• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Novel Hybrid Tag Identification Protocol for Large-Scale RFID Systems

    2021-12-11 13:32:10YeMuRuiwenNiYuhengSunTongZhangJiLiTianliHuHeGongShijunLiandThobelaLouisTyasi
    Computers Materials&Continua 2021年8期

    Ye Mu,Ruiwen Ni,Yuheng Sun,Tong Zhang,Ji Li,Tianli Hu,He Gong,Shijun Li,* and Thobela Louis Tyasi

    1College of Information Technology,Jilin Agricultural University,Changchun,130118,China

    2Jilin Province Agricultural Internet of Things Technology Collaborative Innovation Center,Changchun,130118,China

    3Jilin Province Intelligent Environmental Engineering Research Center,Changchun,130118,China

    4Jilin Province Colleges and Universities The 13th Five-Year Engineering Research Center,Changchun,130118,China

    5Department of Agricultural Economics and Animal Production,University of Limpopo,Sovenga,0727,Polokwane,South Africa

    Abstract:Radio frequency identification technology is one of the main technologies of Internet of Things(IoT).Through the transmission and reflection of wireless radio frequency signals, non-contact identification is realized,and multiple objects identification can be realized.However, when multiple tags communicate with a singleton reader simultaneously,collision will occur between the signals,which hinders the successful transmissions.To effectively avoid the tag collision problem and improve the reading performance of RFID systems,two advanced tag identification algorithms namely Adaptive M-ary tree slotted Aloha(AMTS)based on the characteristics of Aloha-based and Query tree-based algorithms are proposed.In AMTS, the reader firstly uses the framed slotted Aloha protocol to map the tag set to different time slots,and then identify the collided tags using binary search method based on collision factor or mapping table.Both performance analysis and extensive experimental results indicate that our proposed algorithms significantly outperforms most existing anti-collision approaches in tag dense RFID systems.

    Keywords: RFID; anti-collision; Aloha; multi-tree; AMTS

    1 Introduction

    Radio frequency identification (RFID) technology is rapidly emerging as one of key technologies for Industrial Internet of Things (IIoT) [1].RFID system provide the ability to automatically identify and track objects and persons in a non-contact, non-line-of-sight manner.This enables the development of very different automated item management frameworks and thus provides a compelling business case for the rapid adoption of RFID systems.Many research results prove that RFID technology can be applied to various industrial applications such as factory [2],inventory management [3,4], medical privacy protection [5] and agriculture [6,7].The technological level is also constantly innovating.Passive technology in RFID has matured.Its equipment does not require power supply and maintenance, and is being increasingly used.The components of RFID systems are multiple tags, a reader and a back-end server.When multiple RFID tags communication with a singleton reader simultaneously, interference will occur between the signals,resulting in reader to fail to fail to obtain the tag ID and thus affects the stability and settlement efficiency of the RFID system.In order to solve the tag collision problem in a dense environment,an anti-collision mechanism is needed to coordinate the communication between the reader and tags, which is named tag identification or anti-collision algorithm.

    The rapid multi-tag identification is the first type of issue that attracted the attention of researchers in the RFID community.Generally speaking, mainstream tag identification algorithms are divided into two categories according to the functional characteristics:Aloha-based algorithms [8-13], deterministic algorithms [14-17] contains query tree-based and binary search algorithms.The Aloha-based algorithms are intuitive solution but they do not appear to be scalable.The efficiency of the protocols is highly affected by the cardinality.An advantage of the Aloha-based protocol is that it is simple to implement.The disadvantage of them is the slow throughput under high-traffic loads; also they are sensitive to changes in the number of tags, that is, when the frame length setting is not appropriate, the performance will drop sharply.In contrast, the performance of query tree-based algorithms [15-17] will not be affected by the tag cardinality, i.e., its performance almost maintain a constant value as the number of tags increases.One disadvantage of these protocols is that the length of probe command of such algorithm is not fixed, it will change with the change of the query prefix length during the tag identification process.In addition, query tree-based algorithm consumes more transmitted bits.Therefore, many researchers proposed hybrid algorithms [18,19].The literature [18] shows us three multi-tag identification algorithms based on binary tree slotted Aloha (BTSA).Among them, the Splitting BTSA algorithm with the best performance has a throughput of 0.425.The literature [19] proposed a new kind of tree slotted Aloha protocol, in which the whole tag set can be divided into many smaller groups.Then the reader identify the tags group by group via tree splitting strategy.However, because both the Aloha-based algorithm and tree splitting algorithm are random access algorithm in nature, thus the algorithm proposed in [19] cannot guarantee that all tags are completely identified.

    In this paper, we designed and implemented a hybrid architecture of tag identification, and proposed two hybrid tag identification algorithms.These two algorithms inherit the advantages of Aloha-based and deterministic algorithms, and abandon mutual shortcomings.In particular,our proposed algorithms do not need to provide an accurate estimation of the number of tags in collision phase, thereby avoiding the negative impact of estimation errors on performance,and reducing the computational complexity.Moreover, their efficiency will not be affected by the number of tags and tag IDs distribution.

    The remainder of this paper is organized as follows.In Section 2, we reviewed the existing the anti-collision algorithms.Section 3 presents the system model and our proposed hybrid algorithm.In Section 4, mathematical analysis and performance evaluation through simulations is conducted.Section 5 concludes the whole paper.

