• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Flower Pollination Heuristics for Parameter Estimation of Electromagnetic Plane Waves

    2021-12-11 13:32:12SadiqAkbarMuhammadAsifZahoorRajaNaveedIshtiaqChaudhary
    Computers Materials&Continua 2021年8期

    Sadiq Akbar,Muhammad Asif Zahoor Raja,Naveed Ishtiaq Chaudhary,

    Fawad Zaman4 and Hani Alquhayz5

    1Department of Electronics,University of Peshawar,Peshawar,25120,Pakistan

    2Future Technology Research Center,National Yunlin University of Science and Technology,Douliou,64002,Taiwan

    3Department of Electrical Engineering,International Islamic University,Islamabad,44000,Pakistan

    4Department of Electrical Engineering,COMSATS University Islamabad,Islamabad,44000,Pakistan

    5Department of Computer Science and Information,College of Science in Zulf,iMajmaah University,Al-Majmaah,11952,Saudi Arabia

    Abstract:For the last few decades, the parameter estimation of electromagnetic plane waves i.e.,far field sources,impinging on antenna array geometries has attracted a lot of researchers due to their use in radar, sonar and under water acoustic environments.In this work,nature inspired heuristics based on the flower pollination algorithm(FPA)is designed for the estimation problem of amplitude and direction of arrival of far field sources impingingon uniform linear array(ULA).Using the approximation in mean squared error sense,a fitness function of the problem is developed and the strength of the FPA is utilized for optimizationof the cost function representing scenarios for various number of sources non-coherent located in the far field.The worth of the proposed FPA based nature inspired computing heuristic is established through assessment studies on fitness,histograms,cumulative distribution function and box plots analysis.The other worthy perks of the proposed scheme include simplicity of concept,ease in the implementation,extendibility and wide range of applicability to solve complex optimization problems.These salient features make the proposed approach as an attractive alternative to be exploited for solving different parameter estimation problems arising in nonlinear systems,power signal modelling,image processing and fault diagnosis.

    Keywords:Direction of arrival; flower pollination algorithm; plane waves;parameter estimation

    1 Introduction

    Parameter estimation specially direction of arrival (DOA) estimation of plane waves plays a vital role in the areas of wireless communication, earthquake, medicine, tracking, navigation,and radio astronomy [1-4].In this regard, incorporation of beamforming being adaptive in smart antennas systems gives opportunities to reduce the interferences effects and without using the higher frequency bandwidths, data is transmitted at higher rates.This essential requirement stimulates for the development of algorithms being efficient to estimate DOA.This helps in the determination of complex weights required in beamsteering for preferred direction.Traditional techniques used for estimation of DOA employed the method of periodogram which was based on Fourier transformation.A few of them are conventional beamforming (CBF), Minimum Variance Distortion less Response (MVDR) and dual beamformer.Bartlett, Capon and Lacoss are their developers [5-7].The problem with the traditional method was low resolution and further, noise due to Rayleigh limit affected it badly.

    To overcome these problems adaptive algorithms were used and methods of maximum likelihood were developed.Stochastic maximum likelihood and deterministic maximum likelihood i.e.,SML and DML methods were a few to mention [8,9].Technique of spatial-temporal processing further improved the accuracy of DML [10].These methods were having better resolution due to using data model of the received signals completely.Also, these were robust and efficient.But their computational cost is too high due to the multidimensional search and are therefore used occasionally [10,11].The spectrum-based methods developed in 1980s, were Multiple Signal Classification (MUSIC), Estimation of Signal Parameters via Rotational Invariance Technique(ESPRIT) [12,13].But the problem with these methods was their computational cost that kept increasing with the increase in the number of array element as they required snapshots at least double in number of the total number of elements in the array.Also, in case of correlated signals,their performance becomes poor.Unitary-ESPRIT method was introduced that was based on unitary transformation and its purpose was to reduce computing cost of ESPRIT method.Conversion of complex covariance matrix into real one reduced its complexity of computation [14].To rectify the problems in covariance based methods, Direct Data Domain Methods (DDDMs)were developed in mid-nineties.They were based on Matrix Pencil Method (PM) [15].They were efficient and they required one snapshot in case of DOA to be estimated in real time dynamic conditions.

    Techniques, being metaheuristic, have been exploited for the determination of DOA unlike adaptive techniques namely Least Mean Square, MUSIC, ESPRIT and Recursive Least Square etc.due to their effective strength in optimization [16-19].To address numerous non-linear problems of constrained optimization in different areas such as optimal energy management,combustion theory fuel ignition model, Magneto-hydrodynamics problems, electromagnetic theory, nano-technology and fractional order systems of non-linear nature [20-25], techniques of evolution and swarm intelligence have been applied to them recently.

