精品久久久久久久久av| 欧美zozozo另类| 亚洲国产精品成人久久小说 | 悠悠久久av| 精品久久久久久久久亚洲| 亚洲熟妇中文字幕五十中出| 精品免费久久久久久久清纯| 免费观看的影片在线观看| 欧美丝袜亚洲另类| 国产在视频线在精品| 亚洲国产日韩欧美精品在线观看| av天堂中文字幕网| 亚洲精品自拍成人| 草草在线视频免费看| 国产精品爽爽va在线观看网站| 日韩av在线大香蕉| 亚洲成人久久爱视频| 日本在线视频免费播放| 在线国产一区二区在线| 欧美区成人在线视频| 久久99精品国语久久久| 国产精品,欧美在线| 日韩强制内射视频| 成人无遮挡网站| 99热6这里只有精品| 亚洲久久久久久中文字幕| 免费一级毛片在线播放高清视频| 特级一级黄色大片| av在线蜜桃| 国产高清激情床上av| 国产一区二区三区在线臀色熟女| 久久久久九九精品影院| 女人被狂操c到高潮| 免费观看精品视频网站| 看免费成人av毛片| 久久精品人妻少妇| 免费电影在线观看免费观看| 国产精品女同一区二区软件| 精品欧美国产一区二区三| 成人二区视频| 免费一级毛片在线播放高清视频| 在线观看66精品国产| 中文欧美无线码| 国产成人福利小说| 午夜老司机福利剧场| 91精品国产九色| 国产午夜精品一二区理论片| 亚洲中文字幕日韩| eeuss影院久久| 嫩草影院精品99| 国产片特级美女逼逼视频| 日本三级黄在线观看| 久久久久久久久久成人| 国产精品综合久久久久久久免费| 久久99热这里只有精品18| 免费观看人在逋| 美女 人体艺术 gogo| 亚洲av成人精品一区久久| 久久久久久久久久久免费av| 只有这里有精品99| 精品久久久久久久久av| 男人的好看免费观看在线视频| 黄色欧美视频在线观看| 22中文网久久字幕| 毛片一级片免费看久久久久| 看黄色毛片网站| 在线观看一区二区三区| 亚洲国产精品成人综合色| 国产v大片淫在线免费观看| 国产精品国产高清国产av| 国产精品三级大全| 老司机福利观看| 两性午夜刺激爽爽歪歪视频在线观看| 久久久午夜欧美精品| 男女边吃奶边做爰视频| 好男人在线观看高清免费视频| av在线老鸭窝| 熟女电影av网| 美女黄网站色视频| 插阴视频在线观看视频| 乱码一卡2卡4卡精品| 亚洲人成网站在线播放欧美日韩| 菩萨蛮人人尽说江南好唐韦庄 | 国产一区二区在线观看日韩| 18禁裸乳无遮挡免费网站照片| 一级毛片aaaaaa免费看小| 久久国产乱子免费精品| 亚洲精品国产av成人精品| 真实男女啪啪啪动态图| 亚洲色图av天堂| 国产精品av视频在线免费观看| 欧美成人a在线观看| 级片在线观看| 欧美区成人在线视频| 色吧在线观看| 毛片女人毛片| 成人一区二区视频在线观看| 久久久久久九九精品二区国产| 成年女人永久免费观看视频| 美女 人体艺术 gogo| 国产伦理片在线播放av一区 | 偷拍熟女少妇极品色| 男人狂女人下面高潮的视频| 国产成人freesex在线| 免费观看a级毛片全部| 欧美激情在线99| 日本在线视频免费播放| 欧美日韩综合久久久久久| 亚洲一级一片aⅴ在线观看| 亚洲四区av| 欧美潮喷喷水| 波多野结衣高清无吗| 久久久久久大精品| 久久99热6这里只有精品| 久久精品国产亚洲av涩爱 | 国产美女午夜福利| 在线播放无遮挡| 国产一区二区三区av在线 | 内射极品少妇av片p| 