    2 Related Works

    As mentioned above, existing anti-collision algorithm mainly consists of two types:Alohabased and deterministic algorithm.The deterministic algorithm can be further divided into two types:Query tree [14,15,17] and tree splitting [16] algorithms.In deterministic algorithm, the reader uses coding number carried by the tag to allow the tag to perform reading priority sorting.After sorting, the reader identifies the tags start from the bottom of the fork.Law [1] firstly proposed query tree (QT) anti-collision algorithm.In QT algorithm, the reader maintains a stack to store the query prefix.If the tags’sequence number in a certain bit are the same, the reader continues to push new query prefixes into the stack.For the prefix, the reader recognizes the tags sequentially according to the order.This is the earliest QT algorithm.At present, there are many algorithms that have improved the QT classic algorithm, mainly through the eigenvalues of collision bits and the addition of additional queries.In [14], the authors proposed an improved QT algorithm to enhance the identification performance.The literature classified a large number of tag prefixes according to similarity, just like a big tree is divided into many branches, each type of the same prefix represents a tag groups, reader probes each group separately to reduce collisions and the transmissions of empty slots.However, such algorithm adds some extra queries, which increases the additional query time communication complexity in downlink.Some authors [20]proposed a query method based on a 4-ary tree to avoid unnecessary collisions and improve the efficiency of traverse.Specifically, the reader uses the characteristics of the highest two collision bits.The number of forks in the query tree can be adjusted to reduce unnecessary collision slots.The advantage of the deterministic algorithm is that it can ensure that the tag group is completely identified.Wang [21] proposed a binary search tree algorithm (PNBA) based on physical layer network coding, which pushed the conflicting signal information of multiple labels to a stack and discarded it by the traditional anti-collision algorithm.Dong [22] proposed an improved binary search conflict prevention protocol, BRTP, which allows two groups of tags to respond to a reader in the same slot in a dual-response mechanism.

    In Aloha-based algorithm, each tag randomly picks up a slot to respond to the reader after extracting the parameters including frame size and communication rate from the reader’s command.The representative is the adaptive Q-algorithm based on UHF RFID standard EPC C1 Gen2 protocol.According to [23], there are three types of probe commands:Query,QueryRep,andQueryAdj.An identification round is defined as the time duration between successive probe commands issued by the reader and therefore only oneQuerycommand exists in each identification round.Therefore, the reader issues manyQueryadjorQueryRepcommands in order to identify tags during each identification round.In particular,QueryAdjcommand carries the value of parameterQand instructs all tags to adjust their value ofQ.All tags receiving the new value ofQreselect their slot counter based on the newQ(between 0 and 2Q?1); here,Qcould be incremented by 1, decremented by 1, or have no change according to the adaptiveQalgorithm.There are three types of access events:collision, empty, and success.The reader can send either aQueryAdjorQueryRepin the case of a collision; it can send aQuery,QueryAdj, orQueryRepin the case of empty; and it can send either aQueryAdjorQueryRepin the case of success.There are four assumptions determining when to use which probe command, as follows.

    (1) All tags to be identified in each identification round are successfully read in one round.Thus there is only oneQuerycommand in each identification round.

    (2) If the access event is a collision, the reader sends aQueryAdjcommand to trigger tags to reselect their slot counter.The value of theQparameter is updated byQfp, the floatingpoint representation ofQ, andc (0.1 ≤c≤0.5), the adjustment factor.The update formula isQfp=min(15,Qfp+c),Q=round(Qfp).Although the Q value is not changed, the reader sends aQueryAdjcommand.

    (3) If the access event is empty, the reader sends aQueryAdjcommand whenQis changed or aQueryRepcommand whenQhas no change.The update formula isQfp=max(0,Qfp?c),Q=round(Qfp).

    (4) If the access event is success, the reader sends aQueryAdjcommand to trigger the tags to reselect their slot counter.The value ofQis not changed, i.e.,Qfp=Qfp+0,Q=round(Qfp).

    The advantage of the Aloha-based algorithms represented by the Q-algorithm is that they are easy to implement on the reader side.However, the random nature of such type of algorithm will cause the performance to fluctuate with the number of tags.

    3 System Model and Algorithm Description

    Our proposed Adaptive M-ary tree slotted Aloha (AMTS) algorithm starts a round of identification process by broadcasting a probe command with a key parameter named frame size [24].Each tag that receives the probe command will randomly picks up a time slot to respond to the reader and return its own ID information.Once a collision is detected, the reader will count the current value of slot counter (SC) and push it onto the stack.When the reader reads a frame,it will count all slot statistics and obtain the values corresponding to slot counter.Unlike the conventional Aloha-based anti-collision strategies, the reader does not use the number of slot statistics to estimate the number of unread tags and attempts to identify the collided tags in the following frames.In AMTS, the reader will use the query tree algorithm to directly identify the involved tags in each collision slots, which is viewed as an independent identification process of collision slots.Only when all collisions are resolved, the entire process will end.Fig.1 depicts an example of using AMTS algorithm to identify ten tags.As shown in the figure, there are 2 collision slots in the entire frame, which are located in the 1-st slot and 5-th slot, respectively.We can see that the reader uses a 2-ary tree method to resolve three tags in the first collision slot and uses a 4-ary tree method to resolve five tags in the second collision slot.Through this example, we can intuitively know the advantages of AMTS algorithm.Specifically, we designed two AMTS algorithms, which are based on dynamic frame size adjustment (CF-AMTS) and adaptive m-ary selection (MF-AMTS).The difference between them is that the former uses a collision factor to adjusts the m-ary search and the latter uses mapping table to estimate the number of tags involved in collision slots.