    In this paper, an effective optimization mechanism of flower pollination algorithm (FPA) is employed as a newly introduced algorithm for the parameter estimation of electromagnetic waves of the far field.FPA mimics the process of pollination in flowering plants.FPA is proposed by Yang [26] and is recently employed in several fields.FPA has impressive nature.Due to this, it has attracted many researchers’attention in several fields of optimization.Swarm-based optimization technique is used in the FPA with few parameters.The employment of the FPA in various optimization problems has shown a robust performance.Further, FPA being simple optimization method is a flexible, adaptable, and scalable algorithm.FPA gives very beneficial results in solving various optimization problems as compared with other metaheuristic algorithms.These problems are from different areas such as signal and image processing, clustering and classification, electrical systems, wireless networks, computer gaming, travelling salesman problem and others many more [27-48].In the present work collective estimation of DOA as well as amplitudes of plane wave (electromagnetic) falling on ULA is considered.To minimize error between desired and actual responses, mean squared error (MSE) is used as a fitness criterion.A single snapshot is required by this fitness function and works well, particularly in the existence of local optima.For substantial statistical analysis of FPA, Monte Carlo simulations (in a large number) are done using MATLAB.For this analysis two, three, and four sources are considered and are investigated for fitness, robustness, MSE, and complexity (computational).Main properties of the proposed mechanism are as follows:

    ? Exploitation of pollination based optimization technique FPA for the novel study of DOA estimation

    ? Augmented power of FPA is built for the parameter estimation (effectively) of plane waves of sources.

    ? The design mechanism is validated for different scenarios of far field sources.

    ? The accuracy, robustness, and reliability of the algorithm are proven via results of the statistics in terms of parameters fitness.

    ? Ease of implementation, simple in concept, extendibility, handling complex models and wide range of applicability are further advantages of the scheme.

    The paper is arranged as follows:In Section 2, plane waves incident on a ULA is given as general data model for parameter estimation, while details about proposed scheme that has foundation on FPA are given in Section 3.Section 4 provides results and discussion on the results.The last section presents the conclusion and future work.

    2 General System Model for Parameters Amplitude and DOA Estimation

    For model development, consider narrow band sources of EM plane waves P in number.The plane waves are falling on ULA.The ULA has “N” elements.The inter-element spacing is “d”which is uniform between any two consecutive elements.It is portrayed in Fig.1.For P ≤N, the output of the nth element of ULA is given as:

    for n=1,2,...,N.For single snapshot, Eq.(1) becomes

    In Eq.(2), the value ofξiskdcosθlwhich is delay due to propagation between the reference and nth element.Likewise, value of k is 2π/λand is termed as wave number.Eq.(2) in a vector form is given as,

    Hereθin above matrix and i in the vector denote angle (elevation) and amplitude of plane waves respectively.The angle “θ” is with respect to broad side.Eq.(3) can be given in compact form as:

    S is the symbol used here for the steering matrix.It has got steering vectors of P sources.AWGN introduced in each antenna element is symbolized here asη.It does not depend upon source waves.The parameters DOA (θ) and amplitudes (i) in Eq.(3) are unknown for the lth source where l ranges from 1 to P.

    Figure 1:Plane waves falling on ULA antenna

    3 Methodology

    A new meta heuristic technique called FPA was originally proposed by Yang [26] in 2012.This algorithm uses the concept of pollination in plants.Pollination is prerequisite of the fertilization in plant species.In this process pollens migrate, meet the pollens of another flower or other plants.The flower may be of the same plant.Likewise, the other plants may be of same species.This results in fruitful fertilization.In biotic pollination, pollinators (insects/birds etc.) are carriers of the pollens from one flower to another.The same are transferred via wind or simple diffusion in abiotic pollination.Most of the part is played by the biotic pollination in nature.Flower constancy for pollination is another responsible factor.In this, pollinators limit themselves with plants of particular type.[49].The mathematical expression for FPA is written as [49]:

    In Eq.(5),L=step size.It is always positive and nonzero and it determines the pollination strength.Step size “L” represents “Levy Flights.” The further necessary details of Eq.(5) can be seen in [45-47].

    In this work, FPA is developed for parameter estimation of electromagnetic plane waves.The flow chart of FPA is portrayed in Fig.2.While, the pseudo-code is given as follows:

    Figure 2:Flow chart of FPA

    Step 1 Population Initialization

    “M” individuals are generated randomly with entries equal to decision variable of optimization problem, i.e., DOA estimation of plane waves.The Jth individual representation of FPA is mathematically given as:

    For the current optimization problem, the constraints associated with are:

    Amplitude bounds (lower and upper) are symbolized here as lb and ub respectively, and k=1,2,...,P.Settings for FPA parameters are done, i.e., number of individuals in population,number of iterations, probability switch, bounds etc.

    Step 2 Computation of Fitness

    The fitness function is expressed in terms of mean squared error.For noiseless environment it is given as:

    Fitness is computed for each individual of population F using Eq.(7) and are ranked accordingly.