国产黄a三级三级三级人| av黄色大香蕉| 亚洲成人精品中文字幕电影| 国产精品,欧美在线| 性插视频无遮挡在线免费观看| 人妻少妇偷人精品九色| av在线亚洲专区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 99久久精品热视频| 免费观看的影片在线观看| 久久这里有精品视频免费| 久久精品91蜜桃| 亚洲18禁久久av| 国产成人aa在线观看| 亚洲成av人片在线播放无| 哪个播放器可以免费观看大片| 欧美在线一区亚洲| 尤物成人国产欧美一区二区三区| 寂寞人妻少妇视频99o| 淫秽高清视频在线观看| 久久草成人影院| 国产高清不卡午夜福利| 波多野结衣高清作品| 99热6这里只有精品| 不卡视频在线观看欧美| www.色视频.com| 在线免费十八禁| 伦精品一区二区三区| 国产伦精品一区二区三区视频9| 久久人人爽人人片av| 男的添女的下面高潮视频| 久久久久九九精品影院| 亚洲经典国产精华液单| 综合色丁香网| 在线国产一区二区在线| 久久人人爽人人爽人人片va| 中文在线观看免费www的网站| 色噜噜av男人的天堂激情| 婷婷色av中文字幕| 神马国产精品三级电影在线观看| 亚洲成人久久爱视频| 身体一侧抽搐| 午夜老司机福利剧场| 国产毛片a区久久久久| 国国产精品蜜臀av免费| 中文字幕人妻熟人妻熟丝袜美| 日本黄大片高清| 亚洲欧美日韩卡通动漫| 久久久久久久久中文| 此物有八面人人有两片| 99久久精品国产国产毛片| 熟妇人妻久久中文字幕3abv| 欧美一区二区国产精品久久精品| 如何舔出高潮| 亚洲av中文av极速乱| 男插女下体视频免费在线播放| 亚洲性久久影院| 日韩三级伦理在线观看| 美女 人体艺术 gogo| 亚洲欧美日韩东京热| 久久久久久伊人网av| 亚洲av免费高清在线观看| 波多野结衣巨乳人妻| 日本与韩国留学比较| 国产成人a∨麻豆精品| 久久久精品大字幕| 日本五十路高清| 六月丁香七月| 国产欧美日韩精品一区二区| 日韩欧美精品v在线| 国产精品久久视频播放| 一级毛片aaaaaa免费看小| 亚洲国产精品sss在线观看| 国产成人影院久久av| 又粗又爽又猛毛片免费看| 又爽又黄无遮挡网站| 欧美最新免费一区二区三区| 男人舔女人下体高潮全视频| 久久国内精品自在自线图片| 91精品一卡2卡3卡4卡| 搡女人真爽免费视频火全软件| 美女cb高潮喷水在线观看| 深夜a级毛片| 亚洲精品影视一区二区三区av| 亚洲在线观看片| 亚洲欧美精品专区久久| 日韩高清综合在线| 可以在线观看毛片的网站| av免费观看日本| 在现免费观看毛片| 欧美激情国产日韩精品一区| 色综合亚洲欧美另类图片| 乱系列少妇在线播放| 国产精品一区二区三区四区免费观看| 亚洲av成人av| 国产v大片淫在线免费观看| 国产午夜福利久久久久久| 美女xxoo啪啪120秒动态图| 午夜久久久久精精品| 久久热精品热| av卡一久久| 国产成人午夜福利电影在线观看| 亚洲美女视频黄频| 热99re8久久精品国产| .