• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Power Allocation Strategy for Secret Key Generation Method in Wireless Communications

    2021-12-11 13:31:12BinZhangMuhammadWaqasShanshanTuSyedMudassirHussainandSadaqatUrRehman
    Computers Materials&Continua 2021年8期

    Bin Zhang,Muhammad Waqas,Shanshan Tu,Syed Mudassir Hussain and Sadaqat Ur Rehman

    1School of Electronics and Information Engineering,Hunan University of Science and Engineering,Yongzhou,425199,China

    2Engineering Research Center of Intelligent Perception and Autonomous Control,Faculty of Information Technology,Beijing University of Technology,Beijing,100124,China

    3Faculty of Computer Science and Engineering,Ghulam Ishaq Khan(GIK)Institute of Engineering Sciences and Technology,Topi,23460,Pakistan

    4Department of Electronics Engineering,FICT,Balochistan University of Information Technology,Engineering and Management Sciences,Quetta,87300,Pakistan

    5Department of Computer Science,Namal Institute,Mianwali,42200,Pakistan

    Abstract: Secret key generation (SKG) is an emerging technology to secure wireless communication from attackers.Therefore, the SKG at the physical layer is an alternate solution over traditional cryptographic methods due to wireless channels’uncertainty.However,the physical layer secret key generation(PHY-SKG)depends on two fundamental parameters,i.e.,coherence time and power allocation.The coherence time for PHY-SKG is not applicable to secure wireless channels.This is because coherence time is for a certain period of time.Thus,legitimate users generate the secret keys(SKs)with a shorter key length in size.Hence,an attacker can quickly get information about the SKs.Consequently,the attacker can easily get valuable information from authentic users.Therefore,we considered the scheme of power allocation to enhance the secret key generation rate (SKGR) between legitimate users.Hence, we propose an alternativemethod,i.e.,a power allocation,to improve the SKGR.Our results show 72%higher SKGR in bits/sec by increasing power transmission.In addition, the power transmission is based on two important parameters,i.e.,epsilon and power loss factor,as given in power transmission equations.We found out that a higher value of epsilon impacts power transmission and subsequently impacts the SKGR.The SKGR is approximately 40.7%greater at 250 from 50 mW at epsilon=1.The value of SKGR is reduced to 18.5%at 250 mW when epsilonis 0.5.Furthermore, the transmission power is also measured against the different power loss factor values, i.e., 3.5, 3, and 2.5,respectively,at epsilon=0.5.Hence,it is concluded that the value of epsilon and power loss factor impacts power transmission and,consequently,impacts the SKGR.

    Keywords: Secret key generation rate; power allocation; physical layer;wireless communication

    1 Introduction

    Security is profoundly important due to the rapid increase in wireless communication.In 2018, Ericsson announced that 5G subscribers would hit 1.9 billion by the end of 2024.It is also predicted that the networks would hold 35% of data and serve 65% of the global population [1].Researchers are exploring different ways to meet new technological requirements, such as increasing bandwidth performance, coverage areas, and latency.However, security problems have not yet matured in wireless communications.Multiple attacks, such as impersonation, eavesdropping,and information modification, may endanger wireless communications.Such attacks target the authentic users to extract secret information between authentic users.Traditional cryptographic methods are usually used to secure data based on secret keys (SKs) between authentic users [2].However, this technique is less attractive for distributed systems since mobile devices have minimal computational resources, unlike centralized networks [3,4].Furthermore, the SKs are dependent on every user to keep the public key certificate in traditional cryptographic [5].Hence, mobile devices can’t carry a public key certificate in a distributed network due to limited resources [6-9].

    Alternatively, Shannon’s well-known work showed that channel reciprocity among authentic users at the physical layer (PHY) had achieved special consideration [10,11].The channel reciprocity involves generating the SKs using the channel randomness between communicating parties [12,13].However, SKG at the physical layer is essential in identifying the information based on channel state information (CSI).It offers the opportunity to imitate or require the characteristics of channels [14].For example, the channel randomness of authentic users is unknown to unauthorized users [15].In addition, PHY-SKG may not require any computational complexity due to channel randomness.Also, no key management scheme is needed for PHY-SKG [16].Furthermore, the PHY-SKG leverages the dynamic channel variations to alleviate the complication by enabling the one-time pad scheme [17].PHY-SKG overcomes the key distribution problem, and hence, the keys are distributed dynamically based on wireless channel reciprocity.