    Figure 1:An illustrated example by using AMTS algorithm

    In what follows, we elaborate on the principles and operating mechanisms of these two algorithms.

    (1) CF-AMTS:Algorithm description

    In this paper, we define a variable called collision factor, which is expressed as

    In the above formula, k represents the number of collision bits in the current time slot, and n is the tag ID length.We make the following assumption that the current slot is a collision slot and there are m tags to be identified.For any bit in a string responded by the tag, the probability that it will not collide can be expressed as 1/2m?1, Eq.(1) can be rewritten as

    Eq.(2) implies that the larger the value ofm, the higher the collision factor.We assume that in the entire traversal tree, the highest query depth isN, which is the longest path required from the root of the traversal tree to the leaf nodes.The probability that a tag can be successfully recognized at the first level of traversal tree is expressed asP1=(1 ?1/N)m?1and the probability that the tag can be successfully recognized at the r-th level of traversal tree is expressed asPr=P1(1 ?P1)r?1.Then the expectation ofris calculated as

    Correspondingly, we can derive the average number of slots spent by the reader to identifymtags.

    According to Eq.(4), we can get the following judgment conditions.

    Combining formula (2) and (5), the reader knows that it should use 2-ary tree to resolve the collided tags whenm≥3.Ifmis less than 3, the reader should use a 2-ary tree to resolve the collided tags.The collision factor is an indicator that reflects the number of tags in the collision slot.However, such indicator is not completely reliable because it is easily affected by the distribution of tag IDs.Therefore, if only the collision factor is used to estimate the number of remaining tags in a collision slot, a large error may be caused, thereby affecting the identification performance.To solve this problem, we introduce a new custom command QueryRP.It is worth noting that the EPC C1 Gen2 standard allows users to use custom commands, so this approach does not cause additional costs.The specific operation is as follows.When the collision factor is greater than 0.75, the reader will sends a QueryRP command to let the tags return a 4-bit string,which implies 2-bit collision bits information.The process of generating the 4-bit data returned by the tag is as follows.The tag executes the bitwise and operation of the first 4-bit of its ID with (1100), and then converts the highest 2-bit into a decimal value x, and then generates a new 4-bit string in which the x-th bit is 1, the rest bits are 0.As shown in Fig.2, the reader uses CF-AMTS algorithm to identify two tags in a collision slot.From the figure we can see that the tag IDs are 11010001 and 11101010, respectively.When they collide in a time slot, the collision factor can be calculated to be 0.75.At this time, if the reader uses a 4-ary tree to resolve them,additional empty slots will be introduced.By making full use of the QueryRP command, the reader can parse out the tag ID prefix implicit in the collided string in the current slot, thereby avoiding the occurrence of empty slots.

    Figure 2:An example by using CF-AMTS to identify two tags in a collided slot

    (2) MF-AMTS:Algorithm description

    In the next, we elaborate on the second AMTS algorithm, namely MF-AMTS algorithm.The salient feature of this algorithm is to use the mapping table to estimate the tag cardinality in a collision slot.

    Tab.1 is a mapping table that maps 2-bit original data to 4-bit string.In MF-AMTS, the tag will extract its own high 2-bit ID data according to the probe command sent by the reader, and map it into a 4-bit string based on the given mapping table.It is noted that the time slot for the tag to respond to the reader is no longer randomly selected.The tag will use its own ID to match the prefix parameter in the probe command sent by the reader and determine whether it responds or not.Assume that in a 4-bit mapped data, the number of collision bits (a collided bit is denoted as “x”) ist.Then the reader will use a 4-ary tree to resolve the collided tags whentis greater than or equal to 3, otherwise it will use a 2-ary tree.We still reuses the example in Fig.2.The index of the collision slot selected by the tags is stored in the reader’s stack.The corresponding communication procedure is described in Tab.2.We can observe that two tags have a common prefix of 11 in slot 1, so their responding data are (01→0010) and (10→0100), respectively.On the reader side, the received data string is 0xx0.According to the principle of MF-AMTS, the new generated prefix is 110 becausetis 2.

    Table 1:Mapping table

    Table 2:The communication procedure by using MF-AMTS to identify the tags in Fig.2

    By comparing Fig.2 and Tab.2, we can find that the number of slots consumed by the reader to identify the same batch of tags using MF-AMTS algorithm is less than CF-AMTS algorithm.The reason is given as follows.The CF-AMTS algorithm uses QueryRP command to produce the extra slots.Fig.3 depicts the detailed flowchart of the AMTS algorithm proposed in this paper.

    Figure 3:Flowchart of AMTS algorithm

    WhereNe,NrandNcare the number of idle slots, successful slots and collision slots,respectively.With the expected ratios ofNe,NrandNcwhich equals to 2:1:7/24 under the conditionL=2naccording to the analysis of [7].We can derive the rule of the adjustment ofQvalue as

    IfNe?6Nc >Tthresholdduring the identification process, it presumes thatL≥2n.To avoid too many idle slots and improve efficiency, the value ofQshould be decreased by 1.In other case,Qkeeps unchanged.From the above description, it is known that we design two tag identification algorithms based on hybrid architecture.The similarity between the two algorithms is that they both contain the AMS module.The key difference is that the criteria for CF-AMTS and MF-AMTS to enter the AMS module are different.The former is based on collision factor and custom commands.And the latter is based on mapping table.