国产精品久久| 久久精品综合一区二区三区| 亚洲久久久久久中文字幕| 久久热精品热| 美女内射精品一级片tv| 久久久欧美国产精品| 亚洲av.av天堂| 啦啦啦啦在线视频资源| 精品熟女少妇av免费看| 日韩成人av中文字幕在线观看| 国产日韩欧美在线精品| 亚洲成人中文字幕在线播放| 久久久久网色| 老熟妇乱子伦视频在线观看| 亚洲内射少妇av| 亚洲不卡免费看| 日本五十路高清| 99久久精品国产国产毛片| 久久精品国产亚洲av涩爱 | 亚洲一区高清亚洲精品| 国产精品一区二区性色av| 女人十人毛片免费观看3o分钟| av专区在线播放| 精品一区二区免费观看| 久久99热6这里只有精品| 免费观看人在逋| 国产精品永久免费网站| 只有这里有精品99| 久久午夜亚洲精品久久| 婷婷亚洲欧美| 国产一区二区三区在线臀色熟女| 观看免费一级毛片| 18禁黄网站禁片免费观看直播| 人妻少妇偷人精品九色| av天堂中文字幕网| 我要搜黄色片| 日韩一区二区视频免费看| 国产精品久久久久久精品电影| 桃色一区二区三区在线观看| 色哟哟哟哟哟哟| 狠狠狠狠99中文字幕| 日韩欧美在线乱码| 精品午夜福利在线看| 别揉我奶头 嗯啊视频| 欧美日韩在线观看h| 能在线免费观看的黄片| 国产精品一区二区在线观看99 | 午夜激情福利司机影院| 成年女人看的毛片在线观看| 日日摸夜夜添夜夜爱| 中国美白少妇内射xxxbb| 久久精品影院6| 精品人妻一区二区三区麻豆| 婷婷色综合大香蕉| 免费在线观看成人毛片| 12—13女人毛片做爰片一| 97热精品久久久久久| 亚洲国产精品合色在线| 99九九线精品视频在线观看视频| 99精品在免费线老司机午夜| 国产私拍福利视频在线观看| 校园春色视频在线观看| 久久人人精品亚洲av| 欧美xxxx性猛交bbbb| 日本黄大片高清| 高清毛片免费观看视频网站| 伦理电影大哥的女人| 校园人妻丝袜中文字幕| 国产精品不卡视频一区二区| 国产一区二区在线av高清观看| av在线老鸭窝| 亚洲综合色惰| 蜜桃久久精品国产亚洲av| 久久国产乱子免费精品| 久久久久性生活片| 男女啪啪激烈高潮av片| 精品一区二区三区视频在线| 日本黄色视频三级网站网址| 午夜福利在线观看吧| 九草在线视频观看| 搡老妇女老女人老熟妇| 国产伦理片在线播放av一区 | 精品欧美国产一区二区三| 国产亚洲精品久久久久久毛片| 国产成人a∨麻豆精品| 欧美激情久久久久久爽电影| 综合色丁香网| 国产成人一区二区在线| 中国国产av一级| 欧美高清成人免费视频www| 麻豆国产97在线/欧美| 联通29元200g的流量卡| 国产高清视频在线观看网站| 又黄又爽又刺激的免费视频.| 久久久久久久久大av| 99久久人妻综合| 国产伦精品一区二区三区视频9| 校园春色视频在线观看| 日韩中字成人| 一级av片app| 91av网一区二区| 极品教师在线视频| 精品久久久久久久久亚洲| 蜜桃亚洲精品一区二区三区| 精品人妻视频免费看| 一级av片app| 免费观看a级毛片全部| 欧美成人精品欧美一级黄| av国产免费在线观看| 极品教师在线视频| 黄片wwwwww| 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧洲国产日韩| 欧美极品一区二区三区四区| 少妇丰满av| 国产91av在线免费观看| 亚洲欧美成人综合另类久久久 | 精品日产1卡2卡| 日韩精品有码人妻一区| 99久久人妻综合| 99久久中文字幕三级久久日本| 丝袜喷水一区| 中文精品一卡2卡3卡4更新| 欧美最黄视频在线播放免费| 有码 亚洲区| 久久久久久久久中文| 欧美性感艳星| 久久鲁丝午夜福利片| 国产成人a∨麻豆精品|