    Step 3 Determine g?, the initial best solution

    Step 4 Defines a probability switch psw ∈[0,1].

    Step 5 Compute fitness value of all n members/solution/flowers.

    Step 6 if rand

    Step 7 Draw a step vector L (d-dimensional) obeying Levy Distribution

    Step 8 Carry out global pollination via

    Else

    Step 9 Draw a uniform distributionε∈[0,1]

    Step 10 Randomly choosejandkamong all solutions

    Step 11 Do local pollination via

    Step 12 Evaluate the new best solution

    Step 13 If the new solution

    Step 14xt=xt+1

    Step 15 Find the current best solutiong?among allxti

    Step 16 For global best solution, store the parameters, and its fitness for each run.

    Step 17 For reliability, Steps 1-16 are repeated for sufficiently huge runs to have a huge set of data.

    Step 18 For FPA performance evaluation, the fitness as in Eq.(7) and norm of the absolute error (NAE), also called the Euclidean length, as defined below are used:

    where N is index of element in vector v.

    4 Results and Discussion

    In this section, work is presented in terms of simulations for three scenarios.In each scenario we have two sources model (2SM), three sources model (3SM) and four sources model (4SM).The EM plane wave sources are P where P=2, 3 and 4 respectively.ULA has 4, 6 and 8 elements respectively.The optimization strength of FPA is exploited for parameter estimation of these far field sources.The true 2-D parameters of the sources are written as follows:

    The scheme designed (based on FPA) is utilized for parameter estimation.It is employed for both situations (noisy as well as noiseless) as given in the section of methodology.For each scenario, five cases are worked out as:Case 1:2 SM with no noise and given noise is added for rest of the four cases namely Case 2:2 SM having 65 dB, Case 3:2 SM having 55 dB, Case 4:2 SM having 45dB and Case 5:2 SM having 35 dB.The results are obtained for 100 independent runs of the FPA.Objective function for any of the scenario is formulated as:

    Eq.(9) denotes fitness function.In thisηndenotes noise and its value is 0, 65, 55, 45, and 35dB.The settings of FPA are chosen as:Population size=10, Probability switch=0.8, No.of iterations=10,000, lower bounds of amplitude=0, lower bounds of angle=0, upper bounds of amplitude=10 and upper bounds of angle=pi, dimension size(dim)=2 ?P.

    For this data, the algorithm was run 100 times independently.The best estimated parameters are given in Tabs.1-3 for all the three scenarios.Analysis of the data was done in terms of fitness, histogram, CDF and Box Plots for two different types.In type1 analysis, different number of sources were taken, and same level of noise was added to them.Five such cases were examined namely no noise, 35 dB noise, 45 dB noise, 55 dB noise and 65 dB noise.In the 2nd type, same number of sources were taken, and different noise was added to it.Again, same five levels of noise were added in steps.Two of the graphs of type 1 analysis with no noise and with 65 dB noise are provided for fitness, histogram, CDF and Box Plot respectively in Figs.3-6.The graphs of the 2nd type analysis are shown in Figs.7-10.Fig.3a shows that the best fitness of two sources is about 10?29in 85 runs.Three sources reach to a fitness of about 10?28in 96 runs.Likewise,four sources have about 10?7fitness in 100 runs.Remaining graphs of the 1st case can also be shown.Likewise, Fig.3b shows that even though 65 dB noise has been added but still the same two sources get a fitness of about 10?31in about 88 runs.The same three sources get a fitness of about 10?30in about 97 runs and the same four sources get a fitness of about 10?8in 100 runs.

    Table 1:Outcomes of FPA for scenario 1 of two far field sources

    Table 2:Outcomes of FPA for scenario 2 of three far field sources

    Table 3:Outcomes of FPA for scenario 3 of four far field sources

    Figure 3:Fitness with and without noise.(a) No noise case, (b) 65 dB noise case

    Figure 4:Histogram with and without noise.(a) No noise case, (b) 65 dB noise case