    4 Performance Analysis and Numerical Results

    4.1 Performance Analysis

    We theoretically analyze the total number of slots required for our proposed two AMTS algorithms and then deduce the system efficiency.Specifically, the total number of slots can be obtained by summing the frame sizeLand the number of slots consumed by AMS module.We can make the following assumptions, the number of unread tags entering the AMS module isM.The average number of tags contained in each intermediate node is 3 ink-th traversal depth.In the tag identification process, if the required traversal depth is higher thank, the reader should use 2-ary tree, other it should use 4-ary tree.The total number of slots required by AMTS can be expressed as

    HereinT4-ary-totaldenotes the total number of slots taken by a full 4-ary tree, which is calculated as

    Through Fig.2 shown above, we can see that when the reader sends a QueryRP command once, it will consume a time slot correspondingly.Then, the number of QueryRP commands can be equivalent to the number of collision slots, i.e.,TQueryRP=T4-ary-coll.

    Referring to the analysis in [15], the number of total slots (T4-ary-total), empty slots (T4-ary-idle)and collision slots (T4-ary-coll) can be calculated as

    in whichmdenotes the number of tags involved in current slot, j represents the traversal depth.As explained in the previous section, empty slots cam be eliminated by the introduction of QueryRP command.Therefore, the total number of slots taken by CF-AMTS to identifyntags is expressed as

    Then, the total number of slots taken by MF-AMTS is calculated as Eq.(13).Wherenrepresents the number of tags waiting to be identified,sdenotes the number of success slots when the frame length isL.

    Then, the system efficiency of CF-AMTS and MF-AMTS can be calculated asn/TCF-AMTS-totalandn/TMF-AMTS-total, respectively.

    4.2 Numerical Results

    We implement the proposed algorithm in MATLAB on a ThinkPad X1 Carbon desktop with an Intel 2.4 GHz CPU.Our simulation setting follows the specifications of the EPC C1 Gen2 standard.The number of tags is from 50 to 1000 in step of 50.The reader-to-tag transmission rate and the tag-to-reader data rate are not symmetric, which depends on specific physical implementations and practical environments.The main time parameters used in MATLAB simulations are listed in Tab.3.All simulation results are the average of 1000 simulation runs in MATLAB.

    Table 3:The main time parameters used in MATLAB simulations

    The performance of the our proposed AMTS algorithms are evaluated in terms of average required slots for one tag identification, the number of total slots, and energy efficiency.Fig.5 shows the average required slots for one tag identification when 20 ≤n≤1000 compared with Dynamic frame slotted aloha (DFSA) [7], Enhanced Dynamic frame slotted aloha [9], Dynamic binary search algorithm (DBSA) and Splitting BTSA [16].Specifically, Splitting BTSA consumes 2.3 slots on average to identify a tag, whereas CF-AMTS and MF-AMTS consume 2 slots,1.5 slots, respectively.Almost 13.1% and 34.7% efficiency can be improved by CF-AMTS and MF-AMTS than Splitting BTSA.As also can be found in Fig.4, the stability of the deterministic algorithm is higher than that of the Aloha-based algorithm.For example, for DBSA,it can maintains the stable performance regardless of the number of tags, and its performance is very close to CF-AMTS.For MF-AMTS, inheriting the dual advantages of Aloha-based and deterministic algorithm, it can maintains its performance stability while improving the identification performance.

    Figure 4:Average required slots of one tag identification

    Figure 5:Total slots required to read all tags

    In Fig.5, we compare the read performance of schemes, including CF-AMTS and MF-AMTS.Similar to the results for the average required slots for one tag identification, our proposed algorithms has better performance than the other algorithms.For example, when the number of tags is 1000, the DFSA, EDFSA, Splitting BTSA and DBSA consume 4180, 2898,2439, and 2035 of total slots to identify all the tags, respectively.As a comparison, the number of total slots required by CF-AMTS and MF-AMTS are 1875 and 1490, respectively.In other words, the CF-AMTS and MF-AMTS reduce the number of total slots by 7.86% and 26.7% over DBSA when the tag cardinality is 1000.The CF-AMTS and MF-AMTS reduce the number of total slots by 23.1% and 38.9% over Splitting BTSA when the tag cardinality is 1000.

    To further evaluate the performance of our proposed algorithms.We use another important evaluation metric, i.e., energy efficiency.We define the energy efficiency metric for every energy uniteuas follows:

    where Q, S and W are number of queries, slots and mode switches, respectively.eq,esandeswitchare corresponding energy cost.This energy efficiency model is proposed in [13].

    Fig.6 compares the energy efficiency of various algorithms.Similar to the results for the average required slots for one tag identification and the number of total slots, our proposed algorithms have better performance than the other algorithms.

    Figure 6:The comparison of various algorithms in terms of energy efficiency

    5 Conclusions

    In this paper, we present 2 multi-tag identification algorithms based on hybrid architecture to improve the reading efficiency in tag dense RFID scenarios.The contributions are concluded as follows.Compared with existing anti-collision algorithms, our proposed approaches in this paper not only have higher system throughput, but also do not require precise cardinality estimation of the entire tag set, and hence they can be easily implemented on low-cost RFID readers.Both theoretical analysis and various experimental results verify that our proposed algorithms are superior to prior art in terms of system throughput, the total number of slots and energy efficiency.

