• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Diagnosis of COVID-19 Infection Using Three-Dimensional Semantic Segmentation and Classification of Computed Tomography Images

    2021-12-11 13:31:54JavariaAminMuhammadSharifMuhammadAlmasAnjumYunyoungNamSeifedineKadryandDavidTaniar
    Computers Materials&Continua 2021年8期

    Javaria Amin,Muhammad Sharif,Muhammad Almas Anjum,Yunyoung Nam,Seifedine Kadry and David Taniar

    1Department of Computer Science,University of Wah,47040,Pakistan

    2Department of Computer Science,Comsats University Islamabad,Wah Campus,47040,Pakistan

    3College of Electrical and Mechanical Engineering,National University of Sciences&Technology(NUST),Islamabad,44000,Pakistan

    4Department of Computer Science and Engineering,Soonchunhyang University,Asan,31538,Korea

    5Department of Mathematics and Computer Science,Faculty of Science,Beirut Arab University,115020,Lebanon

    6Faculty of Information Technology,Monash University,Clayton,Victoria,3800,Australia

    Abstract:Coronavirus 19(COVID-19)can cause severe pneumonia that may be fatal.Correct diagnosis is essential.Computed tomography (CT)usefully detects symptoms of COVID-19 infection.In this retrospective study, we present an improved framework for detection of COVID-19 infection on CT images; the steps include pre-processing, segmentation, feature extraction/fusion/selection,and classification.In the pre-processing phase,a Gabor wavelet filter is applied to enhance image intensities.A marker-based,watershed controlled approach with thresholding is used to isolate the lung region.In the segmentation phase,COVID-19 lesions are segmented using an encoder-/decoder-based deep learning model in which deepLabv3 serves as the bottleneck and mobilenetv2 as the classification head.DeepLabv3 is an effective decoder that helps to refine segmentation of lesion boundaries.The model was trained using fine-tuned hyperparameters selected after extensive experimentation.Subsequently, the Gray Level Co-occurrence Matrix (GLCM)features and statistical features including circularity,area,and perimeters were computed for each segmented image.The computed features were serially fused and the best features(those that were optimally discriminatory)selected using a Genetic Algorithm (GA) for classification.The performance of the method was evaluated using two benchmark datasets:The COVID-19 Segmentation and the POF Hospital datasets.The results were better than those of existing methods.

    Keywords: Deeplabv3; fusion; genetic algorithm; gabor; watershed

    1 Introduction

    SARS-CoV-2 (also known as COVID-19) is a novel coronavirus.The disease caused by the virus has been declared a pandemic by the World Health Organization (WHO) and has spread to more than 170 countries worldwide.Globally, more than 10 million people have been infected.Recently, the WHO has stated that 33,842,281 COVID-19 cases have been confirmed worldwide,as have 1,010,634 deaths.In Pakistan, COVID-19 is spreading rapidly; a recent report described 312,263 confirmed cases, 6,479 deaths, and 296,881 recoveries.

    The treatment of such patients in special care units requires early detection of COVID-19 to increase the survival rate.Separation of healthy people from affected patients is the prime objective; this is possible only if diagnosis is early.The diagnostic technique using throat swabs is 30% to 60% accurate, which means that undiagnosed patients may commonly infect healthy people [1-6].COVID-19 infection can be diagnosed with high sensitivity using a chest X-ray;the disease correlates with certain visual indices [7,8].The ground glass pattern is present in the early stage but is located at the edges of pulmonary vessels that may be difficult to observe [9].COVID-19 infection has been reported to be associated with diffuse airspace opacities or patchy asymmetry [10].Only expert radiologists can interpret such indirect abnormalities.Given the shortage of trained radiologists and the huge numbers of affected patients, automatic abnormality identification would assist early diagnosis.Automation is possible using Artificial Intelligence (AI)and other potentially powerful Machine Learning (ML) methods [11-13].Here, we take a unique approach toward early COVID19 infection detection.The principal steps of our approach are:

    Pre-processing is performed using a Gabor filter to enhance image intensities, and a marker controller watershed with thresholding is used to segment the actual lung region.

    (1) The lesion is segmented using a three-dimensional (3D) semantic segmentation model.In this model, the deeplabv3 network serves as the bottleneck of the moblenetv2 module.The combination of these convolutional neural networks accurately segments the infected lung region.

    (2) The GLCM and statistical features are computed from the segmented regions, and then fused and optimized by the Genetic Algorithm (GA) used for classification.

    The structure of the manuscript is as follows:in Section 2, related work is described; in Section 3, our work is explained; in Section 4, the findings and discussion appear; and, in Section 5, conclusions are finally drawn.