    Figure 5:CDF with and without noise.(a) No noise case, (b) 65 dB noise case

    Fig.4 shows the histogram analysis of the same two cases namely noise free and with 65 dB noise.Fig.4a shows that about 16 runs give a fitness in the range of 10?30to 10?25for two sources, and about 2 runs give the same fitness for three sources while the same two runs give a fitness in the range 10?20to 10?15for four sources.Fig.4b shows that 2 runs give a fitness in the range of 10?35to 10?30for two sources, 4 runs give a fitness in the range of 10?30to 10?25for three sources, and about 2 runs give a fitness of 10?6to 10?5for four sources in the presence of 65 dB noise respectively.Fig.5 shows the CDF analysis of the same two cases namely noise free and with 65 dB noise.Fig.5a shows that about 17% of the runs give a fitness of 10?29for two sources, about 5% of runs give a fitness of more than 10?27for three sources and about a fraction of one run gives a fitness of about 10?7for four sources.Fig.5b shows a fitness of about 10?31for about 12% of the runs for two sources, a fitness of more than 10?29for 4% of runs for three sources, and a fitness of about 10?8for about a fraction of 1% runs for four sources in presence of 65dB noise.Fig.6 shows the box plot analysis for the same two cases namely noise free and with 65 dB noise.Fig.6a shows that worst fitness is about 10?6for two sources, more than 10?2for three sources and more than 10?1for four sources.Likewise, the best fitness is more than 10?28for two sources, about 10?16for three sources and about 10?7for four sources.75% of fitness is about 10?6for two sources, less than 10?3for three sources and about 10?1for four sources.Exactly half of the fitness is about 10?8for two sources, 10?4for three sources and less than 10?1for four sources.Fig.6b shows that worst fitness is less than 10?4for two sources,less than 10?2for three sources, and less than 10?1for four sources.Likewise, the best fitness is more than 10?28for two sources, about 10?7for three sources, and 10?8for four sources.75%of the fitness is about 10?6for two sources, 10?2for three sources and 10?1for four sources.Exactly half of the fitness is about 10?8for two sources, 10?3for three sources, and less than 10?1for four sources in the presence of 65 dB noise.

    Figure 6:Box Plots with and without noise.(a) No noise, case (b) 65 dB noise case

    Likewise, all Figs.7-10 results show that even in low SNR situation, the proposed algorithm performed well.With low estimation accuracy, particularly in case of two and three sources, it has produced fair enough results.However, its performance is degraded in case of four impinging sources.The reason is clear that as number of sources increases, problem of identification becomes harder.

    Figure 7:Fitness of same source with different noise.(a) 2 sources (b) 3 sources (c) 4 sources

    Figure 8:Histogram of same source with different noise.(a) 2 sources (b) 3 sources (c) 4 sources

    Figure 9:CDF of same source with different noise.(a) 2 sources (b) 3 sources (c) 4 sources

    Figure 10:Box plot of same source with different noise.(a) 2 sources (b) 3 sources (c) 4 sources

    5 Conclusion

    An innovative application of flower pollination heuristic is introduced for reliable parameter estimation of electromagnetic plane waves impinging on antenna array geometries.The accuracy,stability and robustness of the proposed flower pollination heuristic is verified from actual value of system parameter for single and multiple autonomous runs.The worth of the proposed FPA is further established through statistical assessments based on fitness, histograms, cumulative distribution function and box plots analysis for two, three and four source model of DOA parameter estimation in noisy and noiseless environments.

    In future, one may exploit the proposed methodology for different optimization problems including power signal estimation [50], Hammerstein nonlinear system identification [51-53], fault diagnosis [54], travelling salesman problem [55], second order boundary value problems [56] and image processing [57].

    Funding Statement:The authors would like to thank the Deanship of Scientific Research at Majmaah University for supporting this work under Project Number No.R-2021-27.

    Conflicts of Interest:All the authors of the manuscript declared that there are no potential conflicts of interest.