    Funding Statement:This research was supported by The People’s Republic of China Ministry of Science and Technology [2018YFF0213606-03 (Mu Y., Hu T.L., Gong H., Li S.J.and Sun Y.H.) http://www.most.gov.cn], the Science and Technology Department of Jilin Province[20160623016TC, 20170204017NY, 20170204038NY,20200402006NC (Mu Y., Hu T.L., Gong H.and Li S.J.) http://kjt.jl.gov.cn], and the Science and Technology Bureau of Changchun City[18DY021 (Mu Y., Hu T.L., Gong H., and Sun Y.H.) http://kjj.changchun.gov.cn].

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    精华霜和精华液先用哪个| 日本精品一区二区三区蜜桃| 嫩草影视91久久| 国产午夜精品久久久久久一区二区三区 | 日韩中文字幕欧美一区二区| 夜夜躁狠狠躁天天躁| 亚洲第一电影网av| 淫妇啪啪啪对白视频| 日日摸夜夜添夜夜添小说| 搞女人的毛片| 久久久久久人人人人人| 亚洲精品亚洲一区二区| 国产不卡一卡二| 日本精品一区二区三区蜜桃| 国产精品精品国产色婷婷| 亚洲精品色激情综合| 九色成人免费人妻av| www日本黄色视频网| 国产精品久久久久久久电影 | 亚洲av成人av| 偷拍熟女少妇极品色| 69人妻影院| 午夜免费激情av| 18禁黄网站禁片午夜丰满| 美女高潮的动态| 日韩欧美在线二视频| 99热精品在线国产| 无限看片的www在线观看| 国产精品1区2区在线观看.| 色在线成人网| 国产伦人伦偷精品视频| 精品日产1卡2卡| 国产精品亚洲美女久久久| av中文乱码字幕在线| 国产三级黄色录像| 老司机午夜十八禁免费视频| 内射极品少妇av片p| 精品人妻1区二区| 国产一区二区激情短视频| 精品一区二区三区视频在线 | 老汉色av国产亚洲站长工具| 国内毛片毛片毛片毛片毛片| 女警被强在线播放| 国产成人啪精品午夜网站| 日韩大尺度精品在线看网址| 国产精品亚洲一级av第二区| 五月玫瑰六月丁香| 成人av在线播放网站| 久久久久久久亚洲中文字幕 | 一进一出好大好爽视频| 嫩草影院入口| 九色国产91popny在线| 一级黄色大片毛片| 他把我摸到了高潮在线观看| 国产欧美日韩一区二区精品| 成人精品一区二区免费| 久久人人精品亚洲av| 国产一区二区三区在线臀色熟女| 日本黄色片子视频| 国产熟女xx| 99国产极品粉嫩在线观看| 午夜福利免费观看在线| 欧美黄色淫秽网站| 日本熟妇午夜| 九九久久精品国产亚洲av麻豆| 天天躁日日操中文字幕| 国内久久婷婷六月综合欲色啪| 一个人看视频在线观看www免费 | 国产高清三级在线| 悠悠久久av| 女人高潮潮喷娇喘18禁视频| 日本a在线网址| 首页视频小说图片口味搜索| 老熟妇乱子伦视频在线观看| 久久中文看片网| 国产亚洲精品久久久com| 国产高清三级在线| av中文乱码字幕在线| 欧美性感艳星| 亚洲不卡免费看| 网址你懂的国产日韩在线| 国产高清激情床上av| 亚洲精华国产精华精| 成人18禁在线播放| 小蜜桃在线观看免费完整版高清| 好男人电影高清在线观看| 九九热线精品视视频播放| 99精品久久久久人妻精品| 国产伦精品一区二区三区四那| 午夜福利高清视频| 少妇裸体淫交视频免费看高清| 蜜桃亚洲精品一区二区三区| 小说图片视频综合网站| 久久香蕉国产精品| 欧美成人免费av一区二区三区| 色老头精品视频在线观看| 在线观看一区二区三区| 久久久久九九精品影院| 精品久久久久久久人妻蜜臀av| 亚洲av成人不卡在线观看播放网| 91在线精品国自产拍蜜月 | АⅤ资源中文在线天堂| 老司机午夜十八禁免费视频| 国产精品1区2区在线观看.