    2 Related Work

    Computerized imaging techniques are important when seeking to diagnose COVID-19 infection early.Computed tomography (CT) of the chest is preferred to X-ray [14-20].Given the increasing numbers of COVID-19 patients, hospitals are overloaded.Manual scan evaluation by radiologists is time-consuming and tedious; the risk of error may increase if the radiologist is under pressure [21].Therefore, automated methods of efficient and accurate diagnosis would aid decision-making [22].

    Artificial intelligence methods play important roles when learning the patterns of many CT images and then making predictions based on those patterns [23-26].Pre-trained deep learning models [27] (Dense Net, GoogleNet, and AlexNet, etc.) have received considerable attention over the past decades because these models are already trained using big data.A 3D deep learning model is used for classification [28].Accurate segmentation poses a great challenge because lesions develop at borders and redundant features degrade model accuracy.Thus, in this work, we employed a U-Net model for segmentation, feature extraction, and selection of the framework for COVID-19 CT image classification.Tab.1 summarizes the existing literature.

    Table 1:Existing machine/deep learning methodologies

    3 Proposed Methodology

    The proposed model features three major phases:

    In Phase 1, a Gabor filter with fine-tuned parameters is used in the pre-processing phase to improve image quality.

    In Phase 2, the lung region is segmented using a marker-controlled watershed method.Deeplav3 serves as the bottleneck of the mobilenetv2 module used to segment the actual lesions of COVID-19.

    In Phase 3, geometrical and statistical features are computed from each segmented image.The extracted characteristics are serially fused and, on addition of a GA, redundant features are eliminated.Each vector of optimized functionality is forwarded to the COVID-19 classifiers.

    Fig.1 shows these steps.

    3.1 Preprocessing Using Gabor Wavelet Filter

    We applied the Gabor filter (a linear filter devised by Dennis Gabor) to CT images when analyzing textural patterns that contain rich information related to pathology.The filter analyzes the specific frequency contents in certain image directions.In the spatial field, a 2D Gabor filter with a Gaussian kernel is modulated via a plane sinusoidal wave.Given the convolution multiplication property, the Fourier transform of the impulse response (the Gabor filter) is convolved with the Fourier transform of the harmonic (sinusoidal) function and a Gaussian function.A Gabor filter is mathematically expressed as:

    where B and C denote normalizing factors and f represents frequency.The Gabor-filtered images and the original CT images are illustrated in Fig.2.

    Figure 1:Proposed architecture of COVID-19 detection

    A marker-controlled watershed approach with thresholding was then applied to the Gaborfiltered images to segment the actual lung surface, as shown in Fig.3.In this method, morphological operations such as opening and closing (using five disc-shaped structuring elements) are applied to remove extraneous regions.The lung region is extracted using a thresholding method in which the background is marked and the background pixels eliminated.The morphological operations are defined as:

    where°denotes an opening, · represents a closing, and ?and ⊕ erosion and dilation respectively.

    Figure 2:Gabor filtered image (a) CT image (b) filtered outcome

    3.2 COVID-19 Segmentation Using Deep Convolutional Neural Network

    We propose a new semantic segmentation model in which deeplabv3 serves as the bottleneck of mobilenetv2.There are 186 layers, thus 1 input layer; 70 convolutional layers; two 2D cropping layers; 59 batch norm layers; 43 ReLU layers; eight addition layers; and single depth concatenation, softmax, and pixel classification layers.The primary goal of the model is to assign semantic class labels pixel-by-pixel in the input image.The model is fine-tuned using the learning parameters shown in Tab.2 to aid precise segmentation.The proposed model layers with the activation units are shown in Fig.4.

    The proposed segmentation outcomes are illustrated in Fig.5.

    3.3 Proposed Fused Features Vectors

    The GLCM features extracted from the segmented region (fφ)include energy, variance,entropy, homogeneity, dissimilarity, cluster shade, and cluster shape.The statistical features are area, perimeter, and circularity.Both the GLCM and statistical features are serially fused as illustrated in Fig.6.

    3.3.1 GLCM Features Extraction

    The GLCM of an image fφof size M×N is a matrix G, where gk,ldenotes each element of G and gk,lis the number of times a pixel pair with intensities k and l occur in the image.

    Here, n is the sum of elements in G, and pk,lis an estimate of the probability that a pair of points (k,l) exists.(λx,λy)denotes the offsets and d represents the distance.GLCM features are computed in four directions:0°,45°,90°,and 135°.Then, the mean(μ), range, and variance(σ)are computed across each feature.The length of a GLCM feature is 1×18.The detailed description is:

    Figure 3:Lung region of segmentation (a) original CT image (b) lung region (c) segmented lung region

    Table 2:Optimization parameters for proposed segmentation model

    Energy is used to measure local textural homogeneity within an image.

    Entropy is used to measures the randomness.

    where r denotes the number of intensity levels

    Figure 4:Activations of proposed semantic segmentation model (where 16 blocks consist of convolutional, batch-normalization and ReLU layers, two transpose convolutional layers, 01 crop 2D layer and 01 pixel classification layer)

    Variance is utilized to evaluate the distribution of intensity values.