    久久ye,这里只有精品| 国产精品.久久久| 国产精品 国内视频| 性少妇av在线| 中文字幕av电影在线播放| 亚洲欧美精品综合一区二区三区| 一区二区日韩欧美中文字幕| 久久久久久久久久久久大奶| 欧美另类一区| 亚洲精品第二区| 少妇精品久久久久久久| 天堂中文最新版在线下载| 精品国产一区二区久久| 亚洲av成人一区二区三| 午夜免费成人在线视频| 黑丝袜美女国产一区| 亚洲人成电影免费在线| 免费在线观看日本一区| 美女视频免费永久观看网站| 99国产精品免费福利视频| 视频在线观看一区二区三区| 人妻久久中文字幕网| 精品卡一卡二卡四卡免费| 午夜视频精品福利| 性高湖久久久久久久久免费观看| 热99re8久久精品国产| 亚洲精品久久午夜乱码| 老汉色∧v一级毛片| 亚洲成人国产一区在线观看| 青草久久国产| 国产99久久九九免费精品| 日韩中文字幕欧美一区二区| kizo精华| 在线观看免费日韩欧美大片| 午夜免费鲁丝| 超碰97精品在线观看| 他把我摸到了高潮在线观看 | 中亚洲国语对白在线视频| 大码成人一级视频| 欧美日韩av久久| 国产精品香港三级国产av潘金莲| 亚洲激情五月婷婷啪啪| 伦理电影免费视频| 丰满饥渴人妻一区二区三| 亚洲精品一二三| 久久免费观看电影| 精品一区在线观看国产| 亚洲精品中文字幕在线视频| 日本精品一区二区三区蜜桃| 国产欧美日韩综合在线一区二区| 一区二区三区四区激情视频| 久久人人97超碰香蕉20202| 日本精品一区二区三区蜜桃| 久久久国产成人免费| 黄色怎么调成土黄色| 亚洲精品在线美女| av有码第一页| 国产极品粉嫩免费观看在线| 天天躁日日躁夜夜躁夜夜| 久久精品国产a三级三级三级| 国产亚洲欧美在线一区二区| 十分钟在线观看高清视频www| netflix在线观看网站| 国产深夜福利视频在线观看| 免费观看av网站的网址| 2018国产大陆天天弄谢| 黑人巨大精品欧美一区二区mp4| 日韩精品免费视频一区二区三区| av网站免费在线观看视频| 国产精品免费大片| 丝袜脚勾引网站| 欧美黑人精品巨大| 1024视频免费在线观看| 人人澡人人妻人| 在线观看www视频免费| 美女高潮喷水抽搐中文字幕| 一区在线观看完整版| 欧美人与性动交α欧美精品济南到| 久久综合国产亚洲精品| 另类精品久久| 男女床上黄色一级片免费看| 三级毛片av免费| 精品卡一卡二卡四卡免费| 午夜免费成人在线视频| 久久精品国产亚洲av高清一级| 自拍欧美九色日韩亚洲蝌蚪91| 99国产精品一区二区三区| 免费少妇av软件| 男女下面插进去视频免费观看| √禁漫天堂资源中文www| 下体分泌物呈黄色| 久久久久精品人妻al黑| 亚洲免费av在线视频| 不卡av一区二区三区| 日韩 欧美 亚洲 中文字幕| 国产成人精品无人区| 欧美黄色淫秽网站| 一级a爱视频在线免费观看| 国产精品国产av在线观看| 1024视频免费在线观看| 黄片播放在线免费| 国产精品影院久久| 纵有疾风起免费观看全集完整版| 两个人看的免费小视频| 狠狠精品人妻久久久久久综合| 亚洲av日韩精品久久久久久密| 一区二区av电影网| www日本在线高清视频| 国产真人三级小视频在线观看| 国产成人精品无人区| 欧美少妇被猛烈插入视频| 亚洲欧美日韩另类电影网站| 五月开心婷婷网| e午夜精品久久久久久久| 我要看黄色一级片免费的| 国产又爽黄色视频| 91国产中文字幕| 高潮久久久久久久久久久不卡| 成人av一区二区三区在线看 | 不卡av一区二区三区| 在线观看免费视频网站a站| 久久天躁狠狠躁夜夜2o2o| 黑人欧美特级aaaaaa片| 十八禁高潮呻吟视频| 狠狠婷婷综合久久久久久88av| tocl精华| 我的亚洲天堂| 欧美日韩亚洲高清精品| 久久亚洲国产成人精品v| 桃红色精品国产亚洲av| 99九九在线精品视频| 国产一区有黄有色的免费视频| 亚洲av欧美aⅴ国产| 久久影院123| 日韩中文字幕欧美一区二区| 丝袜美腿诱惑在线| 久久久久精品国产欧美久久久 | 国产福利在线免费观看视频| 国产成人av激情在线播放| 亚洲专区中文字幕在线| 大型av网站在线播放| 久久久精品94久久精品| 亚洲av成人不卡在线观看播放网 | 国产亚洲av高清不卡| 精品少妇黑人巨大在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲五月色婷婷综合| 在线精品无人区一区二区三| 日韩大片免费观看网站| 不卡一级毛片| 亚洲九九香蕉| 中文字幕最新亚洲高清| 天天躁夜夜躁狠狠躁躁| 