| 国产91精品成人一区二区三区| 成年人黄色毛片网站| 窝窝影院91人妻| 精品人妻偷拍中文字幕| 最近最新中文字幕大全免费视频| 黑人欧美特级aaaaaa片| 婷婷精品国产亚洲av在线| 偷拍熟女少妇极品色| 欧美一级毛片孕妇| 日本黄色视频三级网站网址| 乱人视频在线观看| 成人18禁在线播放| 成人国产一区最新在线观看| 欧美在线一区亚洲| 日本一本二区三区精品| 国产精品影院久久| 一边摸一边抽搐一进一小说| a级一级毛片免费在线观看| 久久久久亚洲av毛片大全| 我要搜黄色片| 国产在线精品亚洲第一网站| 国产男靠女视频免费网站| 搡老妇女老女人老熟妇| 国产色爽女视频免费观看| 国产免费一级a男人的天堂| 国产精品日韩av在线免费观看| x7x7x7水蜜桃| av天堂中文字幕网| 久久久国产精品麻豆| 蜜桃亚洲精品一区二区三区| av在线蜜桃| 午夜福利免费观看在线| 校园春色视频在线观看| 1000部很黄的大片| 男女之事视频高清在线观看| 国产精品一区二区免费欧美| 国产三级在线视频| 免费观看的影片在线观看| 丁香六月欧美| 男女下面进入的视频免费午夜| 午夜老司机福利剧场| 一级毛片女人18水好多| 国产真实伦视频高清在线观看 | 香蕉丝袜av| 欧美日韩亚洲国产一区二区在线观看| 亚洲成人久久性| 国产精品精品国产色婷婷| 欧美另类亚洲清纯唯美| 欧美一区二区精品小视频在线| 国内毛片毛片毛片毛片毛片| 国内精品久久久久精免费| 亚洲专区中文字幕在线| 18美女黄网站色大片免费观看| 国产成人av激情在线播放| 午夜福利在线在线| 亚洲欧美日韩卡通动漫| av专区在线播放| 久久国产乱子伦精品免费另类| 中国美女看黄片| 99热精品在线国产| 国产高清激情床上av| 最近在线观看免费完整版| 99久久99久久久精品蜜桃| 在线观看一区二区三区| bbb黄色大片| 成人高潮视频无遮挡免费网站| 最新中文字幕久久久久| 成人av在线播放网站| 欧美日韩国产亚洲二区| 国产精品一及| 99久久精品国产亚洲精品| 国内精品一区二区在线观看| 国产av不卡久久| 在线免费观看不下载黄p国产 | 99热这里只有是精品50| 男女午夜视频在线观看| 日本 欧美在线| 精品人妻一区二区三区麻豆 | 日韩av在线大香蕉| 99久久成人亚洲精品观看| 在线a可以看的网站| 九色成人免费人妻av| 欧美色视频一区免费| 人妻丰满熟妇av一区二区三区| 亚洲 国产 在线| 最近视频中文字幕2019在线8| 狂野欧美激情性xxxx| 在线观看66精品国产| 美女高潮喷水抽搐中文字幕| 51国产日韩欧美| 在线播放无遮挡| 2021天堂中文幕一二区在线观| 中文字幕熟女人妻在线| 欧美日韩亚洲国产一区二区在线观看| 动漫黄色视频在线观看| 精品久久久久久久毛片微露脸| 中文字幕精品亚洲无线码一区| 91九色精品人成在线观看| 在线观看一区二区三区| 日本一二三区视频观看| 怎么达到女性高潮| 3wmmmm亚洲av在线观看| 国产真实乱freesex| 国产伦一二天堂av在线观看| 有码 亚洲区| 一卡2卡三卡四卡精品乱码亚洲| 夜夜看夜夜爽夜夜摸| 99国产综合亚洲精品| 亚洲久久久久久中文字幕| 国产一区二区三区视频了| 长腿黑丝高跟| 亚洲久久久久久中文字幕| 国产黄片美女视频| 国产精品一区二区三区四区久久| 在线看三级毛片| 岛国在线观看网站| 国产亚洲欧美在线一区二区| 色综合欧美亚洲国产小说| 日本黄色视频三级网站网址| or卡值多少钱| 女人被狂操c到高潮| 日韩欧美国产一区二区入口| 老鸭窝网址在线观看| 免费一级毛片在线播放高清视频| 欧美黄色片欧美黄色片| 91麻豆av在线| 老熟妇仑乱视频hdxx| 18禁美女被吸乳视频| 亚洲在线自拍视频| 搡女人真爽免费视频火全软件 | 精品一区二区三区视频在线观看免费| 欧美成人a在线观看| 亚洲国产欧美网| 国产精品,欧美在线| 桃色一区二区三区在线观看| 久久久久久九九精品二区国产| 99久久无色码亚洲精品果冻| 欧美+日韩+精品| 国产精品一区二区三区四区久久| 亚洲不卡免费看| 女人高潮潮喷娇喘18禁视频| 国产精品美女特级片免费视频播放器| 国语自产精品视频在线第100页| 哪里可以看免费的av片| xxx96com| 国产精品久久久人人做人人爽| 午夜激情欧美在线| 每晚都被弄得嗷嗷叫到高潮| www.www免费av| 国产亚洲精品av在线| 色吧在线观看| 国产精品久久久久久久久免 | 国产乱人视频| 国产成人影院久久av| 国产成+人综合+亚洲专区| www.999成人在线观看| 蜜桃久久精品国产亚洲av| 91久久精品电影网| 美女cb高潮喷水在线观看| 亚洲国产精品合色在线| 偷拍熟女少妇极品色| 久久国产精品人妻蜜桃| 久久精品夜夜夜夜夜久久蜜豆| 亚洲人与动物交配视频| 亚洲一区二区三区色噜噜| 免费观看人在逋| 窝窝影院91人妻| 91麻豆精品激情在线观看国产| av片东京热男人的天堂| 中文字幕av成人在线电影| 一边摸一边抽搐一进一小说| 国产黄片美女视频| а√天堂www在线а√下载| 丁香六月欧美| 变态另类丝袜制服| 制服人妻中文乱码| 他把我摸到了高潮在线观看| 熟女少妇亚洲综合色aaa.