    Cluster prominence (fcp)is used to compute the skewness.

    Figure 5:COVID-19 segmentation (a) Input image (b) COVID-19 segmentation (c) Ground truth annotation

    Cluster shade(fcs)is used to reduce the total number of operations.

    Dissimilarity (fD)is used to compute the variations among gray levels.

    3.3.2 Statistical Features Extraction

    The three statistical features of length 1×3 are extracted from the segmented images.Area is computed from the segmented region.The perimeter serves as a strong feature identifying the lengths of lesional boundaries.Circularity (fC)=is also utilized to compute lesional pixels in the circular region.

    Figure 6:Features extraction/selection for COVID19 classification

    3.4 Features Selection Using GA

    In this study, GLCM features were computed in terms of mean, range, and variance and later fused with statistical features such as area, perimeter, and circularity.The length of each fused feature vector is 1×21.The heuristic feature selection approach afforded by GA is used to remove redundant features and select more discriminatory features by optimizing the cost function.The GA learning parameters are chosen to solve the problem of optimization, as shown in Tab.3.

    Table 3:GA parameters

    3.5 Classification

    The vector of the resulting features was transferred to an SVM [34], an Ensemble Tree, and an ELM [35] classifier.The Ensemble Tree classifier featured a LogitBoost kernel, a learning rate of 0.44478, and 349 tree split parameters for training.The ELM [36] employed 200 hidden units for training, and the multiclass SVM model was trained on a maximum of 30 epochs.

    4 Experimentation

    In this work, two types of experiments were performed.The first evaluated segmentation method performance using the ground truth annotations and the second explored the classification of CT images.

    We used two datasets to validate our proposed approach:The POF Hospital dataset and the COVID-19 segmentation dataset.The POF hospital CT dataset contains data on 100 confirmed COVID-19 patients (2,879 positive CT images of 4,089 CT images).The COVID-19 segmentation dataset consists of the CT imaging data on 40 patients (each of 100 axial slices) and ground truth images.The classification data contain 373 positive and 456 negative slices [37].

    4.1 Experiment#1(Evaluation of Segmentation Method)

    In this experiment, semantic segmentation was performed using a group of similar pixels as revealed by their class labels.The prediction was performed at the pixel level; each image pixel was classified based on the corresponding class label.The results of the proposed segmentation method are compared pixel-by-pixel with the ground truth images in Fig.7.

    Figure 7:Segmentation with annotated images (a) input (b) proposed segmentation(c) ground truth

    The segmentation technique performance was validated in terms of various measures such as accuracy (mean and global), Intersection Over Union (IoU) (mean and weighted), and Boundary Contour Matching (BF) scores mathematically expressed as follows:

    The IoU is also termed the Jaccard index, and computes the proportions of correctly classified pixels among the predicted and ground truth pixels.

    The IoU is computed in terms of mean and weighted values.The mean IoU measures the average IoU of all classes in a particular image.The average IoU of a certain class is weighted by the number of pixels in that class.Th boundary F1 scores compute the proportions of class boundaries that align with the actual boundaries.

    The results of the proposed segmentation method are listed in Tab.4, and show that the proposed method performed well.

    Table 4:Segmentation results with ground truth annotation on COVID-19 segmentation dataset

    4.2 Experiment#2(Evaluation of Classification Approach)

    The extracted GLCM and statistical features were serially fused.The GA chose the informative features.The resultant optimal feature vectors were fed to the support vector machine (SVM),extreme learning machine (ELM), and the ensemble (optimized).The training and testing images were validated using holdouts of 0.7 and 0.5.A summary appears in Tab.5.

    Table 5:Summary of training and testing images for classification

    We used the MATLAB 2020Ra Toolbox with the Nvidia Graphic 740k card to run all tests.The results of classification are presented by the two different separation criteria (0.5 and 0.7 holdout validations) in Fig.8.

    The results of the classification are listed in Tabs.6-17.

    The classification results show that the 0.5 holdout cross-validation method was associated with accuracies of 98.37% on the ELM, 93.27% on the SVM, and 97.54% on the optimized ensemble.The experimental evaluation thus showed that the ELM outperformed the other benchmark classifiers.

    Figure 8:Confusion matrix (a) 0.5 cross-validation on POF hospital (b) 0.7 cross-validation on POF hospital (c) 0.5 cross-validation on COVID-19 segmentation (Italian) dataset (d) 0.7 crossvalidation on COVID-19 segmentation (Italian) dataset

    Table 6:Classification using ELM on POF hospital dataset (0.5 hold cross-validation)

    Table 7:Classification using SVM on POF hospital dataset (0.5 hold cross-validation)

    Table 8:Classification using optimized ensemble on POF hospital dataset (0.5 hold crossvalidation)

    Table 9:Classification using ELM on POF hospital dataset (0.7 hold cross-validation)

    Table 10:Classification using SVM on POF hospital dataset (0.7 hold cross-validation)

    Table 11:Classification using optimized ensemble on POF hospital dataset (0.7 hold crossvalidation)

    Similarly, the experimental evaluation using 0.7 holdout cross-validation yielded accuracies of 90.39% on the ELM, 98.49% on the SVM, and 99.58% on the optimized ensemble.Hence, the SVM exhibited the best accuracy.