    Keeping the above discussion, the researchers in [18] proposed the received signal strength(RSS) technique for SKG.The researchers implemented the RSS technique to improve the SKG rate [19].Nonetheless, RSS-based SKG is not feasible for a distributed network.It is because RSS requires advanced algorithms to deliver a satisfactory SKGR.The authors in [20] suggested a relay-based SKGR scheme and addressed an idle intruder’s optimal power distribution.The work indicated that SKs are generated with the help of the relay node.However, relay-based SKG is not feasible for the generation of secret keys.This is due to the reason that authentic users must also secure SKs against relay nodes.In another article, the authors have proposed the PHY-SKG scheme in [21] that takes advantage of power and error correction by exploiting RSS.Again,leveraging the RSS for SKG is not feasible because the RSS technique generates a low rate of SKs that restricts their use.To solve this problem, we consider CSI an alternative method to generate SKs in wireless communications.

    Moreover, in [22], the authors considered the PHY characteristic of wireless channels, i.e.,time allocation for maximizing group SKs.In [23], the authors proposed a reinforcement learning technique to generate SKs in vehicular communications.The proposed method is applicable in a dynamic environment.However, the authors did not find the channel’s variations due to vehicles’high speed.Alternatively, we believe that the power allocation strategy enhances SKGR instead of coherence time.Essentially, the duration of coherency is for a particular time duration.Since users utilize shorter SKs in a practical scenario, the attacker can quickly collect SKs among legitimate users.

    Nonetheless, the research indicates that low SKGR is the main limitation for PHY-SKG [24].Furthermore, due to the limited period, i.e., coherence time, legitimate users produce shorter SKs.Hence, we investigate the impact of power allocations on generating and improving SKGR.Our significant achievements are summarized as follows.

    ? Due to the limited time duration, the authentic users generate shorter length of SKs.Therefore, an attacker can get information about SKs among legitimate users.Conversely,we examine the power allocation strategy to generate SKs.We illustrate a power allocation scheme to investigate SKGR.

    ? Our results show 72% higher SKGR (bits/sec) at higher power allocation than low power allocation.To prove our result, we also analyze other factors, such as epsilon (?), and the power factor loss (α).

    The rest of our paper is organized as follows.We illustrate the system model, formulation,and proposed solution in Section 2.The simulation results are discussed in Section 3.Section 4 concludes the paper.

    2 System Model,Formulation,and Proposed Solution

    In the system model, two authentic users, i.e.,u1andu2are considered.First,u1transmits the signalSu1.The receiveru2, receives the signalRu2=G1Su1+nu2.Here,G1represents the channel gain whilenu2represents the noise factor atu2.Likewise,u2transmits the signalsSu2andu1receives the signal, i.e.,Ru1=G2Su2+nu1.Here,G2represents the gain of channel whilenu1denotes the noise factor atu1.The authentic users, i.e.,u1andu2assume the channel gainG1andG2, respectively.Furthermore, we assumeSu1be the transmitted signal byu1.Hence, the channel gain atu2is

    whereis the conjugate ofSu1.Similarly, theEatu1is

    The fundamental description of SKGR betweenu1andu2is described as the mutual informationMI(Eu1,Eu2)and coherence time,T[10,14], i.e.,

    Since

    and

    The correlation coefficient betweenEu1andEu2is

    Therefore, the covariance matrix ofis

    and

    The entropy can be calculated by

    Substituting (4), (5), and (9) into (10) leads to

    Letpbe the transmitted power, andTdenotes the channel’s coherence time.Due to an optimal coherence time lengththe signal isThus,

    (12) indicates thatγu1,u2is equal to the coherence time and power allocation.The SKGR is low if the coherence time increases and vice versa.On the other side, if we increase the power transmission, the SKGR increases proportionally.In this work, we suppose that the power is distributed and allocated equally to bothu1andu2.In a realistic scenario, users send data over several links concurrently by allocating power.From (12), it is also indicated that SKGR can be calculated by taking power allocation into account, i.e.,

    wherepu1T, andpu2T, are the total powers transmitted byu1andu2, respectively.Nonetheless, to get the optimal solution, we need the validation of convexity and concavity of our objective functions, as mentioned in (14).From (14), the objective function’s problem for power maximization is non-concave.However, (13) indicates the objective function is concave with respect top, and finding the optimal solution is difficult.Therefore, we optimize theγu1,u2as a function ofpu1,andpu2, respectively.Furthermore, we also considered Lagrangian form onγu1,u2as a function ofpaccording to [20], i.e.,