国产精品久久久久久人妻精品电影 | 黄色片一级片一级黄色片| 夜夜骑夜夜射夜夜干| 日韩欧美一区视频在线观看| 免费在线观看黄色视频的| 国产亚洲精品一区二区www | 在线观看一区二区三区激情| 一区在线观看完整版| 一区二区三区乱码不卡18| av欧美777| 欧美日韩成人在线一区二区| 咕卡用的链子| 国产91精品成人一区二区三区 | 丝袜美足系列| 青春草视频在线免费观看| 成年人黄色毛片网站| 亚洲av成人一区二区三| 国产伦理片在线播放av一区| 欧美黄色淫秽网站| 亚洲国产欧美日韩在线播放| 日韩人妻精品一区2区三区| 亚洲 欧美一区二区三区| 国产亚洲av片在线观看秒播厂| cao死你这个sao货| 少妇猛男粗大的猛烈进出视频| 国产成人系列免费观看| 中文欧美无线码| 国产成人精品久久二区二区免费| 久久中文看片网| 菩萨蛮人人尽说江南好唐韦庄| 下体分泌物呈黄色| 黑丝袜美女国产一区| 欧美另类一区| 自线自在国产av| 男女下面插进去视频免费观看| 久久久久久久久免费视频了| 美女中出高潮动态图| 久久性视频一级片| 超碰成人久久| 色94色欧美一区二区| av网站在线播放免费| 啦啦啦啦在线视频资源| 欧美在线一区亚洲| 久久精品国产综合久久久| 另类亚洲欧美激情| 亚洲免费av在线视频| 亚洲五月色婷婷综合| 日韩熟女老妇一区二区性免费视频| 大片电影免费在线观看免费| 久久人人97超碰香蕉20202| 国产精品久久久久久人妻精品电影 | 美女福利国产在线| 宅男免费午夜| 女人精品久久久久毛片| 国产精品久久久久久精品古装| 91av网站免费观看| 91精品国产国语对白视频| 精品国产一区二区三区四区第35| 如日韩欧美国产精品一区二区三区| 欧美乱码精品一区二区三区| 十八禁网站网址无遮挡| 多毛熟女@视频| 纯流量卡能插随身wifi吗| 99国产精品一区二区蜜桃av | 夫妻午夜视频| videos熟女内射| 捣出白浆h1v1| 欧美少妇被猛烈插入视频| 国产深夜福利视频在线观看| 亚洲熟女精品中文字幕| 亚洲五月色婷婷综合| 国产男女超爽视频在线观看| 亚洲成国产人片在线观看| 欧美日韩黄片免| 男女免费视频国产| 99久久99久久久精品蜜桃| 1024香蕉在线观看| 大片电影免费在线观看免费| 午夜免费成人在线视频| av福利片在线| 另类精品久久| 久久精品成人免费网站| 久久 成人 亚洲| 国产免费av片在线观看野外av| 久久这里只有精品19| 欧美成人午夜精品| 高清黄色对白视频在线免费看| 中文字幕av电影在线播放| 一区二区日韩欧美中文字幕| 久久久久国产一级毛片高清牌| 欧美亚洲日本最大视频资源| 久久精品成人免费网站| 手机成人av网站| 五月开心婷婷网| 男女国产视频网站| 久久国产精品男人的天堂亚洲| 欧美日韩福利视频一区二区| 另类精品久久| 最新的欧美精品一区二区| 欧美乱码精品一区二区三区| 女性生殖器流出的白浆| 久久综合国产亚洲精品| 蜜桃在线观看..| 国产成人欧美在线观看 | 九色亚洲精品在线播放| 99国产综合亚洲精品| 国产成人av激情在线播放| 青春草视频在线免费观看| 一区二区av电影网| 久久久久久久大尺度免费视频| 69av精品久久久久久 | 黑人巨大精品欧美一区二区蜜桃| 久久久国产成人免费| 一二三四在线观看免费中文在| 免费高清在线观看日韩| 免费av中文字幕在线| 国产精品1区2区在线观看. | 亚洲自偷自拍图片 自拍| 成年人免费黄色播放视频| 免费久久久久久久精品成人欧美视频| 丁香六月天网| 日本撒尿小便嘘嘘汇集6| 国产成人欧美| 一区二区三区精品91| 美女国产高潮福利片在线看| 精品免费久久久久久久清纯 | 国产精品 国内视频| 美国免费a级毛片| 久久久久精品人妻al黑| 淫妇啪啪啪对白视频 | 桃花免费在线播放| 国产精品影院久久| 亚洲一卡2卡3卡4卡5卡精品中文| 国产在视频线精品| 好男人电影高清在线观看| 无限看片的www在线观看| 波多野结衣av一区二区av| 大型av网站在线播放| 两个人看的免费小视频| 欧美+亚洲+日韩+国产| 国产伦人伦偷精品视频| 正在播放国产对白刺激| 国产高清视频在线播放一区 | 亚洲欧洲日产国产| 亚洲精品国产区一区二| 国产精品av久久久久免费| 日本猛色少妇xxxxx猛交久久| 热re99久久精品国产66热6| 亚洲人成77777在线视频| 老司机福利观看| 老汉色∧v一级毛片| 天天添夜夜摸| 黑人猛操日本美女一级片| 国产一级毛片在线| 国产成人精品在线电影| 欧美国产精品一级二级三级| 久久久久久久大尺度免费视频| 