    Table 12:Classification using ELM on COVID-19 segmentation dataset (0.5 hold cross-validation)

    Table 13:Classification using SVM on COVID-19 segmentation dataset (0.5 hold cross-validation)

    Table 14:Classification using optimized ensemble on COVID-19 segmentation dataset (0.5 hold cross-validation)

    The classification accuracies (50:50) of the COVID-19 segmentation dataset were 98.62% on the ELM, 98.59% on the SVM, and 96.74% on the optimized ensemble; the ELM was best.

    Table 15:Classification using ELM on COVID-19 segmentation dataset (0.7 hold cross-validation)

    Table 16:Classification using SVM on COVID-19 segmentation dataset (0.7 hold cross-validation)

    Table 17:Classification using Optimized Ensemble on COVID-19 segmentation dataset (0.7 hold cross-validation)

    The classification accuracies of positive/negative images (70/30) were 96.33% on the ELM,96.71% on the SVM, and 99.53% on the optimized ensemble; the latter was thus best.

    The classification results of the COVID-19 segmentation dataset were compared with a recent work in terms of accuracy; the existing method achieved 89% accuracy [37] and our proposed method 99.53% accuracy, as shown in Tab.18.

    Table 18:Classification results comparison

    5 Conclusion

    We used a modified deep learning model to diagnose COVID-19 infection.CT images are noisy and such infections are hard to detect; denoising of CT images is a challenging task.We used a Gabor wavelet filter to remove noise and a marker-controlled watershed method to eliminate non-lung regions including background pixels.

    Segmentation is an intricate task because lesions may be irregular in terms of both shape and size.Therefore, we used deeplabv3 as the bottleneck and mobilenetv2 as the classification head for segmentation.As accurate classification depends on the feature vectors used; we extracted GLCM features including the mean, range, and variance, and statistical features, and fused them serially.

    We validated the proposed approach using two different training and testing criteria (holdouts of 0.5 and 0.7).The proposed approach yielded consistent results, confirming that it is novel.The approach accurately segmented/classified COVID-19 features and will help radiologists in the present pandemic situation.In future, our approach will be deployed in hospitals to analyze images automatically and predict either a normal or COVID-19-infected lung.

    Funding Statement:This research was supported by Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0012724, The Competency Development Program for Industry Specialist) and the Soonchunhyang University Research Fund.

    Conflicts of Interest:All authors declare that they have no conflict of interest to report regarding present study.