| 波多野结衣高清无吗| 午夜免费激情av| 色老头精品视频在线观看| 亚洲无线在线观看| 啦啦啦韩国在线观看视频| 草草在线视频免费看| 又爽又黄无遮挡网站| 日本黄大片高清| 一区二区三区免费毛片| 黄色日韩在线| 狠狠狠狠99中文字幕| 窝窝影院91人妻| 日韩欧美一区二区三区在线观看| 亚洲欧美精品综合久久99| 久久精品人妻少妇| 亚洲最大成人手机在线| 一级黄色大片毛片| 国产精品久久视频播放| 国产乱人伦免费视频| 99国产综合亚洲精品| 丁香六月欧美| 国产国拍精品亚洲av在线观看 | 婷婷精品国产亚洲av在线| 亚洲国产色片| 欧美一区二区精品小视频在线| 国产精华一区二区三区| 国产亚洲精品久久久久久毛片| 两个人视频免费观看高清| 亚洲国产日韩欧美精品在线观看 | 日本熟妇午夜| 狠狠狠狠99中文字幕| 在线观看舔阴道视频| 国产av不卡久久| 男女那种视频在线观看| 国产精品,欧美在线| 老司机福利观看| 午夜福利18| bbb黄色大片| 麻豆久久精品国产亚洲av| 免费看十八禁软件| 欧美日韩综合久久久久久 | 国产精品久久久人人做人人爽| 老司机福利观看| 国产真实伦视频高清在线观看 | 欧美日韩福利视频一区二区| 麻豆久久精品国产亚洲av| 男女视频在线观看网站免费| 脱女人内裤的视频| 中文亚洲av片在线观看爽| 99精品在免费线老司机午夜| 日韩精品青青久久久久久| 亚洲国产精品成人综合色| 级片在线观看| 亚洲美女黄片视频| 国产亚洲av嫩草精品影院| 少妇熟女aⅴ在线视频| 午夜免费观看网址| 最新在线观看一区二区三区| 国产视频一区二区在线看| 叶爱在线成人免费视频播放| 午夜精品一区二区三区免费看| 嫩草影视91久久| 久久精品夜夜夜夜夜久久蜜豆| 天美传媒精品一区二区| 欧美丝袜亚洲另类 | 丰满的人妻完整版| 国产精品久久久久久久久免 | 精品乱码久久久久久99久播| 99热这里只有是精品50| 色吧在线观看| 两个人看的免费小视频| 五月玫瑰六月丁香| 国产精品电影一区二区三区| 亚洲av日韩精品久久久久久密| 精品国内亚洲2022精品成人| 国产成人福利小说| 真人做人爱边吃奶动态| 天天添夜夜摸| 免费看光身美女| 亚洲av第一区精品v没综合| 好看av亚洲va欧美ⅴa在| 午夜福利免费观看在线| 久久久久免费精品人妻一区二区| 在线观看美女被高潮喷水网站 | 中文亚洲av片在线观看爽| 午夜老司机福利剧场| 国产老妇女一区| 日韩欧美精品免费久久 | 深夜精品福利| 国内精品久久久久精免费| 亚洲熟妇中文字幕五十中出| 日日夜夜操网爽| www.999成人在线观看| 日韩大尺度精品在线看网址| 国产一区二区激情短视频| 亚洲av中文字字幕乱码综合| a级毛片a级免费在线| 亚洲国产欧美网| 听说在线观看完整版免费高清| 日韩欧美在线乱码| 欧美一区二区亚洲| 国内精品一区二区在线观看| 午夜福利在线观看吧| 三级男女做爰猛烈吃奶摸视频| 成人av在线播放网站| 悠悠久久av| 久99久视频精品免费| 12—13女人毛片做爰片一| 亚洲人成电影免费在线| 中文字幕av成人在线电影| 国产中年淑女户外野战色| av中文乱码字幕在线| 美女高潮的动态| 久久国产乱子伦精品免费另类| 亚洲精品456在线播放app | 人人妻人人澡欧美一区二区| 又爽又黄无遮挡网站| 亚洲成人中文字幕在线播放| 国产精品永久免费网站| 岛国视频午夜一区免费看| 日本一本二区三区精品| 成年女人永久免费观看视频| 亚洲国产日韩欧美精品在线观看 | 国产视频一区二区在线看| 男插女下体视频免费在线播放| 不卡一级毛片| 精品无人区乱码1区二区| 欧美日本亚洲视频在线播放| 校园春色视频在线观看| 美女黄网站色视频| 国产探花在线观看一区二区| 欧美性猛交╳xxx乱大交人| 真人做人爱边吃奶动态| 亚洲av美国av| 日本一二三区视频观看| 成人鲁丝片一二三区免费| 999久久久精品免费观看国产| 18美女黄网站色大片免费观看| 手机成人av网站| 亚洲黑人精品在线| 在线播放无遮挡| 精品久久久久久久毛片微露脸| 国产高清三级在线| 国产免费av片在线观看野外av| 成人亚洲精品av一区二区| 人人妻人人澡欧美一区二区| 麻豆成人午夜福利视频| 精品国产亚洲在线| 久久九九热精品免费| 精品国产超薄肉色丝袜足j| 十八禁人妻一区二区| www日本在线高清视频| 天天添夜夜摸| 国内久久婷婷六月综合欲色啪| 国产一区在线观看成人免费| 免费在线观看成人毛片| 国产高清视频在线播放一区| 久久九九热精品免费| 久久精品91蜜桃| 天天躁日日操中文字幕| 白带黄色成豆腐渣| 久久草成人影院| 国产亚洲av嫩草精品影院| 国产精品综合久久久久久久免费| 美女高潮的动态| 久久精品夜夜夜夜夜久久蜜豆| 国产又黄又爽又无遮挡在线| 国产精品三级大全| 