    and assume the conditions of Karush Kuhn Tucker (KKT) as

    It is observed from (16) that?1> ?2≥0.Therefore,pu1T?pu1= 0.It is noted that the transmitter uses power higher than zero, i.e.,?2≥0, while comparing KKT parameters as indicated in [24-26].It is assumed that the power distribution at the transmitter side (pu2)is initially distributed equally.Therefore, as outlined in Algorithm 1, we can resolve the proposed power allocation strategy in Algorithm 2.The symmetric method of SKG helps us to rewrite the Lagrangian for all steps of the power allocation process in a similar way.From the power allocation ofu1, the following optimization problem atu2is given by

    Now, we apply the same approach as discuss for the power allocation ofu1, and is given by

    Algorithm 1 can be updated for the transmitteru1based on (18).Consequently, a locally optimal solution can be achieved on both sides [22].Thus, the power allocation ofu1is discussed in Algorithm 2.

    3 Simulation Results

    We figure out the SKGR by considering power allocation and to exploit different parameters in our simulation results.The coherence time is set toT=20.The variances, i.e.,v1&vnare set to 1 [27].Theαis initialized to 4.In our simulation results, Fig.1 shows that if we increase the power transmission, the SKGR increases accordingly.For example, at 50 mW, the SKGR is 17 bits/s when the distance betweenu1andu2is 70 m.Furthermore, the SKGR is 26 bits/s at 20 m between legitimate users by considering 50 mW power.This indicates that more power is needed to produce higher SKs.Nonetheless, when we increase the distance betweenu1andu2, the SKGR decreases because of the large distances between legitimate users.This is because when the distance increases, the SNR decreases betweenu1andu2, and hence, SKGR decreases.Nonetheless, the result also reveals that the SKGR rises with increasing power, regardless of the distances betweenu1andu2.It proves that even though the distance can impact the SKGR because of increased power, the SKGR increases.For illustration, the SKGR is approximately equal to 25-26 bit/s at 250 mW.The results also indicate that the SKGR depends not only on the coherence time but also on the transmission power.

    Figure 1:SKGR vs.power allocation by considering the distance

    We also analyze the power transmission versus?by varying the power loss factorα(ranges from 2.5 to 4).The result is significant to our work due to the power transmission’s symmetry as given in (16).The change in?causes an increase in transmission power, as depicted in Fig.2.Nevertheless, a higher power factor loss(α)would result in low transmission power than a low power factor loss(α).The transmission power at?= 0.5 is 100 mW atαis 4.In addition,the transmission power is approximately 148, 152, and 154mW atα=3.5,α=3 andα=2.5,respectively, at?=0.5.Hence, the value of?will consequently impact the power transmission at a different value of the power loss factor(α).Ultimately, it influences SKGR.This is because if power increases or decreases, the SKGR will increase or decrease accordingly.

    Figure 2:Power allocations vs.the value of ?by considering α

    Finally, by varying the value of?, we also investigate SKGR with respect to transmission power.It is noticed from Fig.3 that preferably, we can get the highest SKGR when the value of?= 0.With the rise in transmitting power at different values of?, the SKGR improves.For example, the SKGR is about 27, 23, and 20 bits/s at 100 mW, for?=1, 0.5, and 0, respectively.The reason is that a higher value of?impacts power transmission and subsequently impacts the SKGR.Nevertheless, by increasing the transmitting power, the SKGR is also improved.For instance, when the value of?=1, the SKGR is approximately 40.7% greater at 250 from 50 mW.The SKGR is also 18.5% higher at 250 from 50 mW at?=0.5.

    Figure 3:Verifying SKGR by increasing the power transmission based on ?

    4 Conclusion

    We introduced a mechanism to generate SKs and enhance the SKGR with power allocation.It guarantees the reliability of decentralized wireless networks.From the existing works, it is noticed that the coherence time for SKGR may not always be possible because coherence time produces a small length of SKs.Consequently, the intruders can easily obtain the SKs between authentic users.Therefore, we consider the power allocation scheme to generate SKs and enhance SKGR.Our research has shown that we can get a higher SKGR by increasing the transmitting power.The simulation results showed that SKGR is approximately 72% higher at higher transmission power.We also considered the value of?, distance and power factor loss,αto verify the power allocation concept on SKGR.The SKGR is approximately 40.7% greater at 250 from 50 mW at epsilon=1.The value of SKGR is reduced to 18.5% at the same power transmission when epsilonis 0.5.Furthermore, the transmission power is also measured against the different power loss factor values, i.e., 3.5, 3, and 2.5, respectively.Hence, it is concluded that the value of epsilon and power loss factor impacts power transmission and, consequently, impacts the SKGR.