    国产av在哪里看| 日韩视频在线欧美| 精品一区二区三卡| 天堂中文最新版在线下载 | 我的老师免费观看完整版| 男女边摸边吃奶| 亚洲真实伦在线观看| 国产国拍精品亚洲av在线观看| 欧美另类一区| 精品人妻熟女av久视频| 91精品国产九色| 91精品一卡2卡3卡4卡| av在线亚洲专区| 国产永久视频网站| 精品久久久久久久久av| 亚洲国产精品成人综合色| 亚洲精品国产av成人精品| 熟妇人妻不卡中文字幕| 亚洲成色77777| 国产一区二区在线观看日韩| 丝袜美腿在线中文| 国产精品美女特级片免费视频播放器| 日韩一区二区视频免费看| 欧美xxⅹ黑人| 久久人人爽人人爽人人片va| 男女视频在线观看网站免费| 天堂影院成人在线观看| 国产精品一区二区在线观看99 | 熟女人妻精品中文字幕| 中文字幕av在线有码专区| 纵有疾风起免费观看全集完整版 | 午夜精品国产一区二区电影 | 亚洲国产高清在线一区二区三| 亚洲欧美成人综合另类久久久| 久久99热这里只频精品6学生| 99热这里只有是精品在线观看| 成人午夜精彩视频在线观看| 亚洲精品自拍成人| 国产高清国产精品国产三级 | 一级毛片我不卡| 丝瓜视频免费看黄片| 大香蕉久久网| 精品久久久久久久久亚洲| 亚洲av一区综合| 三级国产精品片| 国产成人午夜福利电影在线观看| av在线观看视频网站免费| 舔av片在线| 51国产日韩欧美| 精品国内亚洲2022精品成人| 男人舔奶头视频| a级毛片免费高清观看在线播放| 国产淫片久久久久久久久| 夜夜爽夜夜爽视频| 91午夜精品亚洲一区二区三区| 国产精品三级大全| 日韩一区二区三区影片| 国产一区二区三区综合在线观看 | 中文字幕av成人在线电影| 天堂√8在线中文| 亚洲va在线va天堂va国产| 中文字幕人妻熟人妻熟丝袜美| 免费av不卡在线播放| 热99在线观看视频| 免费观看的影片在线观看| 在线观看人妻少妇| 国产精品久久久久久久电影| 国产黄a三级三级三级人| 久久久久网色| 久久亚洲国产成人精品v| 国产极品天堂在线| 欧美zozozo另类| 久久久久久久国产电影| 亚洲成色77777| 亚洲国产精品专区欧美| 2021少妇久久久久久久久久久| 最近最新中文字幕大全电影3| 熟女电影av网| 夫妻午夜视频| 晚上一个人看的免费电影| 九草在线视频观看| 国产 亚洲一区二区三区 | 久久韩国三级中文字幕| 精品人妻一区二区三区麻豆| 插逼视频在线观看| 色哟哟·www| 久久精品夜色国产| 日日摸夜夜添夜夜添av毛片| 日本午夜av视频| 久久韩国三级中文字幕| 夜夜爽夜夜爽视频| 亚洲精品,欧美精品| 免费大片18禁| 亚洲精品一区蜜桃| 两个人的视频大全免费| 欧美性感艳星| 伊人久久国产一区二区| 成年女人看的毛片在线观看| 国产精品一区二区三区四区久久| 在线免费十八禁| 80岁老熟妇乱子伦牲交| 亚洲国产欧美在线一区| 亚洲欧美一区二区三区国产| 国内精品一区二区在线观看| xxx大片免费视频| 成人av在线播放网站| 99久久精品一区二区三区| 亚洲精品亚洲一区二区| 欧美zozozo另类| 国产乱人偷精品视频| 精品熟女少妇av免费看| 淫秽高清视频在线观看| 婷婷色av中文字幕| 国产av码专区亚洲av| 国产一区亚洲一区在线观看| 国产美女午夜福利| 成年版毛片免费区| 日韩欧美三级三区| 麻豆精品久久久久久蜜桃| 日韩成人伦理影院| 五月伊人婷婷丁香| 国产精品熟女久久久久浪| 天堂av国产一区二区熟女人妻| freevideosex欧美| 欧美xxxx黑人xx丫x性爽| 国产精品久久久av美女十八| 久久久久久久久久久久大奶| 久久97久久精品| 亚洲国产精品国产精品| 伊人亚洲综合成人网| 久久久久人妻精品一区果冻| 尾随美女入室| 99热国产这里只有精品6| 丰满少妇做爰视频| 亚洲视频免费观看视频| 精品久久久久久电影网| 丝袜脚勾引网站| 伦精品一区二区三区| 亚洲美女视频黄频| 777久久人妻少妇嫩草av网站| 午夜福利,免费看| 美女主播在线视频| 亚洲精品国产av成人精品| 午夜福利乱码中文字幕| 久久久精品国产亚洲av高清涩受| 九色亚洲精品在线播放| 国产高清不卡午夜福利| 亚洲av电影在线观看一区二区三区| 丝袜在线中文字幕| 交换朋友夫妻互换小说| xxxhd国产人妻xxx| 天天躁狠狠躁夜夜躁狠狠躁| 欧美精品一区二区免费开放| 9191精品国产免费久久| 欧美激情 高清一区二区三区| 日本午夜av视频| 婷婷色综合www| 亚洲精品久久成人aⅴ小说| 