男女免费视频国产| 欧美久久黑人一区二区| 99国产极品粉嫩在线观看| 电影成人av| 国产一区二区 视频在线| 97在线人人人人妻| 母亲3免费完整高清在线观看| xxxhd国产人妻xxx| 国产一区有黄有色的免费视频| 免费高清在线观看视频在线观看| 久久 成人 亚洲| 国产主播在线观看一区二区| 亚洲天堂av无毛| 日韩免费高清中文字幕av| 欧美变态另类bdsm刘玥| 亚洲人成电影免费在线| av不卡在线播放| 日本黄色日本黄色录像| 最新的欧美精品一区二区| 午夜福利在线观看吧| 高清在线国产一区| 亚洲精品成人av观看孕妇| 国产精品久久久人人做人人爽| 日韩一卡2卡3卡4卡2021年| 亚洲一区中文字幕在线| 午夜福利,免费看| 久久久久久亚洲精品国产蜜桃av| 另类精品久久| 日韩,欧美,国产一区二区三区| 欧美中文综合在线视频| 每晚都被弄得嗷嗷叫到高潮| 久久99一区二区三区| 王馨瑶露胸无遮挡在线观看| 国产av一区二区精品久久| 99久久精品国产亚洲精品| 老司机在亚洲福利影院| 国产一区二区三区综合在线观看| 可以免费在线观看a视频的电影网站| 窝窝影院91人妻| 天天影视国产精品| 国产熟女午夜一区二区三区| 亚洲午夜精品一区,二区,三区| 亚洲,欧美精品.| 亚洲免费av在线视频| 黄网站色视频无遮挡免费观看| 亚洲国产日韩一区二区| 丰满人妻熟妇乱又伦精品不卡| 好男人电影高清在线观看| 欧美xxⅹ黑人| 亚洲国产欧美网| 中文字幕人妻丝袜一区二区| 国产亚洲欧美精品永久| 午夜激情av网站| 国产精品国产av在线观看| 制服诱惑二区| 亚洲精品国产av成人精品| 另类亚洲欧美激情| 日韩一卡2卡3卡4卡2021年| 国产精品1区2区在线观看. | 久久精品久久久久久噜噜老黄| 老司机在亚洲福利影院| 欧美日本中文国产一区发布| 精品久久蜜臀av无| 亚洲熟女毛片儿| 久久女婷五月综合色啪小说| 国产成人啪精品午夜网站| 久久久久久人人人人人| 日本a在线网址| 精品少妇久久久久久888优播| 在线观看人妻少妇| 亚洲色图 男人天堂 中文字幕| 午夜福利影视在线免费观看| 日韩视频一区二区在线观看| 亚洲欧美一区二区三区久久| 日本a在线网址| 国产成+人综合+亚洲专区| 成人免费观看视频高清| 人妻人人澡人人爽人人| 亚洲九九香蕉| 我要看黄色一级片免费的| 人人妻人人澡人人爽人人夜夜| 国产精品欧美亚洲77777| 久久久久久人人人人人| 99国产精品一区二区蜜桃av | 久久久久视频综合| 亚洲国产毛片av蜜桃av| e午夜精品久久久久久久| videos熟女内射| 少妇人妻久久综合中文| 少妇精品久久久久久久| 精品久久蜜臀av无| 精品一品国产午夜福利视频| 伦理电影免费视频| 欧美激情 高清一区二区三区| 黄片播放在线免费| 国产在线免费精品| 亚洲中文日韩欧美视频| 免费女性裸体啪啪无遮挡网站| 国产亚洲精品一区二区www | 亚洲人成77777在线视频| 亚洲av成人一区二区三| 叶爱在线成人免费视频播放| 在线 av 中文字幕| 亚洲激情五月婷婷啪啪| 黑人巨大精品欧美一区二区mp4| 久久精品亚洲av国产电影网| 在线观看www视频免费| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美+亚洲+日韩+国产| 热99re8久久精品国产| 涩涩av久久男人的天堂| 2018国产大陆天天弄谢| 1024香蕉在线观看| 啦啦啦视频在线资源免费观看| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲欧美成人综合另类久久久| 18禁观看日本| 成人国产av品久久久| 亚洲精品一二三| 久久热在线av| 亚洲国产日韩一区二区| 手机成人av网站| 日本a在线网址| 欧美精品啪啪一区二区三区 | 女人爽到高潮嗷嗷叫在线视频| 最近中文字幕2019免费版| 国产精品熟女久久久久浪| 最近最新中文字幕大全免费视频| 少妇 在线观看| 欧美日韩成人在线一区二区| 999精品在线视频| 精品国产一区二区久久| 国产精品麻豆人妻色哟哟久久| 91麻豆av在线| 日韩欧美一区视频在线观看| 久久影院123| 国产一区二区三区综合在线观看| 一区二区三区乱码不卡18| 免费女性裸体啪啪无遮挡网站| 午夜激情av网站| 免费人妻精品一区二区三区视频| 免费在线观看影片大全网站| 欧美黄色淫秽网站| avwww免费| 成人18禁高潮啪啪吃奶动态图| 欧美老熟妇乱子伦牲交| 久久 成人 亚洲| 俄罗斯特黄特色一大片| 老司机影院成人| 