    Funding Statement:This work was partially supported by the China National Key R&D Program(No.2018YFB0803600), Natural Science Foundation of China (No.61801008), Scientific Research Common Program of Beijing Municipal Education Commission (No.KM201910005025), the Chinese Postdoctoral Science Foundation (No.2020M670074), Key Project of Hunan Provincial,Department of Education (No.26420A205) and The Construct Program of Applied Characteristics Discipline in Hunan University of Science and Engineering.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    亚洲av成人不卡在线观看播放网| 午夜精品久久久久久毛片777| 午夜成年电影在线免费观看| 老熟妇乱子伦视频在线观看| av线在线观看网站| 日韩视频一区二区在线观看| 国产麻豆69| 人妻丰满熟妇av一区二区三区 | 国产野战对白在线观看| 国产av精品麻豆| 青草久久国产| 如日韩欧美国产精品一区二区三区| 免费人成视频x8x8入口观看| 国产精品久久久久成人av| 中文字幕色久视频| aaaaa片日本免费| 两人在一起打扑克的视频| 精品国产国语对白av| 欧美久久黑人一区二区| 亚洲精品乱久久久久久| 一级毛片精品| 变态另类成人亚洲欧美熟女 | 欧美中文综合在线视频| 久久人人爽av亚洲精品天堂| 美国免费a级毛片| 热re99久久精品国产66热6| 天天影视国产精品| 久久精品国产亚洲av香蕉五月 | 嫁个100分男人电影在线观看| 亚洲人成电影免费在线| 国产激情久久老熟女| 黑人欧美特级aaaaaa片| 淫妇啪啪啪对白视频| 美女福利国产在线| 在线观看舔阴道视频| 一级黄色大片毛片| 老司机在亚洲福利影院| 老熟女久久久| 人妻一区二区av| 欧美日韩乱码在线| 欧美成狂野欧美在线观看| 精品无人区乱码1区二区| 高清在线国产一区| 女人爽到高潮嗷嗷叫在线视频| 热re99久久精品国产66热6| 国产一区在线观看成人免费| 女人久久www免费人成看片| 在线看a的网站| 欧美色视频一区免费| 国产成人啪精品午夜网站| 中文字幕av电影在线播放| 免费日韩欧美在线观看| 老司机靠b影院| 十八禁高潮呻吟视频| 国产高清激情床上av| 90打野战视频偷拍视频| 天天操日日干夜夜撸| 欧美人与性动交α欧美精品济南到| 操美女的视频在线观看| 正在播放国产对白刺激| 亚洲午夜理论影院| 久热爱精品视频在线9| 老熟妇仑乱视频hdxx| 国产男靠女视频免费网站| 久久精品国产清高在天天线| 亚洲精品粉嫩美女一区| 免费人成视频x8x8入口观看| 国产欧美日韩综合在线一区二区| 老司机福利观看| 国精品久久久久久国模美| 久久久久国产精品人妻aⅴ院 | 超色免费av| 中文字幕色久视频| 精品国产乱子伦一区二区三区| 女性被躁到高潮视频| 成人国产一区最新在线观看| 久热这里只有精品99| 亚洲av日韩精品久久久久久密| 母亲3免费完整高清在线观看| 免费在线观看黄色视频的| 国产精品永久免费网站| 欧美人与性动交α欧美软件| 免费在线观看影片大全网站| 免费少妇av软件| 老汉色av国产亚洲站长工具| 满18在线观看网站| 国产极品粉嫩免费观看在线| 最近最新中文字幕大全电影3 | 国产在视频线精品| 老司机靠b影院| av视频免费观看在线观看| 大陆偷拍与自拍| 国产熟女午夜一区二区三区| 免费久久久久久久精品成人欧美视频| 韩国av一区二区三区四区| 国产无遮挡羞羞视频在线观看| 国产又色又爽无遮挡免费看| videosex国产| 一级片免费观看大全| 日本vs欧美在线观看视频| 久久青草综合色| 一边摸一边抽搐一进一出视频| 久久久久久人人人人人| 午夜免费观看网址| 免费女性裸体啪啪无遮挡网站| 在线观看日韩欧美| 欧美精品av麻豆av| 亚洲va日本ⅴa欧美va伊人久久| 国产深夜福利视频在线观看| 亚洲av美国av| 电影成人av| 中出人妻视频一区二区| 日日夜夜操网爽| 一边摸一边做爽爽视频免费| 国产一区在线观看成人免费| 国产av精品麻豆| 18在线观看网站| 欧美一级毛片孕妇| av国产精品久久久久影院| 777久久人妻少妇嫩草av网站| tube8黄色片| 人人妻人人澡人人爽人人夜夜| 十八禁人妻一区二区| 丝袜人妻中文字幕| 如日韩欧美国产精品一区二区三区| 在线观看免费高清a一片| 激情在线观看视频在线高清 | 亚洲一区二区三区欧美精品| 国产成人一区二区三区免费视频网站| 在线播放国产精品三级| 亚洲专区字幕在线| 成人国产一区最新在线观看| 欧美激情 高清一区二区三区| 黄频高清免费视频| 桃红色精品国产亚洲av| 色综合欧美亚洲国产小说| 少妇猛男粗大的猛烈进出视频| 少妇粗大呻吟视频| 高清视频免费观看一区二区| cao死你这个sao货| 精品无人区乱码1区二区| 欧美大码av| 在线十欧美十亚洲十日本专区| 自线自在国产av| 99精品欧美一区二区三区四区| 少妇裸体淫交视频免费看高清 | 中文字幕高清在线视频| 少妇 在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲av日韩精品久久久久久密| 国产成人精品无人区| 成年女人毛片免费观看观看9 | 精品久久久久久,| 国产一区有黄有色的免费视频| 捣出白浆h1v1| 一级片免费观看大全| 夜夜夜夜夜久久久久| 国产日韩一区二区三区精品不卡| 午夜91福利影院| 亚洲国产欧美日韩在线播放| 在线观看免费视频网站a站| 国产精品一区二区在线观看99| 亚洲熟女精品中文字幕| 亚洲第一欧美日韩一区二区三区| 91老司机精品| 久热爱精品视频在线9| 亚洲第一av免费看| 黄色视频,在线免费观看| 久久久国产成人免费| √禁漫天堂资源中文www| 丁香六月欧美| 国产精品98久久久久久宅男小说| 免费黄频网站在线观看国产| 99re6热这里在线精品视频| 夜夜爽天天搞| 99热网站在线观看| 免费在线观看日本一区| 黄色成人免费大全| 欧美精品高潮呻吟av久久| 国产成人精品在线电影| 国产欧美日韩一区二区精品| 91大片在线观看| 美女国产高潮福利片在线看| 精品电影一区二区在线| 日本精品一区二区三区蜜桃| 高清黄色对白视频在线免费看| 亚洲人成伊人成综合网2020| 久久青草综合色| 亚洲三区欧美一区| 久久狼人影院| 叶爱在线成人免费视频播放| 欧美色视频一区免费| 亚洲精品国产一区二区精华液| 亚洲欧美一区二区三区久久| 国产精品综合久久久久久久免费 | 精品一区二区三区四区五区乱码| 高潮久久久久久久久久久不卡| 国产精品1区2区在线观看. | 亚洲国产精品一区二区三区在线| 久久久精品国产亚洲av高清涩受| 国产成人免费无遮挡视频| 午夜两性在线视频| 日韩欧美一区视频在线观看| 国产一区二区三区在线臀色熟女 | 后天国语完整版免费观看| 色尼玛亚洲综合影院| 亚洲国产精品合色在线| 极品少妇高潮喷水抽搐| 一二三四社区在线视频社区8| 18禁裸乳无遮挡免费网站照片 | 黄色片一级片一级黄色片| 欧美精品av麻豆av| 国产精品99久久99久久久不卡| 欧美 日韩 精品 国产| 久久天堂一区二区三区四区| 亚洲七黄色美女视频| aaaaa片日本免费| 人人澡人人妻人| 国产精品98久久久久久宅男小说| 精品久久久久久,| 亚洲九九香蕉| 亚洲人成伊人成综合网2020| 一级毛片精品| 午夜精品国产一区二区电影| 人人妻人人爽人人添夜夜欢视频| 亚洲精华国产精华精| av片东京热男人的天堂| 国产成人免费无遮挡视频| 女人被躁到高潮嗷嗷叫费观| 亚洲,欧美精品.