一区二区三区精品91| 亚洲精品av麻豆狂野| 丁香六月天网| 黄片无遮挡物在线观看| 超碰成人久久| 欧美日本中文国产一区发布| 亚洲精品国产一区二区精华液| 亚洲三区欧美一区| 寂寞人妻少妇视频99o| 成人漫画全彩无遮挡| 亚洲美女搞黄在线观看| 伊人亚洲综合成人网| 免费观看性生交大片5| 精品亚洲成a人片在线观看| 精品福利永久在线观看| 亚洲 欧美一区二区三区| 丝袜喷水一区| 欧美日韩成人在线一区二区| 王馨瑶露胸无遮挡在线观看| 成年女人在线观看亚洲视频| 日韩制服骚丝袜av| 国产精品99久久99久久久不卡 | 黄片无遮挡物在线观看| 欧美另类一区| 成年av动漫网址| 久久久久久久久久久免费av| 亚洲欧美成人综合另类久久久| 日本欧美国产在线视频| 尾随美女入室| 国产成人免费观看mmmm| 丝袜在线中文字幕| 亚洲精品自拍成人| 日本欧美国产在线视频| 大香蕉久久网| www.熟女人妻精品国产| 乱人伦中国视频| 麻豆av在线久日| 国产成人免费无遮挡视频| 日韩视频在线欧美| 日韩精品有码人妻一区| 日韩一区二区三区影片| 国产熟女欧美一区二区| 久久99热这里只频精品6学生| 在线观看一区二区三区激情| 视频区图区小说| 国产片特级美女逼逼视频| 亚洲男人天堂网一区| av免费在线看不卡| 国产成人欧美| 91午夜精品亚洲一区二区三区| 久久韩国三级中文字幕| 热99久久久久精品小说推荐| 一本色道久久久久久精品综合| 久久精品久久久久久久性| 精品国产乱码久久久久久男人| 久久热在线av| 精品视频人人做人人爽| 99热网站在线观看| 国产日韩欧美视频二区| 纵有疾风起免费观看全集完整版| 天天躁日日躁夜夜躁夜夜| 热99久久久久精品小说推荐| 自拍欧美九色日韩亚洲蝌蚪91| 妹子高潮喷水视频| 亚洲一区二区三区欧美精品| 9191精品国产免费久久| 看免费成人av毛片| 成人影院久久| h视频一区二区三区| 国产欧美日韩综合在线一区二区| 建设人人有责人人尽责人人享有的| 国产av精品麻豆| 亚洲国产精品一区三区| 久热这里只有精品99| 国产国语露脸激情在线看| 欧美日韩av久久| 伦理电影大哥的女人| 国产精品免费大片| 日本91视频免费播放| 亚洲色图 男人天堂 中文字幕| 精品卡一卡二卡四卡免费| 国产xxxxx性猛交| 精品国产乱码久久久久久小说| 国产精品久久久久久精品电影小说| 久久久久国产网址| 成人18禁高潮啪啪吃奶动态图| 国产精品麻豆人妻色哟哟久久| 日本av免费视频播放| www日本在线高清视频| 亚洲精品美女久久av网站| 亚洲欧洲日产国产| 日本欧美视频一区| 成人国产av品久久久| 日韩欧美精品免费久久| 日韩,欧美,国产一区二区三区| 亚洲欧洲日产国产| 美女午夜性视频免费| 看非洲黑人一级黄片| 777久久人妻少妇嫩草av网站| 久久久久久久久久人人人人人人| 啦啦啦中文免费视频观看日本| 久久这里有精品视频免费| 精品一区二区免费观看| 中文字幕制服av| 午夜日本视频在线| 男人爽女人下面视频在线观看| 人人妻人人澡人人爽人人夜夜| av天堂久久9| 国产精品麻豆人妻色哟哟久久| 26uuu在线亚洲综合色| 亚洲欧美日韩另类电影网站| 男女下面插进去视频免费观看| 午夜福利视频精品| 国产伦理片在线播放av一区| 国产片内射在线| av在线老鸭窝| 99久久中文字幕三级久久日本| 欧美 日韩 精品 国产| 国产黄色免费在线视频| 一级a爱视频在线免费观看| 免费女性裸体啪啪无遮挡网站| 91在线精品国自产拍蜜月| 午夜福利一区二区在线看| 亚洲伊人久久精品综合| 18禁观看日本| 久久精品国产自在天天线| 美女国产高潮福利片在线看| 免费女性裸体啪啪无遮挡网站| 在线观看免费高清a一片| 18禁国产床啪视频网站| 国产精品 欧美亚洲| 男女午夜视频在线观看| 少妇人妻久久综合中文| 乱人伦中国视频| 五月伊人婷婷丁香| 妹子高潮喷水视频| 街头女战士在线观看网站| 国产精品久久久久久精品电影小说| 黑丝袜美女国产一区| 亚洲精品久久午夜乱码| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产日韩欧美视频二区| 亚洲av中文av极速乱| 免费在线观看视频国产中文字幕亚洲 | 亚洲av欧美aⅴ国产| 欧美日韩国产mv在线观看视频| 不卡视频在线观看欧美| xxxhd国产人妻xxx| 老汉色av国产亚洲站长工具| 校园人妻丝袜中文字幕| 国产探花极品一区二区| 久久久久久久久免费视频了| 