国产精品99久久久久久久久| 嫩草影院入口| 一进一出抽搐gif免费好疼| e午夜精品久久久久久久| 在线观看一区二区三区| 国产成人av激情在线播放| 久久久久久大精品| 激情在线观看视频在线高清| 午夜精品在线福利| 99国产极品粉嫩在线观看| 色av中文字幕| 99热只有精品国产| 91在线观看av| 最近最新免费中文字幕在线| 国产高清视频在线播放一区| 免费看日本二区| 久久精品国产亚洲av香蕉五月| 夜夜躁狠狠躁天天躁| 久久久精品欧美日韩精品| 成人国产综合亚洲| 亚洲成av人片免费观看| 麻豆久久精品国产亚洲av| 少妇人妻一区二区三区视频| 男女视频在线观看网站免费| 欧美人与善性xxx| 成人漫画全彩无遮挡| 国产91av在线免费观看| 国产成人免费观看mmmm| 熟妇人妻不卡中文字幕| 九九久久精品国产亚洲av麻豆| 欧美高清性xxxxhd video| 99热网站在线观看| 日本一本二区三区精品| 成人漫画全彩无遮挡| 一个人看视频在线观看www免费| 日日干狠狠操夜夜爽| 久久久久久久久久成人| 一区二区三区免费毛片| 国产高潮美女av| 99热6这里只有精品| 亚洲成人中文字幕在线播放| 亚洲天堂国产精品一区在线| 亚洲18禁久久av| 久久久欧美国产精品| 亚洲av一区综合| 国产精品1区2区在线观看.| 国内精品宾馆在线| 男人舔奶头视频| 久久草成人影院| 在线免费观看的www视频| 精品国内亚洲2022精品成人| 中国国产av一级| 亚洲人成网站在线观看播放| 黑人高潮一二区| 国产在线一区二区三区精| 国产高潮美女av| 亚洲aⅴ乱码一区二区在线播放| 日本三级黄在线观看| 肉色欧美久久久久久久蜜桃 | 亚洲精品久久午夜乱码| 欧美97在线视频| 七月丁香在线播放| 久久久久久久大尺度免费视频| freevideosex欧美| 成年人午夜在线观看视频 | 久久99热这里只有精品18| 国产精品伦人一区二区| 日韩av在线免费看完整版不卡| 日本一二三区视频观看| 国产精品一区二区在线观看99 | 亚洲精品中文字幕在线视频 | 久久久午夜欧美精品| 人妻少妇偷人精品九色| 我的老师免费观看完整版| 在线观看免费高清a一片| 美女被艹到高潮喷水动态| 国产真实伦视频高清在线观看| 美女内射精品一级片tv| 国产探花在线观看一区二区| 精品一区二区免费观看| 中文字幕制服av| 欧美日韩在线观看h| av女优亚洲男人天堂| 亚洲欧美精品自产自拍| 免费观看的影片在线观看| 久久久久久久久久人人人人人人| 日韩一本色道免费dvd| 美女黄网站色视频| 亚洲精品456在线播放app| 边亲边吃奶的免费视频| 久久久久九九精品影院| 久久久久久久久久人人人人人人| 最近中文字幕高清免费大全6| 欧美+日韩+精品| 欧美日韩视频高清一区二区三区二| 内射极品少妇av片p| 久久久久久国产a免费观看| 午夜久久久久精精品| 国产午夜精品久久久久久一区二区三区| 51国产日韩欧美| 纵有疾风起免费观看全集完整版 | 简卡轻食公司| 麻豆久久精品国产亚洲av| 午夜精品在线福利| 三级国产精品欧美在线观看| 2021少妇久久久久久久久久久| 国产一级毛片七仙女欲春2| 99久久精品国产国产毛片| 国产成人精品久久久久久| 国内精品宾馆在线| 亚洲精品aⅴ在线观看| av女优亚洲男人天堂| 国产永久视频网站| 久99久视频精品免费| 国产高潮美女av| 非洲黑人性xxxx精品又粗又长| 午夜福利在线在线| 国产视频内射| 汤姆久久久久久久影院中文字幕 | 亚洲激情五月婷婷啪啪| 欧美日韩亚洲高清精品| 九色成人免费人妻av| www.av在线官网国产| 国产人妻一区二区三区在| 在线观看一区二区三区| 国产伦精品一区二区三区四那| 久久韩国三级中文字幕| 2022亚洲国产成人精品| 午夜久久久久精精品| 日本免费a在线| 日本黄大片高清| 晚上一个人看的免费电影| 亚洲国产欧美人成| 亚洲av二区三区四区| 国产中年淑女户外野战色| 免费av毛片视频| 尾随美女入室| 大香蕉97超碰在线| 日本午夜av视频| 欧美潮喷喷水| 六月丁香七月| 国产av在哪里看| 国产色婷婷99| 丝袜美腿在线中文| 国产精品国产三级专区第一集| 国产亚洲av片在线观看秒播厂 | 国产激情偷乱视频一区二区| 性插视频无遮挡在线免费观看| 日韩精品青青久久久久久| 天堂影院成人在线观看| 亚洲av一区综合| 国内少妇人妻偷人精品xxx网站| 亚洲图色成人| 成人漫画全彩无遮挡| 两个人的视频大全免费| 欧美成人午夜免费资源| 久久久精品欧美日韩精品| av.在线天堂| 晚上一个人看的免费电影| 国产亚洲最大av| 亚洲国产高清在线一区二区三| 国产精品久久久久久久久免| 日韩欧美一区视频在线观看 | 永久免费av网站大全| 亚洲人成网站在线播|