| 最新的欧美精品一区二区| 国产精品 欧美亚洲| 在线观看66精品国产| 欧美午夜高清在线| 久久精品91无色码中文字幕| 精品久久久久久久久久免费视频 | 久久草成人影院| 久久精品亚洲熟妇少妇任你| 中文亚洲av片在线观看爽 | 日本精品一区二区三区蜜桃| 另类亚洲欧美激情| 午夜福利一区二区在线看| 久久精品国产清高在天天线| 亚洲成人国产一区在线观看| 国产一区二区三区综合在线观看| 啦啦啦 在线观看视频| 国产成人精品在线电影| 免费观看人在逋| 男女下面插进去视频免费观看| 日韩大码丰满熟妇| 久久久久视频综合| 国产成人精品久久二区二区免费| 91字幕亚洲| 日韩熟女老妇一区二区性免费视频| 久久久国产成人免费| av国产精品久久久久影院| 国产成人欧美| 亚洲精品国产精品久久久不卡| 久久久精品国产亚洲av高清涩受| 男男h啪啪无遮挡| 飞空精品影院首页| 啦啦啦 在线观看视频| 在线观看免费午夜福利视频| 一级毛片精品| av天堂在线播放| 国产av精品麻豆| 久久久国产成人精品二区 | 国产在视频线精品| 欧美av亚洲av综合av国产av| 日本a在线网址| 欧美成人免费av一区二区三区 | 欧美在线黄色| 人成视频在线观看免费观看| 免费av中文字幕在线| 国产精品免费视频内射| 久久中文看片网| 黄片大片在线免费观看| 一级毛片女人18水好多| 亚洲全国av大片| 一个人免费在线观看的高清视频| 夜夜夜夜夜久久久久| 不卡av一区二区三区| 久久国产乱子伦精品免费另类| 精品免费久久久久久久清纯 | 日韩免费av在线播放| 久久久久久久午夜电影 | 日本vs欧美在线观看视频| av不卡在线播放| 欧美av亚洲av综合av国产av| 18禁美女被吸乳视频| 国产精品免费大片| 女同久久另类99精品国产91| 一区二区日韩欧美中文字幕| 久久精品成人免费网站| 久久午夜综合久久蜜桃| 日本黄色视频三级网站网址 | 国产激情欧美一区二区| 国产日韩欧美亚洲二区| 精品国产乱码久久久久久男人| 美女扒开内裤让男人捅视频| 精品少妇一区二区三区视频日本电影| 国产精品二区激情视频| 精品国产一区二区久久| 手机成人av网站| 精品乱码久久久久久99久播| av福利片在线| 无限看片的www在线观看| 一区福利在线观看| 嫁个100分男人电影在线观看| 高清在线国产一区| 午夜视频精品福利| 99国产综合亚洲精品| 国产亚洲欧美精品永久| 国产亚洲精品久久久久久毛片 | 9色porny在线观看| 成人国产一区最新在线观看| 一夜夜www| 色尼玛亚洲综合影院| 丝袜在线中文字幕| 国产精品自产拍在线观看55亚洲 | av中文乱码字幕在线| 69av精品久久久久久| 欧洲精品卡2卡3卡4卡5卡区| 午夜两性在线视频| 久久精品人人爽人人爽视色| 中文字幕色久视频| 又紧又爽又黄一区二区| 欧美激情 高清一区二区三区| 成人黄色视频免费在线看| 热re99久久国产66热| 乱人伦中国视频| 91成年电影在线观看| 久久久国产成人精品二区 | 欧美日韩av久久| 91麻豆精品激情在线观看国产 | 男人操女人黄网站| 一区二区三区国产精品乱码| 极品少妇高潮喷水抽搐| 免费观看人在逋| 色尼玛亚洲综合影院| 国产成人欧美| 国产精品自产拍在线观看55亚洲 | 男人舔女人的私密视频| 国产免费现黄频在线看| 精品欧美一区二区三区在线| 国产乱人伦免费视频| 人妻一区二区av| 亚洲成a人片在线一区二区| www日本在线高清视频| 