午夜福利,免费看| av一本久久久久| 美女中出高潮动态图| 色婷婷av一区二区三区视频| 97在线人人人人妻| 日韩一卡2卡3卡4卡2021年| 午夜精品国产一区二区电影| 久久精品久久久久久噜噜老黄| 啦啦啦啦在线视频资源| 制服诱惑二区| 美女视频免费永久观看网站| 国产精品无大码| 日韩一区二区三区影片| av在线观看视频网站免费| 国产黄色视频一区二区在线观看| 亚洲av欧美aⅴ国产| 99久国产av精品国产电影| 美女脱内裤让男人舔精品视频| 91精品伊人久久大香线蕉| 欧美日本中文国产一区发布| 亚洲,一卡二卡三卡| 欧美激情 高清一区二区三区| 免费av中文字幕在线| 欧美精品高潮呻吟av久久| 亚洲av男天堂| 少妇精品久久久久久久| 亚洲av福利一区| 国产亚洲精品第一综合不卡| 桃花免费在线播放| 久久久a久久爽久久v久久| 日本vs欧美在线观看视频| 丝瓜视频免费看黄片| 久久精品久久久久久噜噜老黄| 老汉色∧v一级毛片| 国产精品偷伦视频观看了| 97精品久久久久久久久久精品| 久久99一区二区三区| 我要看黄色一级片免费的| 亚洲成人av在线免费| 91精品伊人久久大香线蕉| 国产成人精品福利久久| 99久久综合免费| 美女高潮到喷水免费观看| 日本av手机在线免费观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲av在线观看美女高潮| 日韩伦理黄色片| 亚洲国产成人一精品久久久| 精品国产一区二区久久| 亚洲国产精品国产精品| 免费不卡的大黄色大毛片视频在线观看| 久久精品国产a三级三级三级| 亚洲av成人精品一二三区| 在线亚洲精品国产二区图片欧美| 最新中文字幕久久久久| 亚洲精品一区蜜桃| 中文字幕色久视频| 精品一品国产午夜福利视频| 国产精品欧美亚洲77777| 男女无遮挡免费网站观看| 2018国产大陆天天弄谢| 国产精品国产av在线观看| 国产片内射在线| 免费看不卡的av| 男女国产视频网站| 伦精品一区二区三区| 我的亚洲天堂| 性高湖久久久久久久久免费观看| 亚洲国产最新在线播放| 制服丝袜香蕉在线| 亚洲国产精品成人久久小说| 亚洲一区二区三区欧美精品| 超碰97精品在线观看| 久久99蜜桃精品久久| 激情视频va一区二区三区| 欧美精品一区二区免费开放| 亚洲精品国产av蜜桃| 精品国产乱码久久久久久小说| 纯流量卡能插随身wifi吗| 最新中文字幕久久久久| 丁香六月天网| 国产男女内射视频| 国产又色又爽无遮挡免| 久久久久久久久免费视频了| av有码第一页| 日韩免费高清中文字幕av| 欧美xxⅹ黑人| 97精品久久久久久久久久精品| 亚洲精品久久久久久婷婷小说| 99热全是精品| 中文字幕人妻熟女乱码| 亚洲少妇的诱惑av| 一级片'在线观看视频| 亚洲精品久久成人aⅴ小说| 丰满乱子伦码专区| 国产成人一区二区在线| 一二三四中文在线观看免费高清| 国产男女超爽视频在线观看| 免费在线观看视频国产中文字幕亚洲 | 日本爱情动作片www.在线观看| 岛国毛片在线播放| 丰满少妇做爰视频| 亚洲精品aⅴ在线观看| 久久精品夜色国产| 哪个播放器可以免费观看大片| 纯流量卡能插随身wifi吗| 菩萨蛮人人尽说江南好唐韦庄| 国产野战对白在线观看| 免费久久久久久久精品成人欧美视频| 亚洲,欧美精品.| 看免费av毛片| 亚洲av电影在线进入| 一级毛片我不卡| 久久精品国产亚洲av高清一级| 午夜激情av网站| 国产极品天堂在线| 国产欧美日韩一区二区三区在线| 亚洲av.av天堂| 国产日韩欧美在线精品| 精品一区在线观看国产| 欧美日本中文国产一区发布| 成人国产麻豆网| 精品亚洲成国产av| 亚洲精品国产一区二区精华液| 18+在线观看网站| 国产精品女同一区二区软件| 90打野战视频偷拍视频| 99久国产av精品国产电影| av网站免费在线观看视频| 国产精品国产三级国产专区5o| 91国产中文字幕| 亚洲精品国产av蜜桃| av免费在线看不卡| 丝袜美腿诱惑在线| 久久久久网色| 成人手机av| 自线自在国产av| 爱豆传媒免费全集在线观看| 久久毛片免费看一区二区三区| 国产综合精华液| 美女高潮到喷水免费观看| 美国免费a级毛片| 国产成人精品无人区| 侵犯人妻中文字幕一二三四区| 男人操女人黄网站| 国产亚洲精品第一综合不卡| 男女边吃奶边做爰视频| 亚洲国产日韩一区二区| 99久久综合免费| 最近最新中文字幕大全免费视频 | 亚洲精品日本国产第一区| 麻豆av在线久日| 欧美 日韩 精品 国产| 日日撸夜夜添| 午夜福利一区二区在线看| 日本av手机在线免费观看| 黑丝袜美女国产一区| 欧美日韩av久久| 黄片无遮挡物在线观看| 精品人妻一区二区三区麻豆| 97在线视频观看| 中文字幕人妻丝袜一区二区 | 精品亚洲乱码少妇综合久久| www.