丝袜人妻中文字幕| 国产一级毛片在线| 少妇人妻久久综合中文| 一区二区日韩欧美中文字幕| 国产成人av激情在线播放| 人人妻人人澡人人爽人人夜夜| 女人爽到高潮嗷嗷叫在线视频| 国产精品久久久久久人妻精品电影 | 午夜视频精品福利| 少妇人妻久久综合中文| avwww免费| 黑人欧美特级aaaaaa片| 啦啦啦 在线观看视频| 在线观看舔阴道视频| 欧美激情高清一区二区三区| 老熟妇乱子伦视频在线观看 | 午夜激情av网站| 嫁个100分男人电影在线观看| 18禁观看日本| 国产成人欧美在线观看 | av在线老鸭窝| 正在播放国产对白刺激| 老汉色av国产亚洲站长工具| 搡老熟女国产l中国老女人| 99国产精品一区二区蜜桃av | 女性被躁到高潮视频| 亚洲av欧美aⅴ国产| 国产精品久久久久久精品古装| 女警被强在线播放| 国产xxxxx性猛交| av一本久久久久| 99精品欧美一区二区三区四区| 精品高清国产在线一区| 亚洲七黄色美女视频| 久热爱精品视频在线9| 99精品久久久久人妻精品| 久久久国产欧美日韩av| 国产日韩一区二区三区精品不卡| www.av在线官网国产| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜免费鲁丝| 久久中文字幕一级| 日韩 亚洲 欧美在线| 青草久久国产| 在线观看人妻少妇| 久久久精品94久久精品| 欧美少妇被猛烈插入视频| 岛国毛片在线播放| a级毛片黄视频| 亚洲美女黄色视频免费看| 精品人妻一区二区三区麻豆| 成人影院久久| 久久女婷五月综合色啪小说| 一二三四在线观看免费中文在| 欧美人与性动交α欧美精品济南到| 亚洲国产毛片av蜜桃av| 久久久精品94久久精品| 国产精品.久久久| 美女国产高潮福利片在线看| tocl精华| 巨乳人妻的诱惑在线观看| 成人影院久久| 国产av精品麻豆| 曰老女人黄片| 美女主播在线视频| 久久国产精品男人的天堂亚洲| 精品第一国产精品| 欧美日韩亚洲综合一区二区三区_| 欧美日韩av久久| 99热国产这里只有精品6| 丝袜喷水一区| 91老司机精品| 亚洲性夜色夜夜综合| 欧美激情久久久久久爽电影 | 精品第一国产精品| 99精国产麻豆久久婷婷| av免费在线观看网站| 在线观看免费午夜福利视频| h视频一区二区三区| 日日夜夜操网爽| 亚洲欧美一区二区三区黑人| 性色av一级| 少妇的丰满在线观看| 国产又色又爽无遮挡免| 亚洲av片天天在线观看| 美女大奶头黄色视频| 欧美亚洲日本最大视频资源| 午夜激情久久久久久久| 亚洲av美国av| 在线十欧美十亚洲十日本专区| 欧美成狂野欧美在线观看| 一个人免费看片子| 精品国产乱子伦一区二区三区 | 日韩一区二区三区影片| 国产一区二区在线观看av| 91麻豆精品激情在线观看国产 | 男女之事视频高清在线观看| 一级黄色大片毛片| 老司机午夜十八禁免费视频| 亚洲国产精品999| 女人爽到高潮嗷嗷叫在线视频| 桃红色精品国产亚洲av| 亚洲少妇的诱惑av| 中国国产av一级| 久久国产精品大桥未久av| 侵犯人妻中文字幕一二三四区| 久久久精品国产亚洲av高清涩受| 亚洲精品久久成人aⅴ小说| 亚洲中文日韩欧美视频| av超薄肉色丝袜交足视频| 亚洲伊人色综图| 丰满人妻熟妇乱又伦精品不卡| 国产精品自产拍在线观看55亚洲 | 无限看片的www在线观看| 青草久久国产| 无遮挡黄片免费观看| 黄色怎么调成土黄色| 男女免费视频国产| 91字幕亚洲| 国产成人啪精品午夜网站| 国产男女超爽视频在线观看| 久久久精品区二区三区| 日韩大片免费观看网站| 久久久水蜜桃国产精品网| 老司机亚洲免费影院| av福利片在线| 他把我摸到了高潮在线观看 | 天天躁狠狠躁夜夜躁狠狠躁| 高潮久久久久久久久久久不卡| 交换朋友夫妻互换小说| 在线亚洲精品国产二区图片欧美| av一本久久久久| 欧美激情高清一区二区三区| 国产精品久久久久久精品古装| 国产精品免费大片| 国产成人精品在线电影| 妹子高潮喷水视频| 成年女人毛片免费观看观看9 | 黑人巨大精品欧美一区二区蜜桃| 国产人伦9x9x在线观看| 国产av精品麻豆| 免费在线观看影片大全网站| 欧美另类一区| 国内毛片毛片毛片毛片毛片| 女人被躁到高潮嗷嗷叫费观| 国产精品 欧美亚洲| 欧美激情高清一区二区三区| 国产成人欧美| www.熟女人妻精品国产| 国产精品av久久久久免费| 婷婷色av中文字幕| 熟女少妇亚洲综合色aaa.| 五月开心婷婷网| 韩国高清视频一区二区三区| 亚洲精品国产一区二区精华液| 久久女婷五月综合色啪小说|