国产蜜桃级精品一区二区三区 | 国产精品一区二区精品视频观看| 亚洲av美国av| 日本vs欧美在线观看视频| 欧美不卡视频在线免费观看 | 国产成人av教育| 免费在线观看视频国产中文字幕亚洲| 久久精品国产清高在天天线| 免费观看a级毛片全部| 王馨瑶露胸无遮挡在线观看| avwww免费| 亚洲熟女精品中文字幕| 韩国av一区二区三区四区| 久久精品熟女亚洲av麻豆精品| 欧美亚洲 丝袜 人妻 在线| 9191精品国产免费久久| 丁香欧美五月| 中文欧美无线码| 在线观看舔阴道视频| 国产不卡av网站在线观看| 人人妻人人澡人人看| 无限看片的www在线观看| 少妇被粗大的猛进出69影院| 久久精品成人免费网站| 欧美最黄视频在线播放免费 | 国产成人免费无遮挡视频| 天天躁狠狠躁夜夜躁狠狠躁| av超薄肉色丝袜交足视频| 亚洲色图综合在线观看| 亚洲国产毛片av蜜桃av| 午夜福利在线观看吧| 日日摸夜夜添夜夜添小说| 欧美在线黄色| 日韩大码丰满熟妇| 亚洲av成人一区二区三| 国产真人三级小视频在线观看| 久久性视频一级片| 久久 成人 亚洲| 午夜福利乱码中文字幕| 欧美成狂野欧美在线观看| 香蕉久久夜色| 国产不卡av网站在线观看| 在线观看免费午夜福利视频| 亚洲色图av天堂| 捣出白浆h1v1| 久久久久国产一级毛片高清牌| 又紧又爽又黄一区二区| 成年人免费黄色播放视频| 色婷婷av一区二区三区视频| 老司机在亚洲福利影院| 91精品三级在线观看| 国产单亲对白刺激| 侵犯人妻中文字幕一二三四区| 成年人免费黄色播放视频| 女人精品久久久久毛片| 国产精品98久久久久久宅男小说| 久久香蕉国产精品| 夜夜夜夜夜久久久久| 亚洲欧美精品综合一区二区三区| 亚洲av美国av| 久久久国产成人精品二区 | 热99国产精品久久久久久7| 精品一品国产午夜福利视频| 男人操女人黄网站| 久久青草综合色| 国产又爽黄色视频| 成年人黄色毛片网站| 国产成人精品久久二区二区免费| av在线播放免费不卡| 日韩有码中文字幕| 中文字幕精品免费在线观看视频| 黄片小视频在线播放| 久久久久久亚洲精品国产蜜桃av| 亚洲三区欧美一区| 90打野战视频偷拍视频| 国内久久婷婷六月综合欲色啪| 午夜视频精品福利| 亚洲一码二码三码区别大吗| 亚洲精品av麻豆狂野| 国产精品久久久人人做人人爽| 国产国语露脸激情在线看| 国产乱人伦免费视频| 欧美激情极品国产一区二区三区| 国产亚洲欧美精品永久| 天堂俺去俺来也www色官网| 欧美激情高清一区二区三区| 亚洲情色 制服丝袜| 久久午夜综合久久蜜桃| 国产成人精品久久二区二区免费| 国产精品免费一区二区三区在线 | 成人18禁高潮啪啪吃奶动态图| 一进一出抽搐gif免费好疼 | 久久人妻福利社区极品人妻图片| 50天的宝宝边吃奶边哭怎么回事| 在线视频色国产色| 久久性视频一级片| 欧美国产精品va在线观看不卡| 日韩欧美三级三区| 亚洲精品乱久久久久久| 亚洲精品中文字幕在线视频| 天堂中文最新版在线下载| 亚洲在线自拍视频| 美女午夜性视频免费| 国产精品久久视频播放| 在线观看舔阴道视频| 高清视频免费观看一区二区| 精品久久蜜臀av无| 999久久久国产精品视频| 最新的欧美精品一区二区| 美国免费a级毛片| 一本一本久久a久久精品综合妖精| 大片电影免费在线观看免费| 国产99白浆流出| 电影成人av| 午夜91福利影院| 99精品欧美一区二区三区四区| 大片电影免费在线观看免费| 大型黄色视频在线免费观看| 国产精品久久视频播放| 亚洲专区字幕在线| 美女高潮到喷水免费观看| 色尼玛亚洲综合影院| 男女午夜视频在线观看| 国产精华一区二区三区| 欧美性长视频在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 视频区欧美日本亚洲| 国产人伦9x9x在线观看| 国产成人系列免费观看| 