精华液| 99re6热这里在线精品视频| videossex国产| 成人毛片a级毛片在线播放| 日韩中文字幕欧美一区二区 | 午夜av观看不卡| 欧美成人午夜免费资源| 有码 亚洲区| 亚洲成av片中文字幕在线观看 | 中文字幕人妻丝袜一区二区 | 波多野结衣av一区二区av| 激情五月婷婷亚洲| 日韩熟女老妇一区二区性免费视频| 99久国产av精品国产电影| 久久99精品国语久久久| 女的被弄到高潮叫床怎么办| 亚洲天堂av无毛| 亚洲av综合色区一区| 亚洲精品久久久久久婷婷小说| 久久人人爽人人片av| 2022亚洲国产成人精品| 香蕉精品网在线| 女人精品久久久久毛片| 热99久久久久精品小说推荐| 热re99久久国产66热| 中文天堂在线官网| 国产精品久久久久久久久免| 大码成人一级视频| 亚洲精品美女久久久久99蜜臀 | 精品少妇久久久久久888优播| 老司机影院毛片| 亚洲欧美中文字幕日韩二区| 亚洲天堂av无毛| 国产精品麻豆人妻色哟哟久久| 在线观看国产h片| 国产高清不卡午夜福利| 亚洲欧美日韩另类电影网站| 精品一区二区三区四区五区乱码 | 亚洲精品第二区| 一区二区av电影网| 日韩一区二区视频免费看| 高清不卡的av网站| 亚洲av欧美aⅴ国产| 欧美日韩亚洲高清精品| 亚洲国产欧美在线一区| 久久久久精品人妻al黑| 99久国产av精品国产电影| 91aial.com中文字幕在线观看| 老女人水多毛片| 欧美精品av麻豆av| 国产精品一区二区在线观看99| 亚洲欧美一区二区三区国产| 亚洲美女视频黄频| 久久久欧美国产精品| 久久午夜福利片| 男女边摸边吃奶| 久久精品国产亚洲av天美| 欧美另类一区| 久久国产精品大桥未久av| 少妇熟女欧美另类| 日韩一卡2卡3卡4卡2021年| 久久久欧美国产精品| av国产久精品久网站免费入址| 日韩人妻精品一区2区三区| 亚洲精品国产av蜜桃| 国产亚洲午夜精品一区二区久久| 成人亚洲精品一区在线观看| 在线免费观看不下载黄p国产| 人人妻人人澡人人看| 午夜福利乱码中文字幕| 丝袜美足系列| 国产精品国产三级专区第一集| 女人高潮潮喷娇喘18禁视频| 国产日韩一区二区三区精品不卡| 精品国产乱码久久久久久男人| 天堂俺去俺来也www色官网| 国产精品亚洲av一区麻豆 | 久久免费观看电影| 亚洲精品一区蜜桃| 精品第一国产精品| 黄频高清免费视频| 一区二区三区激情视频| 色吧在线观看| 国产探花极品一区二区| 亚洲国产精品成人久久小说| 少妇人妻 视频| 18+在线观看网站| av电影中文网址| 亚洲色图 男人天堂 中文字幕| 国产又爽黄色视频| 国产1区2区3区精品| 母亲3免费完整高清在线观看 | 久久99蜜桃精品久久| 久久久久久久亚洲中文字幕| 久久97久久精品| 久久久亚洲精品成人影院| 国产深夜福利视频在线观看| 久久影院123| 天堂中文最新版在线下载| 18禁动态无遮挡网站| 97在线视频观看| 美女脱内裤让男人舔精品视频| 免费看av在线观看网站| 2018国产大陆天天弄谢| 亚洲av电影在线进入| 久久精品久久久久久久性| 啦啦啦在线观看免费高清www| 九草在线视频观看| 亚洲欧美日韩另类电影网站| 一本色道久久久久久精品综合| 国产在线视频一区二区| 国产黄色视频一区二区在线观看| 亚洲av.av天堂| 亚洲精品美女久久久久99蜜臀 | 欧美人与性动交α欧美软件| 欧美日韩精品成人综合77777| 考比视频在线观看| 夜夜骑夜夜射夜夜干| 中文字幕人妻熟女乱码| 国产又色又爽无遮挡免| 不卡av一区二区三区| 免费在线观看黄色视频的| kizo精华| www日本在线高清视频| 少妇人妻 视频| 久久av网站| 久久久久精品性色| 久久久久久伊人网av| 捣出白浆h1v1| 97精品久久久久久久久久精品| 18禁裸乳无遮挡动漫免费视频| www.av在线官网国产| 欧美成人午夜精品| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲经典国产精华液单| 妹子高潮喷水视频| 多毛熟女@视频| av.在线天堂| 亚洲美女搞黄在线观看| 人人澡人人妻人| 久久久亚洲精品成人影院| 亚洲国产毛片av蜜桃av|