欧美人与性动交α欧美精品济南到| 老司机在亚洲福利影院| 俄罗斯特黄特色一大片| 成人18禁高潮啪啪吃奶动态图| 一a级毛片在线观看| 亚洲欧美激情综合另类| 女性生殖器流出的白浆| 国产激情久久老熟女| 日韩制服丝袜自拍偷拍| 欧美亚洲 丝袜 人妻 在线| 国产在视频线精品| 捣出白浆h1v1| 91大片在线观看| 91字幕亚洲| 99香蕉大伊视频| 欧美日韩黄片免| a级毛片在线看网站| 亚洲va日本ⅴa欧美va伊人久久| 成人亚洲精品一区在线观看| 国产aⅴ精品一区二区三区波| 亚洲第一av免费看| 亚洲欧美激情综合另类| 纯流量卡能插随身wifi吗| 18在线观看网站| 久久精品国产综合久久久| 高清视频免费观看一区二区| 黑人猛操日本美女一级片| 日韩成人在线观看一区二区三区| 国产熟女午夜一区二区三区| 麻豆成人av在线观看| 国产成人精品久久二区二区91| 亚洲午夜理论影院| 亚洲熟妇熟女久久| 国产高清国产精品国产三级| 亚洲国产精品sss在线观看 | 午夜福利,免费看| 欧美成人免费av一区二区三区 | 19禁男女啪啪无遮挡网站| 精品第一国产精品| avwww免费| 亚洲第一欧美日韩一区二区三区| av中文乱码字幕在线| 国产av又大| 亚洲国产精品合色在线| 亚洲性夜色夜夜综合| 亚洲色图综合在线观看| 他把我摸到了高潮在线观看| 91麻豆av在线| av中文乱码字幕在线| 免费观看a级毛片全部| 亚洲精品在线美女| 亚洲五月婷婷丁香| 又紧又爽又黄一区二区| 久久亚洲真实| 国产精品国产高清国产av | 精品欧美一区二区三区在线| 亚洲熟女精品中文字幕| 亚洲成人免费电影在线观看| 麻豆av在线久日| 欧美日韩福利视频一区二区| 精品国产亚洲在线| 欧美日韩成人在线一区二区| 亚洲成人免费电影在线观看| 操出白浆在线播放| 国产男靠女视频免费网站| 久久精品国产99精品国产亚洲性色 | 亚洲精品一二三| 亚洲精品av麻豆狂野| 黄频高清免费视频| 黄色毛片三级朝国网站| 久久精品熟女亚洲av麻豆精品| 国产成人av教育| 精品国产超薄肉色丝袜足j| 日韩熟女老妇一区二区性免费视频| 三级毛片av免费| 久久久久国产精品人妻aⅴ院 | 搡老乐熟女国产| 国产精品免费一区二区三区在线 | 亚洲av美国av| 成人精品一区二区免费| 国产有黄有色有爽视频| 一边摸一边做爽爽视频免费| 国产国语露脸激情在线看| tube8黄色片| 最近最新中文字幕大全电影3 | 成人18禁高潮啪啪吃奶动态图| videosex国产| 午夜激情av网站| 中文字幕人妻熟女乱码| 欧美在线黄色| 精品国产乱子伦一区二区三区| 国产av精品麻豆| 九色亚洲精品在线播放| 一进一出抽搐动态| 国产av一区二区精品久久| 黄色毛片三级朝国网站| 精品福利永久在线观看| 自线自在国产av| 熟女少妇亚洲综合色aaa.| 亚洲久久久国产精品| 亚洲va日本ⅴa欧美va伊人久久| 夜夜爽天天搞| 黑人巨大精品欧美一区二区蜜桃| 在线播放国产精品三级| 亚洲性夜色夜夜综合| 亚洲熟女毛片儿| 首页视频小说图片口味搜索| 99国产精品免费福利视频| 在线十欧美十亚洲十日本专区| 69精品国产乱码久久久| 亚洲片人在线观看| 免费在线观看日本一区| 天天操日日干夜夜撸| 自线自在国产av| 久久热在线av| 日本a在线网址| 欧美日韩亚洲高清精品| 夫妻午夜视频| 国产男女超爽视频在线观看| 中文亚洲av片在线观看爽 | 免费在线观看完整版高清| 国产免费男女视频| 波多野结衣一区麻豆| avwww免费| 国产成人精品久久二区二区免费| 18禁裸乳无遮挡免费网站照片 | 女警被强在线播放| 国产精品久久久人人做人人爽| 9191精品国产免费久久| 国产精品偷伦视频观看了| 丁香欧美五月| 黄色毛片三级朝国网站| 黄片大片在线免费观看| 无遮挡黄片免费观看| xxxhd国产人妻xxx| 夜夜爽天天搞| 韩国精品一区二区三区|